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Summary

Mutual information, as a measure of mutual dependence without specific modelling
assumptions, is popular in various scientific disciplines. However, numerically estimating
mutual information could be difficult. The most popular estimators are the k-nearest
neighbour estimators due to the theoretical and practical performance. We implemented
two classic and two new k-NN estimators, which are the 3KL, the KSG, the BI-KSG
and the G-knn estimators respectively. After that, we tested them on three different
families of distribution. We also discussed the efficiency and accuracy of them under
different conditions. Furthermore, we implemented the Gao’s estimator and proposed an
estimator based on the KL entropy estimator to deal with discrete-continuous data. By
modifying the local estimates, we proposed a bias-improved G-knn estimator which not
only keeps the advantages of the G-knn estimator but also improves the bias. Inspired
by approximate k-NN search algorithms, we proposed an approximate k-NN method
which improves the efficiency and accuracy of estimation under appropriate parameters.
Finally, we showed the application significance of these estimators by testing them on
MIMO communication channel and feature selection simulations.
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Chapter 1

Introduction

Mutual information is one of many quantities that measure the mutual dependence
between two variables. It can be perceived as the reduction in the uncertainty of one
random variable due to the information from the other. As an information-theoretic
quantity, mutual information plays an important role in a large number of scientific
disciplines. There are some properties which make it popular in applications, such as the
sensitivity to dependence compared with linear correlation coefficient, the invariance of
one-to-one transformations and the obedience to the data processing inequality [19][17].
At the same time, to estimate it from samples becomes a vital issue. This question
has totally different solutions depending on the original distribution from which the
data are sampled. For discrete distributions, the minimax rate-optimal estimators are
considered and developed by researchers. For continuous distributions, the interplay
of geometry and the dimensionality become the key in estimating mutual information,
which is one of the main foci of this report.

This report implements these classic and newest k-nearest neighbour (k-NN) es-
timators in the Python environment, investigates their performance, compares them
against each other using different families of distribution, and applies them into MIMO
communication channels and feature selection. In Chapter 2, we present the theoretical
basis of estimating mutual information by four sections. We demonstrate differential
entropy, mutual information and two divergences in the first two sections. Based on
the understanding of them, we derive the entropy and mutual information for discrete-
continuous case, and show that the mutual information is a weighted Jensen-Shannon
divergence of a set of conditional distributions in that case. In the final section, we
extend the mutual information of multivariate Gaussian to the complex field since the
data of MIMO communication channel are from complex Gaussian distributions. After
the introduction of theory, we review the previous studies of method and application in
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Chapter 3. In Chapter 4, we formally present the algorithms of the estimators. We start
from the Kozachenko and Leonenko (KL) estimator of entropy, and the 3KL estimator.
Then we introduce the Kraskov, Stögbauer and Grassberger (KSG) estimator which
has two slightly different algorithms with similar performances. Next we illustrate the
bias-improved KSG (BI-KSG) estimator which uses `2-ball instead of `∞-ball to find the
k-NN. After that, we present a new estimator named geometric k-NN (G-knn) to mainly
deal with dependent samples. In the second section of this chapter, we firstly introduce
Gao’s estimator, which deals with samples generated from any kind of mixed distribu-
tion. Then we propose our estimator which focuses on discrete-continuous samples. In
Chapter 5, the estimators are tested on three different families of distribution. We also
evaluate the efficiency and discuss the bias of them after the numerical tests. Based on
the understanding of the existing estimators, we propose two new methods in Chapter 6.
They are the bias-improved G-knn (BIG-knn) estimator and the approximate k-nn
method. Then, we test the both on same examples to demonstrate the improvements of
them. In Chapter 7, we apply these estimators on MIMO communication channels and
feature selection to test the performance of them on applications. In the last chapter,
we conclude the main results of this report and propose the possible directions of further
development in estimators and applications.
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Chapter 2

Theory

This chapter theoretically introduces relevant measures and properties which are used
in the following chapters. The base of the logarithm determines the units in which the
information is measured. From now on, we use natural logarithm to measure information
in nats.

2.1 Discrete and differential entropy

Given two discrete random variable X ∈ RdX and Y ∈ RdY with possible values
{x1, x2, · · · , xN} and {y1, y2, · · · , yN}, we define the discrete entropy as below:

Definition 2.1.1. [2] The discrete entropy is defined as

H(X) := −E[log (px(x))] = −
N∑
x

px(x) log (px(x)), (2.1)

where px(x) is the probability mass function of X, E[·] is the expectation operator.

Definition 2.1.2. The joint entropy is given as

H(X,Y ) := −E[log (px,y(x, y))] = −
N∑
x

N∑
y

px,y(x, y) log (px,y(x, y)), (2.2)

where px,y(x, y) is the joint probability mass function of (X,Y ).
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Definition 2.1.3. The conditional entropy of Y given X is defined as:

H(Y |X) :=
N∑
x

px(x)H(Y |X = x)

= −
N∑
x

px(x)
N∑
y

py(y|x) log py(y|x)

= −
N∑
x

N∑
y

px,y(x, y) log
(
px,y(x, y)
px(x)

)
.

(2.3)

Given two continuous random variable X ∈ RdX and Y ∈ RdY , we can define the
differential entropy as below:

Definition 2.1.4. [2] The differential entropy is defined as

H(X) := −E[log (µx (x))] = −
∫
X
dxµx(x) log (µx(x)), (2.4)

where µx is the probability density function of X.

Definition 2.1.5. The joint differential entropy is defined as

H(X,Y ) := −E[log (µ (x, y))] = −
∫
X,Y

dxdyµ(x, y) log (µ(x, y)), (2.5)

where µ(x, y) is the joint pdf of (X,Y ).

Definition 2.1.6. The conditional differential entropy of Y given X is defined as:

H(Y |X) := −
∫
X

∫
Y
dxdyµ (x, y) log(µy (y|x))

= −
∫
X

∫
Y
dxdyµ (x, y) log

(
µ (x, y)
µx (x)

)
.

(2.6)

2.2 Mutual information

Definition 2.2.1. [19] The mutual information between X and Y is defined as

I(X,Y ) := H(X) +H(Y )−H(X,Y ), (2.7)

where H(X,Y ) is the joint entropy of X and Y .

We name the operation from entropy estimator to mutual information estimator
using the definition of mutual information as 3H -principle in this report [12]. Here we
provide a simple example to help readers understand mutual information.
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Example 2.2.2. Assuming two discrete random variables (X,Y ) ∈ {0, 1}2, where
Pr [X = 0] = Pr [X = 1] = 1/2. If X = 1 then Y = 1, otherwise Pr [Y = 0] =
Pr [Y = 1] = 1/2. Thus, the entropies of X and Y given by 2.1.1 are

H(X) = −
2∑
i=1

PrX(xi) log (PrX(xi))

= −
(1

2 log 1
2 + 1

2 log 1
2

)
= log 2

(2.8)

and

H(Y ) = −
2∑
i=1

PrY (yi) log (PrY (yi))

= −
(3

4 log 3
4 + 1

4 log 1
4

)
= 2 log 2− 3

4 log 3.

(2.9)

The joint entropy of (X,Y ) given by 2.1.2 is

H(X,Y ) = −
2∑
i=1

2∑
j=1

PrX,Y (xi, yj) log (PrX,Y (xi, yj))

= −
(1

2 log 1
2 + 0 + 1

4 log 1
4 + 1

4 log 1
4

)
= 3

2 log 2.

(2.10)

Combining (2.8), (2.9) and (2.10) using Definition 2.2.1, we obtain the mutual informa-
tion of X and Y :

I(X,Y ) = H(X) +H(Y )−H(X,Y )

= log 2 + 2 log 2− 3
4 log 3− 3

2 log 2

= 3
4 log 4

3 .

(2.11)

�

In addition, if we assume there is a continuous random variable Z = (X,Y ) with
joint density µ(x, y), I(X,Y ) can also be rewritten into the following integral:

I(X;Y ) =
∫ ∫

dxdyµ(x, y) log µ(x, y)
µx(x)µy(y) , (2.12)
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where the marginal densities of X and Y satisfy µx(x) =
∫
dxµ(x, y) and µy(y) =∫

dyµ(x, y).
We collect some well-known properties about entropy and mutual information for

analytically deriving the solutions.

Theorem 2.2.3. [2, 24] (The properties of entropy and mutual information)

• H(Y |X) = 0, if and only if the value of Y is completely determined by the value
of X.

• H(Y |X) = H(Y ), if and only if X and Y are independent random variables.

• H(Y |X) = H(X,Y )−H(X).

• I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X,Y )−H(X|Y )−H(Y |X).

• I(X,X+Y ) = H(X+Y )−H(Y ), if and only if X and Y are independent random
variables.

Another important property is the invariance of mutual information under reparam-
etizations demonstrated in Theorem 2.2.4.

Theorem 2.2.4. [19] Given homeomorphisms X ′ = F (X) and Y ′ = G(Y ), the pdf of
the joint random variable (X ′, Y ′) is denoted as µ′(x′, y′). Thus, we obtain

I(X ′, Y ′) =
∫ ∫

dx′dy′µ′(x′, y′) log µ′(x′, y′)
µ′x(x′)µ′y(y′)

=
∫ ∫

dxdyµ(x, y) log µ(x, y)
µx(x)µy(y)

= I(X,Y ).

(2.13)

The proof of Theorem 2.2.4 is given in Appendix A.

2.3 Kullback-Leibler divergence and Jensen-Shannon di-
vergence

Given two probability measures P and Q on a measurable space (Ω,F), we can define
Kullback-Leibler divergence and Jensen-Shannon divergence as below:

Definition 2.3.1. [20, 27] The Kullback-Leibler divergence (KLD) between P and Q

is defined as
D(P‖Q) :=

∫
Ω
dP log dP

dQ
(2.14)
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when P is absolutely continuous with respect to Q, and +∞ otherwise, where dP

dQ
is

the Radon-Nikodym derivative [29].

Definition 2.3.2. [13] The Jensen-Shannon divergence (JSD) M(A)×M(A)→ [0,∞)
is a symmetrized and smoothed version of the KLD for a set of probability distributions
M(A) where A is a set with some σ-algebra of measurable subsets. For M = 1

2(P +Q),
The Jensen-Shannon divergence between P and Q is defined as

JSD(P‖Q) := 1
2 (D (P‖M) +D (Q‖M)) . (2.15)

2.4 Discrete-continuous mutual information

Mutual information between mixed types of random variable, as an unusual case,
is normally avoided by other researchers. However, it is highly relevant to some
specific areas of application, such as communication channel using quadrature amplitude
modulation (QAM). In this section, we derive the formula of discrete-continuous mutual
information and prove some important properties of it. Firstly, we derive the relationship
between discrete and continuous entropies.

Consider the range of a random variable X with density f(x) is divided into n small
intervals of length ∆. Defining the quantized random variable X∆ = xi, if i∆ 6 X <

(i+ 1)∆, we can obtain that:

Lemma 2.4.1. [2] If the density f(x) of the random variable X is Riemann integrable,
then

lim
∆→0

(
H(X∆) + log ∆

)
= H(f) = H(X). (2.16)

Next, we use the same idea to obtain discrete-continuous joint entropy:

Lemma 2.4.2. If the density f(x) of the random variable X is Riemann integrable,
then

lim
∆1→0

(
H(X∆1 , Y ∆2) + log ∆1

)
= H(X,Y ∆2). (2.17)

The proof is given in Appendix A. From Lemma 2.4.1 and Lemma 2.4.2, we define
discrete-continuous mutual information as below:

Definition 2.4.3. Given a discrete random variable X ∈ Z with the probability
mass function p(x) = Pr [X = x] and a continuous random variable Y ∈ RdY with the
probability density function µy(y), the discrete-continuous mutual information is defined

12



as

I(X∆, Y ) := H(X∆) +H(Y )−H(X∆, Y )

= −
∑
x

p(xi) log p(xi)−
∫
y
µy(y) logµy(y)dy +

∑
x

∫
y
µ(xi, y) logµ(xi, y)dy

=
∑
x

∫
y
µ(xi, y) log µ(xi, y)

p(xi)µy(y) ,

(2.18)

where we denote the mixed density by µ(xi, y) which satisfies p(xi) =
∫
y µ(xi, y)dy and

µy(y) =
∑
x µ(xi, y).

We collect some properties of it in Theorem 2.4.4.

Theorem 2.4.4. (The properties of mixed entropy and mutual information)

• H(Y |X∆) = H(Y ), if and only if X and Y are independent random variables.

• H(Y |X∆) = H(X∆, Y )−H(X∆).

• I(X∆;Y ) = H(Y )−H(Y |X∆).

• I(X ′∆, Y ′) = I(X∆, Y ), for homeomorphisms X ′∆ = F (X∆) and Y ′ = G(Y ).

Note 2.4.5. Notice that the discrete-continuous mutual information equals to a weighted
Jensen-Shannon divergence of a set of conditional distributions. Thus, we can rewrite it
using Jensen-Shannon divergence as below:

I(X∆, Y ) = H(Y )−H(Y |X∆)

=
∫
y
µy(y) logµy(y)dy −

∑
x

px(xi)
∫
y
µxi(y) logµxi(y)dy

= H

(∑
x

px (xi)Xi

)
−
∑
x

px(xi)H(Y |Xi)

=: JSDpx(x)(X1, X2, · · · , Xn),

(2.19)

where µy(y) =
∑
x px(xi)µxi(y) and Xi is the random variable with probability density

function µxi(y). �

Gao, Kannan, Oh and Viswanath [12] provided a more general definition of mutual
information based on Radon-Nikodym derivative in 2017, which covers the case of
Definition 2.4.3. Each of the two definitions has its advantages. We will use both of
them in the following chapters. The definition is shown as follows.
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Definition 2.4.6. Consider a probability measure PXY on the space X × Y, where X
and Y are Euclidean spaces. Define PX(A) = PXY (A× Y) and PY (B) = PXY (X ×B)
for any measurable set A ⊆ X and B ⊆ Y. The mutual information I(X,Y ) of PXY is
defined as

I(X,Y ) :=
∫
X×Y

log dPXY
dPX × PY

dPXY , (2.20)

where dPXY
dPX × PY

is the Radon-Nikodym derivative.

Notice that the following cases are all included in this definition:

(a) One of X and Y is discrete, and another is continuous;

(b) X or Y has many components where some of them are discrete and others are
continuous;

(c) X, Y or (X,Y ) is a mixture of discrete and continuous.

2.5 Complex Gaussian channel

In this section, we firstly investigate the properties of complex Gaussian distribution.
Then, we derive the formula of entropy for complex Gaussian distribution. Finally, we
show the mutual information of the complex Gaussian channel model.

Consider a complex random vector x ∈ Cn and a matrix Q ∈ Cn×n, define

x̂ =
[
<(x)
=(x)

]
and Q̂ =

[
<(Q) −=(Q)
=(Q) <(Q)

]
, (2.21)

where <(x) and =(x) denote the real and imaginary parts of x.

Lemma 2.5.1. [34] x is said to be Gaussian if x̂ is Gaussian. If so, we denote the
expectation and covariance of x̂ as E[x̂] ∈ R2n and E

[
(x̂− E[x̂]) (x̂− E[x̂])†

]
∈ R2n×2n.

Lemma 2.5.2. [34] A complex Gaussian random vector x is circularly symmetric, if
for some Hermitian non-negative definite Q ∈ Cn×n, we have the covariance of x̂ as
below:

E
[
(x̂− E[x̂]) (x̂− E[x̂])†

]
= 1

2Q̂. (2.22)

Lemma 2.5.3. [34] The covariance of a circularly symmetric complex Gaussian random
vector x is E

[
(x− E[x]) (x− E[x])†

]
= Q.

Now we can derive the differential entropy for complex Gaussian distribution.
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Lemma 2.5.4. All eigenvalues of Hermitian non-negative definite Q ∈ Cn×n are real
and non-negative. Thus, det (Q) =

∏n
i λi ≥ 0.

The proof is given in Appendix A.

Theorem 2.5.5. [34] The differential entropy of a complex Gaussian x with covariance
Q is given by

H(x) = EγQ [− log γQ (x)]

= log det (πQ) + (log e)E
[
x†Q−1x

]
= log det (πQ) + (log e) tr (I)

= log det (πeQ).

(2.23)

where γQ is the pdf of x.

For a single user Gaussian channel with multiple transmitting and receiving, we
denote the transmitted vector as x ∈ Ct and the received vector as y ∈ Cr. We consider
a linear model in which y depends on x via

y = Hx + n, (2.24)

where H is a r × t complex random matrix and n is complex Gaussian noise with
E[n] = 0 and E

[
nn†

]
= Ir.

Consider a circularly symmetric complex Gaussian x with covariance Q in this
model, the covariance of y is E

[
yy†

]
= HQH† + Ir. The mutual information between

x and y is shown as below.

Lemma 2.5.6. If Q is a Hermitian non-negative definite matrix, then for random
matrix A we have AQA† is also a Hermitian non-negative definite matrix.

The proof is given in Appendix A.

Theorem 2.5.7. [34] The mutual information I(x,y) is given by

I(x,y) = H(y)−H(y|x)

= H(y)−H(n)

= log det
(
Ir +HQH†

)
.

(2.25)
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Chapter 3

Literature Review

3.1 Review of methods

There are various methods to do the estimation for continuous distributions. Cumulant
expansions give crude approximations of mutual information for distributions close to
Gaussian. Entropy maximalization is more robust but is still crude approximations
[16]. One kind of the well-known methods is partitioning the supports of the random
variables into finite size bins [4, 35], which is called binning estimators. This kind of
method does converge to true solutions for proper functions as samplesize tends to
infinity and all bin sizes tend to zero, but we will not pursue it due to the limitation of
convergence conditions and accuracy. Another kind of promising method is the kernel
density estimators (KDE) [25, 32]. KDE performs better than binning estimators and
it has both smaller statistical and systematic errors. However, we will not investigate it
because of the quick deterioration and high computational costs as mentioned in [19].

Among these estimators, the k-nearest neighbour estimators are singled out due to
the theoretical and practical performance. The most classic k-NN estimator of entropy
was proposed with a bias correction term by Kozachenko and Leonenko [18] named KL
estimator in 1987, which also led to a fairly good estimator by the definition of mutual
information denoted as 3KL estimator. In 2004, Kraskov, Stögbauer and Grassberger
[19] proposed a different k-NN estimator of mutual information named KSG estimator
and illustrated the improvements in variant settings. Due to superior performance, it
became one of the most popular estimators. In 2017, Gao, Oh and Viswanath [11]
investigated the basic theoretical properties, such as consistency and convergence, of
KL and KSG estimators. They believe that the better performance of KSG over 3KL is
due to the correlation boosting effect. Based on the understanding of this effect, they
introduced a new method denoted as bias-improved KSG (BI-KSG) estimator, which
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has further improvements in vanishing bias. Lord, Sun and Bollt (2018) [23] noticed that
most k-NN methods use regular local volume elements which allows the estimators to be
asymptotic consistent. However, it is not descriptive of the geometry of the probability
measures and results in bias. They introduced the geometric k-NN estimators (G-knn)
of entropy and mutual information based on elliptical local volume elements. This
method outperforms the KSG for small sample size and highly dependent samples, but
it is not corrected for asymptotic bias.

In some applications, the samples are generated from discrete-continuous mixed
distributions. There are only few studies about estimating mutual information in this
case. Ross [28] presented a rough definition of mutual information in 2014. Given the
understanding of it, he proposed a k-NN estimator and compared it with binning method.
It generally performs well on the given examples. However, we will not introduce this
estimator due to the bad performance on higher dimension samples. Gao, Kannan, Oh
and Viswanath [12] gave a more general definition of mutual information which includes
any mixed case and proposed an estimator (we denote it as Gao’s estimator) which is
inspired by the KSG estimator.

3.2 Review of applications

Mutual information has been applied in a variety of disciplines. As demonstrated by
Hyvärinen, Karhunen and Oja [16], mutual information occupies an important position
in independent component analysis (ICA). In ICA problems, mutual information is not
only used for testing the actual independence of the components, but also for testing
the uniqueness and robustness [19]. Another possible application area mentioned in [28]
is the gene detection. For example, we can estimate the mutual information between
base sequence and the gene expression level on patient survival time to provide ideas of
the mechanism of some genetic diseases. In big data area, there are a large number of
recent research about link prediction and topic discovery algorithms of different kinds
of social network based on mutual information, such as [3] and [30]. Furthermore, the
mutual information can also be used to measure the similarity of two datasets to give an
evaluation of algorithm performance. Mutual information are also applied in financial
market studies. Guo, Zhang and Tian [14] believe that mutual information is more
effective than Pearson correlation coefficient for characterising the nonlinear relationship
between stocks. Wang and Hui [36] investigated the distribution of financial contagion
using mutual information.

Apart from the above applications, feature selection and multi-input and multi-
output (MIMO) communication channels are two popular application fields involving
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mutual information. There are numerous feature selection algorithms using mutual
information as their measures [26][7][22]. However, as discussed by Kwak and Choi [21],
estimating mutual information could be difficult, and the performance of these algorithms
depends on the accuracy of the estimates. For MIMO communication channels, mutual
information is the ideally suitable measure for the capacity of channels. This idea was
originally proposed by Shannon [31] in 1948 and widely used by other researchers [15][33].
In 1999, Telatar [34] extended the mutual information to complex distributions which
introduces more possibility in relevant applications. In this report, we will discuss the
possible applications in MIMO communication channels and feature selection using our
estimators, and test the performance of estimator on given examples.
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Chapter 4

Methods

4.1 Continuous estimators

Differential entropy and mutual information estimation is the main focus in this section.
We present four continuous estimators, which are the KL estimator, the KSG estimator,
the BI-KSG estimator and the G-knn estimator. The main idea and performance of
them are partly similar, but each has its own merits. We start from the KL estimator.

KL estimator

Consider N i.i.d. samples x1, x2, · · · , xN generated from a random variable X ∈ Rd

which has the probability density function fX(x). The KL estimator estimates entropy
by the following formula [18]:

H(X) = −E[log fX (X)]

≈ − 1
N

N∑
i

log f̂X(xi),
(4.1)

where f̂X(xi) is the estimate of fX(x) locally at x = xi. To estimate the local pdfs, we
firstly find the distance εk,pi from xi to its k-th nearest neighbour in `p (p > 1) space.
Then, we compute the volume of the unit `p-ball in d dimension [11]:

V p,d = 2d
Γ
(

1 + 1
p

)d
Γ
(

1 + d

p

) . (4.2)
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The local estimation f̂X(xi) is given by

f̂X(xi) '
k/N

Voli

= k/N

V p,d(εk,pi )d
,

(4.3)

where Voli denote the volume of the neighbourhood of xi. Combining Equation (4.1)
and Equation (4.3), we obtain the KL estimator of entropy [11]:

ĤKL(X) = logN + log
(
V p,d

)
+ d

N

N∑
i

log
(
εk,pi

)
− ψ(k), (4.4)

where ψ(x) is the digamma function defined as ψ(x) = Γ−1(x)dΓ(x)/dx. Note that
ψ(x) = log x − 1/2x + o(1/x) has an important correction term −1/2x + o(1/x) for
debiasing the estimator [18]. Using 3H-principle, we can simply obtain an estimation of
mutual information by applying the KL estimator three times:

Î3KL(X,Y ) = ĤKL(X) + ĤKL(Y )− ĤKL(X,Y ), (4.5)

which is denoted as 3KL estimator.

KSG estimator

Based on the KL estimator, the KSG estimator with two slightly different algorithms
is introduced in [19]. The main difference between the KSG estimator and the 3KL
estimator is the value of k that they choose to estimate the marginal entropies. In
the 3KL estimator, the entropies are estimated separately using fixed k. However, the
authors of [19] believe that the bias of Ĥ(X), Ĥ(Y ) and Ĥ(X,Y ) will cancel out by
using the number of points in the neighbourhood of each sample in X and Y space
respectively, which is sample dependent, where the radius of the neighbourhood depends
on the k-NN distances of the sample in the joint space Z = (X,Y ). Now we introduce
the two algorithms of KSG estimator.

Consider N i.i.d. samples z1 = (x1, y1), · · · , zN = (xN , yN ) generated from Z =
(X,Y ), where X and Y are two random variables. We denote the distance from zi to
its k-th nearest neighbour by ε(i), and the distance between the same points in the
subspaces by εx(i) and εy(i) . Since the KSG estimator use the maximum norm distance,
we have ε(i) = max{εx(i), εy(i)}.

In the first algorithm, we count, for each xi in the subspace, the number of points
nx(i) whose distance from xi is strictly less than ε(i), and similarly for each yi to obtain
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ny(i). Then the estimate of mutual information is given by

ÎKSG1(X,Y ) = ψ(k)− 1
N

N∑
i

(ψ (nx (i) + 1) + ψ (ny (i) + 1)) + ψ(N). (4.6)

In the second algorithm, we count the number of points nx(i) and ny(i) by using
the conditions ‖xi − xj‖∞ 6 εx(i) and ‖yi − yj‖∞ 6 εy(i). Thus, we obtain

ÎKSG2(X,Y ) = ψ(k)− 1− 1
N

N∑
i

(ψ (nx (i)) + ψ (ny (i))) + ψ(N). (4.7)

BI-KSG estimator

In [11], Gao, Oh and Viswanath gave an explanation about the superior performance
of KSG estimator, which is the correlation boosting effect. They found out that the
bias of estimators will be reduced if the bias of the joint entropy estimate is positively
correlated to the bias of marginal entropy estimates. Based on the understanding of
this effect, they built a new estimator named BI-KSG estimator. In this estimator,
they use `2-norm to measure k-NN distances instead of `∞-norm. They also replace
ψ(nx(i) + 1) and ψ(ny(i) + 1) by log (nx(i)) and log (ny(i)) separately. Denoting ε(i) as
the `2-distance from zi to its k-th nearest neighbour, nx(i) and ny(i) are the number of
points satisfying the conditions ‖xi − xj‖2 6 ε(i) and ‖yi − yj‖2 6 ε(i). Thus, we have

ÎBI-KSG(X,Y ) = ψ(k)+logN+log
(
VdxVdy

Vdx+dy

)
− 1
N

N∑
i

(log (nx (i)) + log (ny (i))), (4.8)

where Vd = πd/2

Γ(d/2 + 1) is the volume of d-dimension unit `2-ball.

G-knn estimator

As shown in [23], the KSG estimator does not perform well when the two random
variables are highly dependent or the sample size is small. To fill this gap, a svd-based
geometric k-NN estimator was defined by Lord, Sun and Bollt [23] in 2018. The
estimator is inspired by Gao, Steeg, and Galstyan (GSG) estimator [10], which uses the
principal component analysis of local data to fit a hyper-rectangle. We start from the
entropy estimator.

Recall the formula (4.1) and the local pdf estimate formula (4.3). In G-knn esti-
mator, we use elliptical local volume elements, which is estimated by singular-value
decomposition (svd) of local data. For each sample xi, denote xi =

(
x0
i , x

1
i , x

2
i , · · · , xki

)
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where x0
i = xi to be the k-neighbourhood of sample points. In order to indicate di-

rections of maximal stretching by using svd, firstly we center the data to the centroid
zi = 1

k + 1
∑k
j=0 x

j
i . Denote yji = xji − zi for j ∈ {0, 1, 2, · · · , k}, we obtain a (k+ 1)× d

matrix

Yi =


y0
i

y1
i
...
yki

 . (4.9)

Using singular-value decomposition on Yi, we obtain Yi = UiΣiV
T
i , where the diagonal

entries of Σi are the singular values of Yi, and the columns of Ui and Vi are the left
and right singular vectors. Define ε(xi, k) to be the `2-distance from xi to the k-nearest

data point, we let ri = ε(xi, k)
[
σ1
i

σ1
i

v1
i ,
σ2
i

σ1
i

v2
i , · · · ,

σdi
σ1
i

vdi

]
to be the axes, and xi to be

the centroid of the ellipsoid to fit the local data, where σli and vli (l = 1, · · · , d) are the
singular values and vectors from Σi and Vi. Denote nx(i) to be the number of points
inside the local ellipsoid, we can derive the local density estimate f̂X(xi) directly by
(4.3) to obtain

f̂X(xi) = nx(i)/N
Vi

(4.10)

where Vi is the volume of the local ellipsoid computed by the formula

Vi = πd/2

Γ(1 + d/2)ε(xi, k)d
d∏
l

σli
σ1
i

. (4.11)

Substituting into Equation (4.1) yields the entropy estimator:

ĤG-knn(X) =− 1
N

N∑
i

log nx(i)/N
Vi

= logN + log
(

πd/2

Γ(1 + d/2)

)
− 1
N

N∑
i

log (nx (i))

+ d

N

N∑
i

log (ε (xi, k)) + 1
N

N∑
i

d∑
l

log
(
σli
σ1
i

)
.

(4.12)

We can then derive the estimate of mutual information by 3H-principle:

ÎG-knn(X,Y ) = ĤG-knn(X) + ĤG-knn(Y )− ĤG-knn(X,Y ). (4.13)
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4.2 Discrete-continuous estimators

In this section, we introduce two estimators which estimate mutual information from
discrete-continuous samples. They are the Gao’s estimator and the Multi-KL estimator.
Both the two estimators are developed from continuous estimators.

Gao’s estimator

Inspired by the KSG estimator, Gao, Kannan, Oh and Viswanath [12] presented an
estimator (we denote it as Gao’s estimator) which estimates the mutual information
satisfying Definition 2.4.6. For zi = (xi, yi), denote ε(i) as the k-smallest distance among
di,j = max{‖Xj −Xi‖, ‖Yj − Yi‖} for j 6= i, and ki as the number of samples satisfying
di,j 6 ε(i). Since ε(i) = 0 can only be satisfied when both X and Y are discrete, which
is not the focus of this report, we let ki = k all the time. Thus, the estimator is given
as follows.

ÎGao’s(X,Y ) = logN + ψ(k)− 1
N

N∑
i

(log (nx(i) + 1) + log (ny(i) + 1)), (4.14)

where nx(i) and ny(i) are the number of samples with ‖Xj −Xi‖ 6 ε(i) and ‖Yj − Yi‖ 6
ε(i).

Multi-KL estimator

As mentioned in Note 2.4.5, discrete-continuous mutual information can be treated as a
weighted Jensen-Shannon divergence of conditional distributions. Inspired by Ross [28],
we propose a the Multi-KL estimator which follows the formula (2.19). The idea of this
estimator is to estimate each entropy separately by the KL estimator and add them
together by the estimated weights. The estimator is given as

ÎMulti-KL(X∆, Y ) = d

N

 N∑
i

log (εy(i))−
x∑
j

Nxj∑
i

log
(
εyj (i)

)
−

x∑
j

Nxj

N
logNxj + log (N),

(4.15)

where εy(i) is the distance between yi and the kth nearest neighbour in the full data set
of Y , εyj (i) is the distance between yi and the kth nearest neighbour in the subset of Y
whose value of the discrete variable equals xj , and Nxj is the number samples for each
possible value of X∆.
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Chapter 5

Results

In this chapter, we test the different estimators of mutual information and compare
them against each other. There are many environments for us to implement these
estimators such as C, Java and MATLAB. We choose Python in this report not only
because of the widespread use in relevant industry but also the rich set of numerical
computation libraries. In the implementation, we use k-d tree algorithm [1] in SciPy
library to query the k-nearest neighbour, which improves the efficiency of algorithm
compared with direct implementation. In the first section, we choose some classic and
new families of distribution to test the performance of them. Next we evaluate the
efficiency and accuracy of them for variant k and samplesize. In the last section, we
discuss the bias of these estimators.

5.1 Numerical tests

This section compares different estimates of mutual information on simulated examples.
The examples are divided into three families of distribution and the analytical solutions of
mutual information are given. The first two families are designed so that the dependence
of the samples is controlled by a single scalar parameter α. The third family is two
special distributions which the true solutions were derived by Darbellay and Vajda [5]
in 2000. We choose these special distributions not only because they are untested by
other researchers but also because they have some kind of tail behaviours which may
introduce bias into estimators.
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Gaussian distributions

The first family of distribution is bivariate Gaussian and 4-dimensional multivariate
Gaussian. The model is

(X,Y ) ∼ N (0,Σ), (5.1)

where Σ is the covariance of the joint variable (X,Y ). The exact solution is

I(X,Y ) = 1
2 log

( |ΣX ||ΣY |
|Σ|

)
, (5.2)

where ΣX and ΣY are the covariance matrices of X and Y . The proof is given in
Appendix A.

The covariance of the bivariate Gaussian is

Σ1 =
[

1 α

α 1

]
. (5.3)

We estimate Î(X,Y )− Iexact(X,Y ) for r = 0.0, 0.3, 0.6, and 0.9, plot against 1/N for
each estimator except G-knn, since it is not asymptotic unbiased. The results are shown
in Figure 5-1. We also plot the RMS errors of the estimates for r = 0.9 against N and
1/k. The results are shown in Figure 5-2.

For N →∞, the systematic errors of the four estimators converge to 0 as expected.
It can be seen clearly that the errors of the KSG estimator are smaller than the 3KL for
variant N . The two algorithms of the KSG perform similarly well for large samplesize,
but the first algorithm of the KSG outperforms the second one for small samplesize.
For the BI-KSG estimator, the convergence rate is higher than the 3KL, but for small
samplesize it does not look competitive. For medium samplesize, the BI-KSG performs
better than other estimators. It also generally performs well for variant r.

The next example is 4-dimensional multivariate Gaussian. The covariance of
4-dimensional multivariate Gaussian in the simulation is

Σ2 =


3 −1 −1 −2
−1 2 + α −3 4
−1 −3 11 −4
−2 4 −4 9

 . (5.4)

We estimate Î(X,Y ) for variant α and N in Figure 5-3. In this simulation, we include
G-knn estimator in the plotting. For each realization, we generate one sample of size N
of the joint random variable and test it on all the estimators. For the G-knn estimator,
we choose k = 20 to be small enough for estimating the local density and large enough

25



0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
1/N

0.000

0.005

0.010

0.015

0.020

0.025

I 3
kl
(X

,Y
)

I e
xa

ct
(X

,Y
)

r=0.9
r=0.6
r=0.3
r=0.0

(a) Errors of 3KL estimator

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
1/N

0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

I k
sg

1(
X,

Y)
I e

xa
ct

(X
,Y

)

r=0.9
r=0.6
r=0.3
r=0.0

(b) Errors of KSG1 estimator

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
1/N

0.000

0.002

0.004

0.006

0.008

0.010

I k
sg

2(
X,

Y)
I e

xa
ct

(X
,Y

)

r=0.9
r=0.6
r=0.3
r=0.0

(c) Errors of KSG2 estimator

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
1/N

0.030

0.025

0.020

0.015

0.010

0.005

0.000

I b
ik

sg
(X

,Y
)

I e
xa

ct
(X

,Y
)

r=0.9
r=0.6
r=0.3
r=0.0

(d) Errors of BI-KSG estimator

Figure 5-1: Errors of estimate, where k is fixed at 1.

to have a good local ellipsoid element from the svd. For the KSG estimator, k is
commonly chosen from 2 to 6 [23]. In the following experiments, we choose k to be 3
for the estimators excluding G-knn. In addition, the choice of k should depend on the
dimension of the given joint samples since the dimension of the local geometry equals
to the dimension of space.

It can be observed from the results that the G-knn outperforms other estimators in
the most cases of this example. Although the G-knn estimator is not corrected for bias,
it still performs better than other estimators for small samplesize and high dependence
due to the sample-dependent local volume elements.
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Figure 5-2: RMS errors of estimators for r = 0.9, where k is fixed at 1 in Fig (a) and N
is fixed at 104 in Fig (b).
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Figure 5-3: Estimated MI of different estimators, where N is fixed at 104 in Fig (a) and
α is fixed at 0.01 in Fig (b).

Uniform distribution with Gaussian noise

The second family of distribution is built by adding random Gaussian noise with different
standard deviation α on uniform distribution. The model is given by

Y = X + αU

X ∼ Unif (0, 1),

U ∼ N (0, 1),

(5.5)

where X and U are independent. Then the exact value of the mutual information is
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I(X,Y ) =−
∫ α

−α

(
Φ
(

1− y

α

)
− Φ

(
− y
α

))
log

(
Φ
(

1− y

α

)
− Φ

(
− y
α

))
dy

− logα− 1
2 log (2πe),

(5.6)

where Φ(x) is the cdf of the standard normal distribution. Here we numerically
calculate the exact solution in the simulations. We plot the estimated MI using the
same settings in the multivariate Gaussian case. The results are shown in Figure 5-4.
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Figure 5-4: Estimated MI of different estimators, where N is fixed at 104 in Fig (a) and
α is fixed at 0.01 in Fig (b).

In this example, the G-knn estimator only performs better when α is no larger than
10−4 in the left figure and samplesize is no larger than 102 in the right figure. It still
has the better performance when the measure is thinly supported as we mentioned in
the last example, but the range of the parameters which gives better performance is
smaller due to the local stretching mode of samples between the two models.

Two new distributions

In previous studies, mutual information estimators are always tested with common
distributions such as uniform and Gaussian. However, the estimators are designed
to deal with samples from unknown distributions and they indeed perform differently
depending on the distributions. In this section, we choose two new distributions with
special kind of tail behaviours to test the estimators. The first example is bivariate
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Pareto distribution of type I. The joint pdf in this case is given by

f(x1, x2) = α (α+ 1)
θ1θ2

(
x1
θ1

+ x2
θ2
− 1

)−(α+2)
. (5.6)

The second example is bivariate logistic distribution, the joint pdf is given by

f(x1, x2) = 2
θ1θ2

exp
(
−x1
θ1
− x2
θ2

)(
1 + exp

(
−x1
θ1

)
+ exp

(
−x2
θ2

))−3
. (5.7)

For these two distributions, the true solution derived by Darbellay and Vajda [5] is

I(X,Y ) = log
(
α+ 1
α

)
− 1
α+ 1 . (5.8)

We plot the estimated errors of mutual information against samplesize N , where we
set α = 1, θ1 = 2 and θ2 = 5. The results are shown in Figure 5-5. The four estimators
generally perform well for large samplesize, but the errors could be unacceptable
compared with the true mutual information for small samplesize. In Figure 5-5a, the
BI-KSG and the KSG1 have similar performance for N > 102, which is fairly good.
However, the KSG2 outperforms other estimators in all cases. In Figure 5-5b, all the
estimators give better results than those in the first figure. The KSG2 still outperforms
the other estimators for small N , but the BI-KSG and the KSG1 perform better for
medium N .
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Figure 5-5: Estimated MI of different estimators for Pareto and logistic distributions,
where k is fixed at 3.
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5.2 Algorithm evaluation

In this section, we evaluate the efficiency of the estimators for variant k, samplesize N
and dimensionality d. In Figure 5-6a and Figure 5-6b, we plot the average time spent
of one realization against k and samplesize N using the bivariate Gaussian model with
r = 0.3. In Figure 5-6c, we estimate the average time spent against the dimensionality
d using multivariate Gaussian model with random covariance matrices.
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Figure 5-6: Average time spent of one realization of the estimators for different k, N
and d, where N is fixed at 5× 104 in Fig (a) and 104 in Fig (c).

Notice that all the estimators spend most of the time in finding the k-nearest
neighbour point and querying the distance for each local estimate. The G-knn also
spends time on the svd of each k-nearest neighbour point set, which generally runs
slowly than other estimators. For increasing values of k, the time spent of the G-knn
estimator roughly keeps invariant, while the time spent of other estimators grow slowly.
In the Figure 5-6b, the time spent are approximately linear correlated with samplesize,

30



which gives the possibility to efficiently deal with large-size samples. In Figure 5-6c,
the G-knn estimator seems quadratic to d due to the extra time spent of svd operation,
while the other estimators are still efficient when the dimensionality increases.

5.3 Bias discussion

In this section, we focus on the bias of the estimators. To explain the superior perfor-
mance of the KSG1 estimator, Gao, Oh and Viswanath [11] proposed the correlation
boosting effect in 2016. They believe the bias of the estimators is reduced if the bias
of joint entropy is positively correlated with the biases of marginal entropies. Here we
simulate 1000 i.i.d. samples from the bivariate Gaussian model with r = 0.3 and map
the scatter-plot of the biases in Figure 5-7 to verify this hypothesis.
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Figure 5-7: Bias of Ĥ(X,Y ) against bias of Ĥ(X) of estimators.

As shown in Figure 5-7, the correlations of bias for the KSG1 and the BI-KSG
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estimators are visibly more significant than 3KL estimator, which allows the biases to
cancel out when estimating mutual information. To prove the observations above, we
tabulate the Pearson correlation coefficients of the biases.

(X,Y ) ∼ N (0,Σ1)
N 1000 2000 5000 10000

3KL 0.3872 0.3711 0.3725 0.3615
KSG1 0.5805 0.5419 0.5586 0.5556

BI-KSG 0.5889 0.5678 0.5794 0.5672
G-knn 0.6257 0.6248 0.6072 0.6188

Table 5.8: Pearson correlation coefficient ρ(b(X,Y ), b(X)) of estimators.

As observed in Table 5.8, ρ(b(X,Y ), b(X)) of the KSG1 is significantly larger than the
3KL estimator for different samplesize N . Thus, the biases of the three entropies tend
to be more cancelled out due to the positive correlations between them, which explains
the superior performance of the KSG1 estimator. In the mean time, ρ(b(X,Y ), b(X)) of
the BI-KSG is slightly larger than the KSG1, which implies the improvement of bias of
the BI-KSG estimator. Notice that Figure 5-7d also shows strong correlation on biases,
which explains the better performance of G-knn for highly dependent samples to some
extent. However, the G-knn has not been corrected for bias yet. We will discuss more
on this and propose an bias-improved G-knn estimator in Chapter 6.
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Chapter 6

Original Methods

6.1 Bias-improved G-knn

As we discussed before, the G-knn method raised in [23] is not corrected for bias. Here
we propose a bias-improved G-knn and test it on the previous examples. The main
idea of the G-knn estimator is using svd of the local data to estimate elliptical local
volume elements, which captures the local geometric features. This estimator gives
excellent performance for highly dependent samples due to the adaptation of local
volume elements. However, the estimation of local density is hard to define in practice.
To make sure the neighbourhood contains at least one data point, the G-knn counts
all the points inside ellipsoids including the center. In this case, the estimates of local
density obtained from Equation (4.10) are actually estimating the conditional local
density with the given center point, which introduces bias. Unlike the G-knn, we
believe that excluding the center when we are estimating the local densities gives an
asymptotically unbiased estimator. When the local volume elements contain no data
point excluding the center, we let the estimate of local entropy be 0. This new estimator
not only keeps the virtue of G-knn but also corrects the bias. In the rest of this section,
we repeat the simulations in Figure 5-3 and Figure 5-4 for the new estimator, and
compare it with G-knn estimator. The results are shown in Figure 6-1.

For variant α, the two estimators perform similarly well. However, for increasing
N , the BIG-knn estimator outperforms the G-knn. In the first model, the accuracy of
BIG-knn is smaller than G-knn when N > 102. In the second model, the new estimator
performs better than G-knn when N > 104. Thus, this method is better than G-knn in
dealing with large-samplesize and highly dependent samples.
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Figure 6-1: Estimated MI of BIG-knn and G-knn, where N is fixed at 104 in Fig (a)
and α is fixed at 0.01 in Fig (b).

6.2 Approximate k-NN method

In the previous k-NN estimators, k is fixed for each local estimate. As shown in
Section 5.2, algorithms spend most time to find the k-nearest neighbour. For very
large samplesize or multiple computations, the efficiency of these algorithms may not
satisfy the demands in practice. Thus, we introduce the approximate k-NN method
in this section. The main idea of the approximate k-NN method is to find a point x′k
which close to the kth nearest neighbour xk with distance ‖x′k − xk‖p 6 τ in each local
estimate, where τ is a fixed tolerance. There are many advanced approximate nearest
neighbour search algorithms such as Annoy [6], Efanna [8] and NSG [9], which can be
extremely fast in implementations. However, we will not implement them in this report.
Instead, we still use k-d tree to simply demonstrate the idea and compare with k-NN
estimators in the following experiment. We test this idea on the KSG1 estimator for
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bivariate Gaussian model with r = 0.9. the results of the estimated errors compared
with the KSG1 estimator are shown in Figure 6-2a. Since the efficiency improvement is
negligible compared with the total time spent in this simulation, we will not plot the
time spent of the two estimators.
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Figure 6-2: The performance of the approximate KSG estimator compared with the
KSG1.

The raw concept of this method is to lose some accuracy of estimation for the
improvement of efficiency especially for large samplesize. As we observed in the above
figures, larger τ introduces more bias. However, the bias is slightly improved if we set
the tolerance τ to be an appropriate small number, which may be due to the average of
local estimates. To prove that the improvement of bias is independent of k, we plot the
errors against k in Figure 6-2b. As shown in the results, for appropriate small τ , the
bias is improved regardless of k.
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Chapter 7

Applications

In this chapter, we firstly develop the estimators to deal with complex samples and
apply them into MIMO communication channels. In the first section, we test the
different estimators on complex Gaussian channel and compare the estimates with the
true mutual information. In the second part, we test the estimators which deal with
discrete-continuous samples on the QAM simulations. Then, we apply the estimators
on a feature selection example. We also apply Pearson correlation coefficient on the
same example and compare the reliability of the results.

7.1 MIMO communication channels

Complex Gaussian channel

In this section, we test the estimators on the complex Gaussian channel model described
in Section 2.5. The model is

y = Hx + n, (7.1)

where x ∈ C2 is a complex Gaussian random variable with a random Hermitian non-
negative definite covariance matrix Q ∈ C2×2 and n is zero-mean complex Gaussian
noise with E

[
nn†

]
= I2. We let

H =
[
1 0
0 1

]
+ eπj

[
0 0.01

0.01 0

]
, (7.2)

and plot the estimated mutual information against samplesize N . the results are shown
in Figure 7-1.

By Equation (2.21), the n-dimensional complex samples can be transformed into
2n-dimensional real samples. Thus, the estimate of mutual information in complex
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Figure 7-1: The estimated MI of complex Gaussian channel, where k is fixed at 3.

Gaussian channel is actually the estimate of mutual information for corresponding
real samples with twice the dimension. All of these estimators are designed to deal
with multi-dimensional samples, but the curse of dimensionality is unavoidable. In
this example, all the four estimators have serious bias due to the dimensionality. For
N → ∞, the KSG1 and the KSG2 estimator outperforms the other estimators. For
other cases, the only estimator that approaches true solution is the BI-KSG.

Quadrature amplitude modulation (QAM) examples

In this section, we consider the applications of the discrete-continuous estimators for
QAM examples. Here we choose three models. The first model is BPSK with the
constellation diagram given in Figure 7-2a. The second model is 4-QAM with the
constellation diagram given in Figure 7-2b. We choose two different signal power σs
by scaling the constellation to test the two estimators in the second model. In the
simulation, we integrate the true solution of mutual information for the first two models.
The third model is 8-QAM with four different constellations given in Figure 7-3. The
noises of the three models are generated from zero-mean complex Gaussian distribution
with independent, equal variance real and imaginary parts, where we fix the variance to
be 0.1. We plot the results in Figure 7-4.

For BPSK example, the Gao’s estimator outperforms the Multi-KL estimator for
small samplesize. However, the Multi-KL is asymptotically unbiased, which gives
better performance for large samplesize. For 4-QAM example, we can observe from the
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Figure 7-2: The constellations of BPSK and 4-QAM.

true solutions that higher signal power gives higher mutual information. The Gao’s
estimator gives similar results for two cases, and the results are only close to the first
true solution. This may be caused by the sensitivity of k in the Gao’s estimator,
which makes it inapplicable in practice. In the meanwhile, the Multi-KL performs well
on both of them. This superior performance of Multi-KL estimator gives possibility
to compare the capacities of communication channel accurately and efficiently under
different modulation methods. Thus, we use the Multi-KL estimator in the 8-QAM
example to compare channel capacities under the same signal power σ2

s = 12
7 . As shown

in Figure 7-4c, the mutual information of the circular (7,1) 8-QAM is the largest in
the four constellations, which indicates larger channel capacity than the other three
constellations.

7.2 Feature selection

Feature selection is one of the most important methods of data preprocessing in statistics
and machine learning. The main idea is selecting a subset of relevant features to reduce
dimensionality and over-fitting. There are many ways to do feature selection. We
focus on filter method using an evaluation measure, which is mutual information in
our context, to score feature subsets. In this section, we use a simple example to
test the performance of our estimators in feature selection. Assuming 100 random
variables from independent Gaussian distributions with zero-mean and variance σ = 1.
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Figure 7-3: The four constellation diagrams of 8-QAM.

We choose 20 random variables from the 100 random variables and denote them as
{X1, X2, · · · , X20}. Since mutual information, as an evaluation measure, is sensitive to
dependence for both linear and non-linear relationships between variables, we create the
three dependent variables Y1 =

∑20
i=1Xi, Y2 =

∑10
i=1Xi +

∑20
i=11X

2
i and Y3 =

∑20
i=1X

2
i .

We estimate mutual information between the dependent variables and each of the 100
random variables, and rank them by the estimated mutual information. After that,
we select features with top-20 highest mutual information. We plot the precision (also
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Figure 7-4: The estimated mutual information of QAM examples against samplesize N .

called as positive predictive value) of different estimators against samplesize N and
compare with the results obtained by using Pearson correlation coefficient. The results
are shown in Figure 7-5. Since the number of features is usually unknown in practice,
we select features with top-r highest mutual information, where r ∈ {1, 2, · · · , 100}.
After that, we choose y2 to be the dependent variable and plot the receiver operating
characteristic (ROC) curves for different estimators in Figure 7-6.

From the results, mutual information estimators give similarly stable performance
for the three kinds of dependent variable, while the precision of Pearson correlation
coefficient decreases when there are more non-linear relationships added in the simulation.
In the ROC curves, it is clear that mutual information estimators give better results
than Pearson correlation coefficient. Among the three estimators, the KSG1 and the
BI-KSG outperform the 3KL estimator, since the bias of the KSG1 and the BI-KSG
are smaller than the 3KL.
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Figure 7-5: The precision of estimators for different dependent variables, where k is
fixed at 3.
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Chapter 8

Conclusions

This report investigated some numerical estimators of mutual information, proposed
new estimators and applied them in applications. The main focus of our research is the
k-NN estimators.

We implemented the 3KL, the KSG, the BI-KSG and the G-knn estimators for
continuous random variables and tested them on examples. All the four estimators have
their own merits. The 3KL estimator is simple and runs fast for variant k, samplesize
and dimensionality. However, it has more bias than the KSG and the BI-KSG. The KSG
and the BI-KSG perform similarly in different examples. Due to the correlation boosting
effect, the BI-KSG has less bias than the KSG estimator theoretically. In numerical
experiments, the BI-KSG does outperform the KSG for medium samplesize, but it gives
worse results for small samplesize. Since the G-knn estimator is not corrected for bias,
we did not compare it with other estimators in bivariate Gaussian, Pareto and logistic
examples. For other examples, it shows the superior performance in small samplesize
and highly dependent samples, where the other estimators have large bias in these
cases. Interestingly, for Pareto and logistic distributions, the 3KL, the KSG and the
BI-KSG only converge when samplesize are fairly large, which may be caused by the
tail behaviours of the distributions. In efficiency experiments, we observed the time
spent of estimators against k, samplesize and dimensionality. As shown in the results,
the relationship between time spent and samplesize are close to linear. In the mean
time, increasing k does not change much on the time spent of estimators. In all cases,
especially for increasing dimensionality, the G-knn is less efficient than others, which
may be because of the svd of local datasets.

We proposed the bias-improved G-knn and the approximate k-NN method and
tested them on examples. Since the G-knn estimator is not asymptotically unbiased,
we considered a slightly different way to estimate local density, which is to exclude the
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center when counting points in the neighbourhood. We tested this new estimator on
the same examples of G-knn. The results shows that this estimator not only keeps the
advantage of G-knn, which is the superior performance on highly dependent samples,
but also gives less bias when samplesize is large enough. Inspired by approximate k-NN
search algorithms, we proposed the approximate k-NN method. Instead of searching the
exact k-nearest neighbour, this method searches a point close to k-nearest neighbour
to replace it. We tested this method on the KSG estimator and compared the results.
The idea of this estimator is to improve the efficiency by reducing the accuracy. In the
simulations, we observed that the accuracy of this new method is also improved under
appropriate conditions, which gives the possibility of further studies in this method.

We applied the estimators in MIMO communication channels and feature selection.
In QAM examples, we implemented the Gao’s estimator and proposed the Multi-KL
estimators to deal with discrete-continuous samples. In complex Gaussian channel
example, the estimators are actually dealing with high-dimension samples. In this case,
the BI-KSG gives close estimates for different samplesize. The KSG still converges to
true solution for N →∞, but it only outperforms the BI-KSG when the samplesize are
large enough. In QAM examples, we first tested the two discrete-continuous estimators
on the BPSK dataset. As shown in the results, the Gao’s estimator outperforms the
Multi-KL for small samplesize and the Multi-KL outperforms the Gao’s estimator for
large samplesize. Then, we tested them on two 4-QAM datasets with different signal
power. In this experiment, the Gao’s estimator can not identify the two different
datasets. Meanwhile, the estimated MI of Multi-KL stay close to true solutions, which
indicates the application value of this new estimator. After that, we tested the Multi-KL
on 8-QAM with four different constellations to compare the channel capacities. The
results showed that the circular (7,1) 8-QAM has largest channel capacity between the
four constellations. Finally, we applied the estimators in feature selection. The results
shows the stable performance of estimators in given examples compared with Pearson
correlation coefficient when the relationship between features and dependent variable is
not linear. Among the three estimators, the BI-KSG and the KSG give similar results,
but the BI-KSG is slightly more accurate than the KSG.

There are still some unexplored questions. For example, the effects of tail behaviour
on the estimates and the theoretical basis of accuracy improvement in the approximate
k-NN method are not clear. Future research could discuss more on theoretical parts
of them. Another possible research direction is the bias-improved G-knn. Notice that
this estimator is still based on 3H-principle, where the bias is not vanished between
marginal and joint entropies. The future work could have further improvement of bias
in a way similar to the KSG. Additionally, we hope that our new estimators could
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spur further interests in applications. For example, the Multi-KL estimator could be
applied in gene detection and feature selection, and the approximate k-NN method with
advanced approximate k-NN search algorithms may be suitable for problems with large
samplesize or high dimensionality.
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Appendix A

Proofs

Proof of Theorem 2.2.4

For homeomorphisms X ′ = F (X) and Y ′ = G(Y ), the Jacobi determinants are JX =
‖∂X/∂X ′‖ and JY = ‖∂Y/∂Y ′‖. Then, we have µ′(x′) = JX(x′)µ(x) and µ′(x′, y′) =
JX(x′)JY (y′)µ(x, y). The marginal entropy of X ′ is

H(X ′) = −
∫
dx′µ′x(x′) log(µ′x(x′))

= −
∫
dxµx(x) log(JX(x′)µx(x))

= H(X)−
∫
dxµx(x) log(JX(x′))

= H(X)− log(JX(x′)).

(A.1)

The joint entropy of (X ′, Y ′) is

H(X ′, Y ′) = −
∫ ∫

dx′dy′µ′(x′, y′) log(µ′(x′, y′))

= −
∫ ∫

dxdyµ(x, y) log(JX(x′)JY (y′)µ(x, y))

= H(X,Y )−
∫ ∫

dxdyµ(x, y) log(JX(x′)JY (y′))

= H(X,Y )− log(JX(x′)JY (y′)).

(A.2)
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The mutual information I(X ′, Y ′) is derived by Definition 2.2.1:

I(X ′, Y ′) = H(X ′) +H(Y ′)−H(X ′, Y ′)

= H(X)− log(JX(x′)) +H(Y )− log(JY (y′))−H(X,Y )− log(JX(x′)JY (y′))

= H(X) +H(Y )−H(X,Y )

= I(X,Y ).
(A.3)

Thus, mutual information is invariant under reparametizations.

Proof of Lemma 2.4.2

Consider the range of a random variable X with density f(x) is divided into n small
intervals of length ∆1. Define the quantized random variable X∆1 = xi, if i∆1 6 X <

(i+ 1)∆1, we can obtain that:

H(X∆1 , Y ∆2) =−
∑
i

∑
j

p(xi, yj) log p(xi, yj)

=−
∑
i

∑
j

py(yj)fj(xi)∆1 log py(yj)fj(xi)∆1

=−
∑
i

∑
j

py(yj)fj(xi)∆1 log py(yj)fj(xi)

−
∑
i

∑
j

py(yj)fj(xi)∆1 log ∆1.

(A.4)

Since ∑
j

∑
i

py(yj)fj(xi)∆1 = 1, (A.5)

we have

lim
∆1→0

−
∑
i

∑
j

py(yj)fj(xi)∆1 log py(yj)fj(xi)∆1

= −
∑
j

∫
x
py(yj)fj(x) log py(yj)fj(x)dx− log ∆1

=: H(X,Y ∆2)− log ∆1.

(A.6)
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Proof of Lemma 2.5.4

For Hermitian non-negative definite Q ∈ Cn×n and x 6= 0, we have x†Qx > 0. If
Qx = λx, then

x†Qx = x†λx = λx†x. (A.7)

Thus, we obtain

λ = x†Qx

x†x
> 0 (A.8)

and
det(Q) =

n∏
i

λi > 0. (A.9)

Proof of Lemma 2.5.6

For Hermitian non-negative definite Q ∈ Cn×n and x 6= 0, Q can be decomposed into
B†B, where B ∈ Cn×n. Next, we have

x†AQA†x = (A†x)†QA†x

= (A†x)†B†BA†x

= (BA†x)†(BA†x) > 0

(A.10)

and
det(AQA†) > 0. (A.11)

Thus, AQA† is also a Hermitian non-negative definite matrix.
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Proof of Equation (5.2)

Assuming X ∼ N (µx,ΣX), we can obtain the entropy of X [2]:

H(X) = −
∫
dxf(x) log f(x)

= −
∫
f(x)

(
−1

2(x− µx)TΣ−1
X (x− µx)− 1

2 log
(
(2π)dx |ΣX |

))
dx

= 1
2E
[
(x− µx)TΣ−1

X (x− µx)
]

+ 1
2 log (2π)dx |ΣX |

= 1
2E
[
(x− µx)T (x− µx)

]
Σ−1
X + 1

2 log (2π)dx |ΣX |

= 1
2ΣXΣ−1

X + 1
2 log (2π)dx |ΣX |

= dx
2 + 1

2 log (2π)dx |ΣX | =
1
2 log (2πe)dx |ΣX |.

(A.12)

Assuming (X,Y ) ∼ N (µ,Σ), similarly we have H(X,Y ) = 1
2 log (2πe)dx,y |Σ|. Thus, the

exact mutual information of (X,Y ) is given as:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) = 1
2 log

( |ΣX ||ΣY |
|Σ|

)
. (A.13)
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Appendix B

Computer code

Methods collection

This python file collect all the estimators in this report.

MI/Methods Collection.py

# Copyright (C) 2018 Haoran Ni & Keith Briggs

’’’Collect␣all␣the␣methods␣in␣this␣module ’’’

import numpy as np
from scipy.spatial import cKDTree ,KDTree
from scipy.special import gamma ,digamma
from math import log ,sqrt
from scipy.special import psi

# KL entropy
def KL_h(samples , n,d, k, norm):

if norm == np.inf:
log_c_d = 0

elif norm == 2:
log_c_d = (d/2.) * np.log(np.pi) -np.log(gamma(d/2. +1))

elif norm == 1:
raise NotImplementedError

else:
raise NotImplementedError("Variable␣’norm’␣either␣1,␣2␣or␣np.inf")

kdtree = cKDTree(samples)
distances , idx = kdtree.query(samples , k + 1, eps=0, p=norm)
return -digamma(k) + digamma(n) + log_c_d + (d / n) * np.sum(np.log(2*

distances [:, -1]))

# 3KL estimator
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def ThreeKL_MI(samples ,k,norm):
n,d=samples.shape
return KL_h(samples [:,:d//2],n,d//2, k=k, norm=norm)+KL_h(samples[:,d

//2:],n,d//2, k=k, norm=norm)-KL_h(samples ,n,d, k=k, norm=norm)

# KSG1 estimator
def KSG1_MI(samples ,k,norm):

n,d=samples.shape
x_tree = cKDTree(samples [:,:d//2])
y_tree = cKDTree(samples[:,d//2:])
xy_tree = cKDTree(samples)
dist , idx = xy_tree.query(samples , k=k+1, p=norm)
epsilon = dist[:, -1]-(1e-15)
nx = np.empty(n, dtype=np.int)
ny = np.empty(n, dtype=np.int)
for ii in range(n):

nx[ii] = len(x_tree.query_ball_point(x_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

ny[ii] = len(y_tree.query_ball_point(y_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

return digamma(k) - np.mean(digamma(nx+1) + digamma(ny+1)) + digamma(n
) # Alg .1

# KSG2 estimator
def KSG2_MI(samples ,k,norm):

n,d=samples.shape
x_tree = cKDTree(samples [:,:d//2])
y_tree = cKDTree(samples[:,d//2:])
xy_tree = cKDTree(samples)
dist , idx = xy_tree.query(samples , k=k+1, p=norm)
epsilon1=np.linalg.norm(( samples [:,:d//2]- samples[idx[:,k],:d//2]) ,

norm ,axis =1)
epsilon2=np.linalg.norm(( samples[:,d//2:]- samples[idx[:,k],d//2:]) ,

norm ,axis =1)
nx = np.empty(n, dtype=np.int)
ny = np.empty(n, dtype=np.int)
for ii in range(n):

nx[ii] = len(x_tree.query_ball_point(x_tree.data[ii], r=epsilon1[ii
], p=norm)) - 1

ny[ii] = len(y_tree.query_ball_point(y_tree.data[ii], r=epsilon2[ii
], p=norm)) - 1

return digamma(k) -1.0 -np.mean(digamma(nx) + digamma(ny)) + digamma(n
) # Alg .2

# Bias - improved KSG estimator
def BIKSG_MI(samples ,k,norm):
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n,d=samples.shape
LogVol=np.log(gamma(d/2+1)/( gamma(d/4+1)*gamma(d/4+1)))
x_tree = cKDTree(samples [:,:d//2])
y_tree = cKDTree(samples[:,d//2:])
xy_tree = cKDTree(samples)
dist , idx = xy_tree.query(samples , k=k+1, p=norm)
epsilon = dist[:, -1]
nx = np.empty(n, dtype=np.int)
ny = np.empty(n, dtype=np.int)
for ii in range(n):

nx[ii] = len(x_tree.query_ball_point(x_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

ny[ii] = len(y_tree.query_ball_point(y_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

return digamma(k)+np.log(n)+LogVol -np.mean(np.log(nx)+np.log(ny))

# Gknn entropy
def Gknn_h(samples ,n,d,k):

x_tree=cKDTree(samples)
dist ,idx=x_tree.query(samples ,k=k+1,p=2)
term4 =0.0
nx=np.empty(n,dtype=np.int)
for ii in range(n):

samplex=samples[idx[ii ,:] ,:]
u, s, vh = np.linalg.svd(samplex -np.mean(samplex ,axis =0),

full_matrices=True)
s=s/s[0]* dist[ii, -1]
term4+=np.sum(np.log(s))
samplex =( samples[idx[ii ,:],:]- samples[ii ,:])
ellip=np.einsum(’ij,jm,km->ik’,np.diag (1.0/s),vh,samplex)
ellip=np.einsum(’ji,ji->i’,ellip ,ellip)
nx[ii]=len(ellip[ellip <=1])

return np.log(n)+np.log(np.pi**(d/2.0)/gamma(d/2.0+1.0))-np.mean(np.
log(nx))+term4/n

# Gknn estimator
def Gknn_MI(samples ,k):

n,d=samples.shape
return Gknn_h(samples [:,:d//2],n,d//2, k=k)+Gknn_h(samples[:,d//2:] ,n

,d//2, k=k)-Gknn_h(samples ,n,d, k=k)

# Bias - improved Gknn entropy
def BIGknn_h(samples ,n,d,k):

x_tree=cKDTree(samples)
dist ,idx=x_tree.query(samples ,k=k+1,p=2)
term4 =0.0
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nx=np.empty(n,dtype=np.int)
for ii in range(n):

samplex=samples[idx[ii ,:] ,:]
u, s, vh = np.linalg.svd(samplex -np.mean(samplex ,axis =0),

full_matrices=True)
s=s/s[0]* dist[ii, -1]
term4+=np.sum(np.log(s))
samplex =( samples[idx[ii ,:],:]- samples[ii ,:])
ellip=np.einsum(’ij,jm,km->ik’,np.diag (1.0/s),vh,samplex)
ellip=np.einsum(’ji,ji->i’,ellip ,ellip)
nx[ii]=len(ellip[ellip <=1]) -1
if nx[ii ]==0:

term4 -=0.0
else:

term4 -=np.log(nx[ii])
return np.log(n)+np.log(np.pi**(d/2.0)/gamma(d/2.0+1.0))+term4/n

# Bias - improved Gknn estimator
def BIGknn_MI(samples ,k):

n,d=samples.shape
return Gknnnew_h(samples [:,:d//2],n,d//2, k=k)+Gknnnew_h(samples[:,d

//2:],n,d//2, k=k)-Gknnnew_h(samples ,n,d, k=k)

# Approximate KSG1 estimator
def ApproximateKSG1_MI(samples ,k,norm ,eps =0.1):

n,d=samples.shape
x_tree = cKDTree(samples [:,:d//2])
y_tree = cKDTree(samples[:,d//2:])
xy_tree = cKDTree(samples)
dist , idx = xy_tree.query(samples , k=k+1,eps=eps , p=norm)
epsilon = dist[:, -1]-(1e-15)
nx = np.empty(n, dtype=np.int)
ny = np.empty(n, dtype=np.int)
for ii in range(n):

nx[ii] = len(x_tree.query_ball_point(x_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

ny[ii] = len(y_tree.query_ball_point(y_tree.data[ii], r=epsilon[ii],
p=norm)) - 1

return digamma(k) - np.mean(digamma(nx+1) + digamma(ny+1)) + digamma(n
) # Alg .1

# Multi -KL estimator
def Multi_KL(samples ,possiblex ,k=20):

n,d=samples.shape
dcmi=KL_h(samples[:,d//2:],n,d//2,k,norm=np.inf)
nnx=possiblex.shape [0]
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for jj in range(nnx):
samplex=samples[np.all(( samples [:,:d//2]== possiblex[jj ,:]),axis =1)]
nx=samplex.shape [0]
p=nx/n
dcmi -=p*KL_h(samplex[:,d//2:],nx ,d//2,k,norm=np.inf)

return dcmi

# Gao ’s estimator
def Gao_Mixed_MI(samples ,k):

n,d=samples.shape
xy_tree=cKDTree(samples)
x_tree=cKDTree(samples [:,:d//2])
y_tree=cKDTree(samples[:,d//2:])
num=np.empty(n,dtype=np.int)
numx=np.empty(n,dtype=np.int)
numy=np.empty(n,dtype=np.int)
for ii in range(n):

dx ,ix=x_tree.query(x_tree.data[ii],k=k+1)
dy ,iy=y_tree.query(y_tree.data[ii],k=k+1)
l=max(dx[-1],dy[-1])
if l==0.0:

num[ii] = len(xy_tree.query_ball_point(xy_tree.data[ii], r=0.0))
else:

num[ii]=k
numx[ii] = len(x_tree.query_ball_point(x_tree.data[ii], r=l))
numy[ii] = len(y_tree.query_ball_point(y_tree.data[ii], r=l))

return np.mean(digamma(num))+np.log(n)-np.mean(np.log(numx)+np.log(
numy))

Exact mutual information

This python file collect the calculation of exact mutual information in this report.

MI/Exact Solutions.py

# Copyright (C) 2018 Haoran Ni & Keith Briggs

’’’Collect␣all␣the␣exact␣solutions␣in␣this␣module ’’’

import scipy.integrate as integrate
import scipy.special as special
import numpy as np
from scipy.special import digamma
from scipy.stats import multivariate_normal
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# Class for collecting exact solution functions
class Exact:

def __init__(s, value=None):
s.value=value

# Compute the MI of uniform with noise model
def unif_noise(s,alpha):

yxx= lambda y:special.ndtr(1-y/alpha)-special.ndtr(-y/alpha)
fxx=integrate.quad(lambda y:-yxx(y)*np.log(yxx(y)),-alpha ,alpha)
return -np.log(alpha)+fxx [0] -0.5*np.log (2.0*np.pi*np.e)

# Compute the MI of multivariate Gaussian model
def Multi_Gaussian(s,cov):

n=cov.shape [0]
return 0.5*np.log(np.linalg.det(cov [0:n//2 ,0:n//2])*np.linalg.det(

cov[n//2:n,n//2:n])/np.linalg.det(cov))

# Compute the MI of the 2d pareto and logistic distribution
def Pareto_logistic_2d(s,a):

return np.log (1.0+1.0/a) -1.0/(a+1.0)

# Compute the MI of QAM examples
# BPSK model
def BPSK(s,mu ,sigma ,pb):

n=sigma.shape [0]
d=sigma.shape [2]
dets=np.array([np.linalg.det(sigma[i,:,:]) for i in range(n)])
entropy1=np.sum(pb *0.5* np.log ((2*np.pi*np.e)**d*dets))
func=lambda y,x: -integrand(x,y,mu ,sigma ,pb ,n)*np.log(integrand(x,y,

mu,sigma ,pb,n))
evals=np.vstack ([np.linalg.eigvals(sigma [0]),np.linalg.eigvals(sigma

[1])])
a,b=-10*np.max(np.abs(evals)) ,10*np.max(np.abs(evals))
entropy2=integrate.dblquad(func ,a,b,lambda x: a, lambda x: b)
return entropy2 [0]-entropy1 ,entropy2 [1]

# 4-QAM model
def dc_4QAM(s,mu ,sigma ,pb):

n=sigma.shape [0]
d=sigma.shape [2]
dets=np.array([np.linalg.det(sigma[i,:,:]) for i in range(n)])
entropy1=np.sum(pb *0.5* np.log ((2*np.pi*np.e)**d*dets))
func=lambda y,x: -integrand(x,y,mu ,sigma ,pb ,n)*np.log(integrand(x,y,

mu,sigma ,pb,n))
evals=np.vstack ([np.linalg.eigvals(sigma [0]),np.linalg.eigvals(sigma

[1]),np.linalg.eigvals(sigm [2]),np.linalg.eigvals(sigma [3])])
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a,b=-10*np.max(np.abs(evals)) ,10*np.max(np.abs(evals))
entropy2=integrate.dblquad(func ,a,b,lambda x: a, lambda x: b)
return entropy2 [0]-entropy1 ,entropy2 [1]

# Compute the MI of Complex gaussian channel
def cpx_gaussian(s,H,Q):

I_t=np.zeros(Q.shape)
for ii in range(len(H[0])):

I_t[ii ,ii ]=1.0
return np.log(np.linalg.det(I_t+np.einsum(’ij ,kj ,km ->im’,Q,np.conj(H

),H))).real

# Integrating function
def integrand(x,y,mu,sigma ,pb,n):

integrand =0.0
for ii in range(n):

integrand +=pb[ii]* multivariate_normal.pdf([x,y],mean=mu[ii ,:], cov=
sigma[ii ,: ,:])

return integrand

Data Generator

This python file collect the all data generators in this report.

MI/Data Generator.py

# Copyright (C) 2018 Haoran Ni & Keith Briggs

’’’Collect␣all␣data␣generators␣in␣this␣module ’’’

import numpy as np

class Data_Generator:
’␣Generate␣a␣sample␣from␣any␣distribution␣’
def __init__(s,distribution ,** kwargs):

s.distribution=distribution
s.kwargs=kwargs

def sample(s,size):
return s.distribution(size=size ,**s.kwargs)

# Sum of uniform and normal distributions sample generator
def sum_of_unif_stdnorm(size ,alpha):

sample=np.random.random(size)
return np.c_[sample ,np.dot(np.vstack ((sample ,np.random.random(size),np

.random.standard_normal(size))).T,np.concatenate (([1], alpha), axis
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=0))]

# Pareto 2d sample generator
def rpareto_inv(size ,theta ,a):

return theta/np.random.random(size)**(1.0/a)

def rpareto_cond_inv(x2 ,theta ,a):
u=np.random.random(len(x2))
return theta [0]+ theta [0]/ theta [1]*x2 *(1.0/(u**(1.0/(a+1.0))) -1.0)

def pareto_2d_sample(size ,theta ,a):
x2=rpareto_inv(size ,theta[1],a)
x1=rpareto_cond_inv(x2 ,theta ,a)
return np.vstack ((x1 ,x2)).T

def logistic_2d_sample(size ,theta ,mu,a):
u=np.random.random(size)**( -1.0/a)
x1=mu[0]-np.log(u -1.0)*theta [0]
x2=mu[1]-np.log(np.random.random(size)**( -0.5/a)*u-u)*theta [1]
return np.vstack ((x1 ,x2)).T

# Logistic 2d sample generator
def burr_2d_sample(size ,d,c,a):

u=np.random.random(size)**( -1.0/a)
x1=((u -1.0)/d[0]) **(1.0/c[0])
x2=((np.random.random(size)**( -1.0/a)*u-u)/d[1]) **(1.0/c[1])
return np.vstack ((x1 ,x2)).T

# Complex Gaussian data generator
def mapping_vec(z):

return np.c_[z.real ,z.imag]

def mapping_mat(A):
return np.c_[np.r_[A.real ,A.imag],np.r_[-A.imag ,A.real]]

def remapping(z):
return z[:,:len(z[0]) //2]+z[:,len(z[0]) //2:]*1j

def complex_gaussian(size ,mean ,H,Q):
H_hat=mapping_mat(H)
mean_hat=np.r_[mean.real ,mean.imag]
cov =0.5* mapping_mat(Q)
X=np.random.multivariate_normal(size=size ,mean=mean_hat ,cov=cov)
I_r=np.eye(len(H),dtype=’float ’)
cov_n =0.5* mapping_mat(I_r)
mean_n=np.zeros(len(H_hat),dtype=’float ’)

57



n=np.random.multivariate_normal(size=size ,mean=mean_n ,cov=cov_n)
Y=np.empty(X.shape)
for ii in range(size):

Y[ii ,:]=np.einsum(’ij,j->i’,H_hat ,X[ii ,:])+n[ii ,:]
return np.c_[X,Y]

# QAM samples generator
def sampling_QAM(size ,pb ,possiblex ,sigma):

samples=np.empty((size ,4),dtype=’float’)
n=possiblex.shape [0]
x1=np.random.choice(n, size , p=pb)
for ii in range(size):

for jj in range(n):
if x1[ii]==jj:

samples[ii ,:2]= possiblex[jj ,:]
samples[ii ,2:]=np.random.multivariate_normal(possiblex[jj ,:],

sigma[jj ,:,:],1)
return samples

# Feature selection sample generator
def feature_selection(size ,numx ,num_feature ,mu ,sigma):

x=np.empty ((size ,numx))
y=np.zeros ((1,size))
for ii in range(numx):

x[:,ii]=np.random.normal(loc=mu,scale=sigma ,size=size)
for jj in range(num_feature //2):

y+=x[:,5*jj]**2
for jj in range(num_feature //2):

y+=x[: ,5*(jj+num_feature //2) ]**2
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