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1 Introduction

This project is essentially in population dynamics (Mathematical Biology), but with several
interesting real-world applications in mind. In fact, the concept of a bioreactor (chemo-
stat) is essentially the same as saying we study life (microbes or bacteria are the most
abundant form of life on the planet) in a well-defined environment, where we have hope
to understand the living conditions precisely. Therefore the study of bioreactors, together
with new forms of genetic manipulation and even genetic engineering (synthetic biology)
provides the most favorable conditions ever to use mathematical modeling to generate a
real predictive science in the Life Sciences.

The list of real-world applications is very long:

+ Waste water treatment (large tanks with a gigantic microbial community, both in num-
bers and in numbers of species)

+ Biotechnology (industrial tanks used to produce something microbes can synthesize,
like biofuel)



+ As abstractions of situations found in human bodies, which is interesting for medicine
(mostly the gut, intestine)

+ As abstractions of real microbial ecosystems in the soil, the sea etc.

2 Mathematical Modelling

As noted in the introduction, bioreactors are ideal objects to advance mathematical mod-
eling in the Life Sciences. Microbes are uni-cellular, and usually very abundant allow-
ing in most generic situations the use of continuum models. Nevertheless each single
cell is a highly sophisticated biological object, which allows to study the most essential
largely unknown genotype-phenotype relationship, as postulated theoretically by Darwin.
In mathematical terms this means we have to study multi-scale systems, we begin typi-
cally with cellular biochemistry and genetics, and build up functional models to the level
of organelles, and finally whole cell. The interaction of all cells in the bioreactor is then
the population dynamics aspect. The latter aspect can be studied either spatially homo-
geneous, or spatially explicit, leading to either ODE or PDE-type equations. The same is
true for all modeling aspects along the genotype-phenotype chain:

+ Biochemistry inside the cell can be either spatially explicit (rare) or homogeneously
mixed. Using biochemically pathways inside each cell leads to models with high
internal structure.

+ Cell physiology, like growth, and cell division, can be modeled in different ways.

If we get rid of all sophistication on the cellular level (microbial soup), and assume a ho-
mogeneous environment with one so-called limiting nutrient (one concentration of nutrient
in the growth medium is determining growth), we get the classical chemostat equations:
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Here S is the nutrient concentration, = is the biomass concentration, D > 0 is the
washout rate, S > 0 is the (limiting) nutrient concentration in the feeding bottle, i > 0 is
the growth yield factor, and g(S), the nutrient dependent growth rate, usually modeled by
the Michaelis-Menten function, i.e.



with m > 0 the maximal growth rate, and k& > 0 the half-saturation constant. One can
take this simple model, and attach to it more and more structure, like model resolution for
individual cells.

2.1 The chemostat story

+ The chemostat literature is the most complete mathematical description of any sys-
tem where population dynamics is considered. See all references (not complete).
Perhaps it started with J. Monod, an important French micro-biologist at the Institut
Pasteur (see [24]).

+ The chemostat story is indeed a story of subsequent generalizations in very many
different directions, and therefore can be taken as a paradigm case for mathemat-
ical modeling in itself. The chemostat can be extended, as mentioned, to spatial
modeling, but it can be also extended to internal structure, i.e. cellular properties,
like an explicit modeling of the cell cycle, or biochemical pathways. In addition we
can consider periodic in- and outputs for the environment. Or even more complex
fluctuations, see also 'batch cultures’.

+ Just a view names of important mathematicians associated with the chemostat lit-
erature: Paul Waltman, Gail Wolkowiecz, Hal Smith, Betty Tang, Willy Jager, Odo
Diekmann, Horst Thieme, ...

2.2 Batch cultures

A variant of the chemostat are batch cultures. Here the chemostat is disconnected, and
has no exchange with the outside, it is a closed system. In this case we are interested in
transients, and a sequence of initial-value problems, which correspond to a repeated set-
up of the batch culture. Such arrangements have, for example, been taken in experiments
of directed evolution, where the contents of a batch culture is suspended into fresh medium
after some time. The new medium can be arranged to imitate certain selective pressures.
We will study the situation with evolutionary models of so-called ‘adaptive-dynamics’ type.

3 Aninteresting real-world example that could be studied with
chemostat theory
Just to motivate you here is the citation of the summary of a recent paper in Cell ([34]):

'All domains of life feature diverse molecular clock machineries that synchronize phys-
iological processes to diurnal environmental fluctuations. However, no mechanisms are



known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom
ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, ex-
hibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific
compositional and functional profiles over the course of a day. Ablation of host molecu-
lar clock components or induction of jet lag leads to aberrant microbiota diurnal fluctua-
tions and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced
dysbiosis in both mice and humans promotes glucose intolerance and obesity that are
transferrable to germ- free mice upon fecal transplantation. Together, these findings pro-
vide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-
dependent mechanism for common metabolic disturbances in humans with aberrant cir-
cadian rhythms, such as those documented in shift workers and frequent flyers.’
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Chemostat theory, with its well-developed approaches to tackle rhythmic driven inputs,
could well be used to make a predictive theory out of these findings. And there is indeed
a lot of interesting real-world application in this...

4 What to do in this project ?

Depending on the level of the student (Project, MSc, PhD) the student takes one of the
following topics:

+ A specific application, like biotechnology, waste-water treatment, or the human gut
or intestine.



+ A specific mathematical challenge, like extension to spatial modeling (PDE) or mod-
els with internal structure (Physiologically Structured Population Models, see [23]),
or even both.

+ An evolutionary setting, for example directed evolution in the context of batch cul-
tures.

+ The study of biochemical pathways with the help of the chemostat and bacterial
cultures.
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