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Turbulence in atmospheres, oceans and plasma flows leads to coherent large-scale jets that persist for long-
times. These jets may be steady or transition between several meta-stable jet configurations. We study the
dynamics of these atmospheric jets on large rotating Jovian planets where we can apply the stochastically
forced two-dimensional barotropic equation in the S-plane. Direct numerical simulation of the quasi-linear
approximation of this system is presented with verification of large time-scale separation between the slow
zonal evolution and fast vorticity fluctuations. We exploit this time-scale separation property and apply
the classical tool of stochastic averaging to obtain a closed limiting equation for the zonal evolution while
averaging out the non-zonal fluctuations in the turbulent inertial regime v < o« < 1. This tool is used to
numerically compute multiple meta-stable jet configurations for various parameter values and a bifurcation
analysis on the number of stable jets is carried out by varying the non-dimensional parameter Coriolis 5.
We find that the novel tool developed in this report is extremely useful to efficiently compute the dynamics
of systems that exhibit large time-scale separation.

I.  INTRODUCTION

Large-scale coherent structures such as jets are seen to emerge in turbulent background velocity fields. For planets
with a circulating atmosphere, jets are commonly the largest and most persistent features seen in the atmosphere.
Such structures have been extensively observed such as the time-dependent banded winds recorded by the Voyager
missions in 1979 on gaseous Jovian planets! (Jupiter, Saturn, Uranus and Neptune) and the slow, large-scale
torsional oscillations about the Sun’s equator?. For the Earth’s atmosphere, the jets show much more stochasticity
in structure such as the meandering jet stream and usually have a smaller number of jets compared to Jovian
planets.

Jupiter’s jets are very stable as very little differences were seen in the atmosphere and jet structure between the
Voyager (1979) and Cassini probes (2000). It is, however, believed that Jupiter did indeed lose a jet in the 1940s
where white ovals formed as a substitute and Jupiter’s atmosphere dramatically changed®. The stability of jet
configurations is therefore of great importance to the scientific community of not only Jupiter but also other planets
in our universe including Earth.

FIG. 1: Left: Image of Earth’s north pole showing jet streams. Image taken from weather conditions visualiser by Cameron
Beccario. Right: A profile of Jupiter’s atmosphere showing clear banded zonal jets. Image taken by NASA’s Cassini probe.



In atmospheric flows, geostrophic turbulence exists as a result of the geostrophic balance between the Coriolis
force and the pressure gradient. More generally, turbulence in planetary atmospheres is a result of kinetic energy
from planetary rotation, the deep atmosphere and heat sources which drive circulations in a planets atmosphere
and/or ocean. Thermal energy is converted (through complex processes) to kinetic energy from heat sources such
as a planet’s primary sun and the internal heat of a planet. This turbulence leads to the formation of coherent,
banded and long-lasting zonal jets (flowing east to west). There are currently two agreed-upon mechanisms for the
formation /maintenance of jets on giant planets; "shallow” forcing and ”deep” forcing*. In ”shallow” forcing, the
jets are driven by processes such as moist convection in the outermost layers of the atmosphere. Whereas, in ”deep”
forcing, convection in the planet’s interior and the rotation of the planet induces Rossby waves which are amplified
by an inverse energy cascade. Rhines first proposed the inverse energy cascade where energy from the small-scale
eddies (swirling fluid) accumulates in larger scales which causes Rossby waves to be more significant over time®.
Rossby waves dominate the flow when they travel faster than the root-mean-square of the turbulent velocity field
which leads to elongation of the eddies and therefore, the formation of jets. Numerical studies have shown that
jets also emerge from turbulent flow without an energy cascade®, therefore, there must be other mechanisms which
lead/aid in jet formation.

Many theoretical works have used the assumption of a barotropic system. This involves treating the atmosphere as
a homogeneous fluid which is an approximation as planetary atmospheres are stratified (baroclinic). In a barotropic
model, jets form unconditionally whereas, in a baroclinic model, a limit exists on Rossby wave magnitude which
makes jet formation conditional on this limit. Williams et al.” suggests that Rossby wave velocity magnitude must
be six times larger than the velocity of the turbulent velocity field for jet emergence, much larger than in barotropic
flow. Throughout this report, we use the barotropic assumption for simplicity.

The formation of zonal jets has been studied extensively in experimental as well as theoretical settings. Sommeria
et al.8 identified similar (eastward) jets as seen in planetary currents using a radially rotating sloping annulus with
varying mechanical forcing. Nitto et al.® found zonal jets in a square rotating tank with electromagnetic forcing
of a shallow layer of fluid which replicates the dynamics of the atmosphere in the polar regions. Even in these
small-scale experiments, zonal jets are seen and persist for long-times in the presence of eddy mixing. However, the
Reynolds number is very high in atmospheric flows which is currently not reproducible in a laboratory.

Most theoretical research in geophysical flows has been carried out on 2-D turbulence as opposed to 3-D turbulence.
In 2-D turbulence, an inverse energy cascade exists whereas, in 3-D turbulence, the energy cascade is forward
(large-scales to small-scales) as many more instabilities exist. Nevertheless, turbulence in 3-D atmospheric flows
has the same dynamical invariants (energy and enstrophy for example) as the 2-D system which as a result means
that phenomena such as large-scale structure formation can be modelled by a 2-D system.

Turbulence must be spatially organised for the maintenance of zonal jets and there are no known external mecha-
nisms which lead to this maintenance. Therefore, the jets themselves must organise the turbulent eddy field which
in turn organises the jets (positive-feedback). This mechanism is called shear-straining as the jets induce a phase-tilt
in isotropic eddies. However, more theoretical and experimental work is needed to confirm this positive-feedback
as the evidence is scarce. Jets can also spontaneously emerge without the organisation of Rossby waves as a result
of a potential-vorticity (PV) staircase where Rossby waves break at regions of weak PV, which as a result weakens
the PV gradient at these regions. This forms a staircase pattern and it has been shown that when a PV staircase
exists, jets do also'?.

In simple terms, the jet velocity profile can be said to be determined by the continuous balance between the forcing
(non-zonal turbulent fluctuations) and the dissipation (viscosity and friction). These zonal jets travel at greater
velocities relative to the planetary surface and are critical to the study of planetary climate as they are involved in
the transfer of angular momentum, heat and particulates in an atmosphere'. Very similar jet structures can also
be found in plasma flows in magnetic plasma confinement devices where the efficiency of plasma confinement can
be affected by jet formation!!.

An alternative explanation of jet formation has been given by Onsager'? using statistical equilibrium theory which
states that turbulence will tend to organise in configurations which maximise entropy and in 2-D turbulence, zonal
jets and large eddy configurations have the largest entropy'®. Using statistical equilibrium theory is very useful in
this setting as there are a large number of degrees of freedom due to non-linear eddy interactions. This method
built upon by Robert et al.'* involves solving the unforced 2D Euler equations for maximal entropy which results
in either jets'® or large vortex structures'®. However, as this method involves an unforced system, the application



to atmospheres is tentative as planetary atmospheres can be highly forced and not in equilibrium.

A natural approach to study the dynamics of turbulent flow is to obtain the Probability Density Function (PDF)
as a state variable which would provide all the statistics of turbulence. However, the PDF is very difficult to
obtain or to even approximate by sampling state trajectories. Farrell and Ioannou!” propose to use statistical
variables for the dynamics as opposed to state variables when studying complex turbulent systems. An argument
is made that to gain insight into time-dependent turbulent equilibria, adopting statistical variables is imperative
as statistics obtained from sampling realisations would not be representative of the statistical state at any time.
This perspective, called Statistical State Dynamics (SSD), was first applied by Hopf'® where he studied turbulence
by formally expanding in cumulants. Bouchet et al.'® recently adopted SSD to study the kinetic theory of the 2D
stochastic barotropic equation using the Fokker-Planck equation to describe the velocity evolution in jets in the limit
of weak forces and dissipation. A popular implementation of SSD is Stochastic Structural Stability Theory (S3T)
which is a second-order cumulant expansion (CE2)?° with stochastic parameterisation and also the deterministic
part of the Fokker-Planck equation at leading order?!. S3T dynamics uses the idealisation of an infinite ensemble
of perturbations of the fast variable such as vorticity acting on the mean slow variable such as velocity and has
been extensively used in the study of barotropic turbulence%2223,

The method proposed in this report (stochastic averaging) is similar to S3T, however, we do not evolve the covariance
of perturbations but instead consider the steady-state of the perturbations acting on the mean zonal flow to compute
fixed points in the system. This is much more efficient as we are finding fixed points in a deterministic system instead
of a stochastic one. We have achieved this by exploiting the existence of a time-scale separation between the variables
in a system by decoupling them explicitly. Related methods have been proposed before such as the heterogeneous
multiscale method (HMM)?* which has been applied in molecular dynamics and biological systems?®, however,
stochastic averaging has a much more rigorous basis. This is the first example of work that has successfully
implemented stochastic averaging to efficiently compute meta-stable jet configurations for the quasi-linear (QL)
barotropic system.

The structure of the report is as follows; In section II, we introduce the non-linear 2D stochastically forced barotropic
equation and non-dimensionalise the system to three dimensionless parameters. We also define the structure of
forcing used throughout this report. In section III, we decompose the variables in the system to zonal and non-
zonal parts to obtain the QL approximation and we then define our numerical method and integrate the system for
various parameters. In section IV, we introduce a method to compute meta-stable jet configurations in the limit of
large time-scale separation between the fast and slow variables. We then use this method to compute meta-stable
states and investigate the parameter space much faster than integrating the QL system which would not be possible
without stochastic averaging. We finally conclude our report and present future work in section V.

Il. 2D QUASI-GEOSTROPHIC DYNAMICS IN THE -PLANE

At a simplified level, the atmosphere can be viewed as a 2D homogeneous (barotropic) fluid on a rotating sphere. In
this setting, the Coriolis parameter, f, defined as f = 2Q2sinf, depends on latitude where €2 is the angular velocity
of planetary rotation and 6 is the latitude. Therefore, Taylor expanding around a latitude 6y and retaining only
the linear term gives f = fo + Bay where g = (1/a)df /df]s, where a is the planetary radius, this is the beta-plane
approximation. This approximation is very useful as it does not contribute non-linear terms to the system and
includes Coriolis variation with latitude. We therefore consider the (non-linear) 2D stochastically forced barotropic
equation in the S-plane on a periodic domain D = [0, 27l L) x [0,27L) (in order to avoid boundary effects) where
1/1, is the aspect ratio:

Ow + v - Vw + Bgv = —dw — v(—A)Pw + /1, (1)

where v = (u,v) = e, x V¢ is the velocity field for a stream function ¥(z,y), w = At is the vorticity and
A = Opy + Oyy is the Laplacian operator. In the equation above, r = (x,y) are space vectors where y is the
meridional coordinate and x is the zonal coordinate (where x and y are Cartesian coordinates). The beta effect
is present with B4, A is the Ekmann friction coefficient which dissipates flow, v is the energy input rate and v is
the hyper-viscosity (or viscosity when p = 1) coefficient. As the fields are periodic, f(x + 27l L,y) = f(z,y) and
flz,y+27xL) = f(x,y). Depending on the value of B4, this system transfers energy into the zonal shear modes



TABLE I: Typical values of relevant physical parameters. L is the forcing length scale, 1/ is the dissipation time

scale and By is the dimensional beta-effect value. Values obtained from Bakas and Ioannou??.

L (km) 1/X (days) Ba (107 1m~ts™h)
Earth’s Atmosphere 1000 10 1.6
Earth’s Ocean 20 100 1.6
Jovian Atmosphere 1000 1500 0.35

and evolves the turbulence. A forcing term, 7, is introduced as random stirring to sustain turbulence and account
for energy cascades and small-scale convection. The forcing is chosen to be white in time, spatially homogeneous
and isotropic, concisely represented as IE [n(r1,t1)n(re, t2)] = 6(t2 — t1)x(Jre — 71|) with the expectation taken over
noise realisations where y is the two-point, one time correlation function which is positive-definite. The property of
zonal translational invariance is physically correct and important for the computations carried out in this report.
In the absence of dissipation and forcing, the energy,

1
E= f/ vidr, (2)
2J)p

is conserved and the system models perfect barotropic flow.

A. Non-dimensionalisation

We non-dimensionalise the system as carried out by Bouchet!®? for consistency. The noise is a white in time
Gaussian process for which the average can be computed a-priori and so we normalise the noise such that
—2m21,L?(A~1x)(0) = 1. With this normalisation, the average input energy is v and multiplying x by a posi-
tive constant would renormalise . If we neglect hyper-viscosity, the energy balance for Eq.(1) in a statistically
stationary regime is Fy; := E[E] = /2 which is the approximate average energy.

We rescale the system to non-dimensional parameters such that the new domain size is D = [0, 27l,) x [0, 27) and
the average energy is unity. We do this by defining non-dimensional time as ¢ = t/7 where 7 = L%,/2)\/y and
a non-dimensional spacial variable ' = r/L. We rescale the physical variables as w’ = Tw, v = 7v/L, v’ = Tu,
B’ = LB, and v/ = v7L~2P. A non-dimensional parameter is defined as o = A7 which is the ratio of the inertial and
dissipative time-scales. We also rescale the stochastic Gaussian field as E [/ (v, ¢1)n'(v5, t5)] = d(t5— )X (|rs —71])
with x/(r") = L*x(r). Inputting the above into Eq.(1) gives

Ow~+v-Vw+ fv=—aw—v(—A)’w + vV2an, (3)

where we have dropped the primes to simplify notation. This has reduced the original system Eq.(1) to only three
dimensionless parameters «, 8 and v. « can be thought of as an inverse Reynolds number based on the large scale
dissipation of energy and v mainly acts at small scales and is the inverse Reynolds number based on hyper-viscosity.
The forcing prefactor is a result of rescaling the time and spatial forcing correlation as \/y72(r~%/2L~2) = V/2a.
Every variable that is considered in the report from this section onwards is non-dimensional. The energy balance
for Eq.(3) is

dEst
dt

= 2a(1 — By + y]E[/D D(—A)Pwdr]. (4)

In the case of 8 = 0, Eq.(3) reduces to the 2D Navier-Stokes equations.

B. Stochastic forcing structure

The forcing covariance, y , is spatially homogeneous (translationary invariant) in all directions which means that
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FIG. 2: Left: Non-dimensionalised X(k,l) on a 64 x 128 grid with k. = 11 and 6k = 1. Right: A realisation of the annulus
forcing on the vorticity field. It can be seen that this type of forcing excites small-scale structures in the flow field.

x(r +a) = x(r), (5)

where a € R?. The covariance can then be written in terms of Euclidean distance instead of absolute coordinates
and can therefore be written as the Fourier sum

X(ﬂC . :E/, y— y/) _ Z )2(]€7 l)eik(x—x')-&-il(y—y’)’ (6)
]

where  — 2’ and y — ' correspond to wavenumbers k and [ and take integer values. We select a forcing which acts
on a narrow annulus in wavenumber space such that

X(k, 1)

_ & 1, for |[VEk2+12 — k.| <k )
-0k 0, for |[VEZ 12—k >k’

where k, is the annulus radius and 6k is the annulus width. We also choose not to force the zonal average,
X(k =0,1) = 0. For a finite doubly periodic domain, the forcing is nearly isotropic and approaches exact isotropy
as the domain size is increased. This forcing structure is common in 2D turbulence studies with inverse energy
cascades and was first applied by Lilly?® to study inverse cascades. Studies into A-plane turbulence have also
used this forcing extensively®?3. For isotropic forcing, variation in the PV gradient causes eddy refraction and
up-gradient momentum fluxes which causes instabilities and enhances the mean velocity flow?2.

Other forcing structures have been studied in relation to atmospheric turbulence such as considering a wider
annular region around a central wavenumber and non-isotropic forcing which independently excites a set of zonal
wavenumbers. Non-isotropic forcing was first applied by Williams at al.?” to the study of baroclinic instabilities and
has since been applied in S3T dynamics?!:?3. We assume that the forcing is independent of the velocity and vorticity
fields. This assumption holds for Jovian atmospheres as the forcing is a result of thermal convection whereas this
assumption2 2Would not hold for modelling Earth’s jets for example as both the velocity and vorticity fields influence
the forcing=.



I1l.  QUASI-LINEAR DYNAMICS

In this section we define the quasi-linear approximation of Eq.(3). We are mainly interested in the setting of o < 1
as when this is the case, the large scale dissipation is very slow and is balanced by the Reynolds stress as a result of
the turbulent fluctuations. When the velocity field approaches a jet configuration, v = U(y)e,, this configuration
evolves very slowly under the dissipation and stochastic forcing. We consider translational invariance along the
zonal direction (x) in a statistical sense.

A. Decomposition into zonal and non-zonal components

Bouchet et al.'® states that « describes a time-scale separation between the fast non-zonal fluctuations and the slow

zonal fluctuations. The noise strength is of order i/« therefore, it is natural to assume that the fluctuations are
of order v/« as the fluctuations are transferred to the large structures which are on a time-scale order of one. We,
therefore split the velocity and vorticity in Eq.(3) into zonal and non-zonal components with a time-scale separation
of \/a between the zonal mean and the fast fluctuations. We define the mean (7) over the zonal direction as

— 1

27,
Fot) = 5o [ fwy . 0

where f(z,y,t) is a generic function. We can therefore set
w=0++ad, u="U+aoi, v =+av, (9)

where Q(y,t) = w(y,t), U(y,t) =u(y,t) and 9(y,t) = 0 as a consequence of periodicity. The tilde on the variables
indicates the perturbation part. We then insert Eq.(9) into Eq.(3), average over x and obtain

0 = —atw — af) — 1/(—65)”9. (10)
We subtract Eq.(10) from Eq.(3) and drop the tilde to obtain an equation for the non-zonal perturbations

Ow = —Udpw — 09,2 — /aV - (vw) — aw — fv — v(—A)Pw. (11)

To obtain the quasi-linear approximation, we neglect the non-linear part in Eq.(11) (eddy-eddy interactions) and
set Q(y) = —0,U(y) where we get the quasi-linear (QL) system

= oUW — — (=932
{@U avw — ol —v(=0,)PU (12)

Qw = —Udpw — (02U — B)v — aw — v(—A)Pw + V2.

The non-linear term should be negligible at leading order with the rescaling we have applied. The vw term in the
mean velocity evolution equation in Eq.(12) represents the perturbation Reynolds stress divergence and acts as the
influence of the perturbations on the mean flow. In the absence of dissipation and forcing, the QL system conserves
energy

1

Egr = 7/ (02 + ¥%)dr, (13)
2J)p

and as the averaging is carried out over z, the invariants (energy, potential enstrophy) of the QL system are equal
to that of the non-linear system (Eq.(3)). QL dynamics are an approximation of the NL dynamics, however, the
main motivation for adopting the QL approximation is that it produces the expected qualitative behaviour of jet
emergence and stability. Srinivasan et al.® compared the QL system to the NL system and showed that the QL jets
are generally faster than the NL counterparts and so the QL system is more zonostrophically unstable. However,



important flow features such as the invariants and symmetries are conserved and so the QL system is useful for
identifying the mechanisms necessary for jet emergence. Bouchet et al.'® proved that the solutions of the QL system
correspond quantitatively to the NL system only in the case of o < 1 which is the case that we are considering in
this report.

It can clearly be seen that time-scale separation exists between the fast fluctuations which are of order one and
the slow mean velocity evolution which is of order 1/a. If we consider the evolution of w whilst keeping U fixed,
the perturbation evolution equation will be linear. The distribution of w is then completely represented by the
perturbation two-point correlation function g(rq,rs,t) = Elw(ry, t)w(rse, t)] where the expectation is taken over
the realisations of the noise. Evolving g as opposed to the perturbation equation in Eq.(12) is the S3T method
first proposed by Farrell and Ioannou?'. S3T is, therefore, an approximation of the QL system dynamics as the
perturbation Reynolds stress divergence is replaced with its ensemble average while keeping U fixed.

B. Energy Balance

We now carry out an energy balance for the QL system. We can define the Reynolds stress as

— -1 o
RU(y) - /D (axAy O($, Yy, T,y ))(m,y):(m’,y’) d$7 (14)
where C(z,y,2',y") == w(x,y)w(z’,y"). Let Ey be the zonal energy,
Ey = 77/ E[U?]dy. (15)
D

Plugging this into the first equation in Eq.(12) and setting the time derivative to zero for stationarity gives

TV
By =r [ BURdy - [ B(0,U7)dy. (16)
D @ Jp
The first term describes the energy production due to the non-zonal fluctuations and the last term is the expected
energy dissipation. Carrying out the same steps for the non-zonal energy gives

v

1
E,=—= / E[C(w y)=(z’ y/)] dz dy — */ E[URy]dxdy + 1, (17)
2J)p A 2J)p

where the forcing is normalised such that the energy input is unity and the first term is the fluctuation energy
dissipation. We can therefore obtain the total stationary energy , E = Ey + E,,,

2
D @ Jp

The time-scale separation of « between the zonal flow and non-zonal fluctuations can be seen in the stationary
energy as when o < 1, the energy in the non-zonal fluctuations is of order one. We can see from this energy
balance that there does exist an inverse energy cascade as energy is being transferred from the small-scales to the
large-scales. In the turbulent inertial regime of ¥ <« o < 1, the stationary energy will be £ ~ 1.

C. Numerical Computation

We integrate the QL system Eq.(12) using spectral methods on a 128 x 64 (N, x N,) grid with de-aliasing using
the 2/3 rule. Consider the Fourier expansion of the vorticity field

w(@,y,t) = Qg a(t)er T, (19)
k.l



we can then write the vorticity equation of Eq.(12) explicitly in terms of the Fourier components which takes the
form

Doy = —ikUiiogy + (1T, — B)oy, — apy — v(k? 4+ 12)Pors + V20, (20)

We carry out the same procedure for the velocity evolution equation of Eq.(12) and integrate the ordinary differential
equations (ODEs) using an exponential time differencing scheme (ETD1)2%. For a system of ODEs in a spatial
domain D = [0,27]? C R? and for a time ¢ > 0

Oiu = Lu + N(u,t) (21)

where L is a linear operator acting on w and IN is a non-linear operator, the ETD1 scheme is given by multiplying
the above equation by an integrating factor el and integrating to give

Upyr = eFPu, + Lil(eLh — I)N(uy, t,) (22)

where I is the identity matrix, A is the time-step and a first order approximation is used for the non-linear integral
term. With this scheme, the computation of the linear terms is very efficient and exact with the non-linear part
assumed to be constant between ¢,, and t,4+1. ETD is used to integrate stiff systems and in our system (Eq.(12))
the hyper-viscosity term provides the harshest stability condition which is treated with ETD. When L is small, the
scheme approaches the forward Euler method. These schemes have a realistic representation of high frequencies
and have better accuracy than semi-implicit schemes?®. ETD includes matrix exponentials and inversions which
can be very costly to compute, however, the terms e and L=' can be computed before iterating the system which
makes the computational cost negligible.

Of course, this scheme can be expanded to include variable time stepping and Runga-Kutta on the non-linear term
such as ETDRK42®. However, for our chosen parameters, the ETD1 scheme was sufficient. ETD schemes have been
largely used in physics applications such as atmospheric dynamics® and magnetohydrodynamics (MHD)?°.

D. Numerical Results

We integrate the QL system Eq.(12) with a = 0.01, v =1 x 1075, [, = 1 and p = 2. Such low hyper-viscosity
dissipates flow at the smallest scales and can be assumed to be negligible in the global energy balance, however, we
retain hyper-viscosity for numerical stability. For the initial conditions, we use Uy = sin(ny) and wp = 0 where n is
the number of jets. Figure 3 shows a stable configuration of four jets starting from an unstable two jet configuration
which is achieved through splitting events of prograde jets when 8 = 4.5. This jet structure can also be seen in
the velocity profile plots. Interestingly, when S = 1, no stationary jet configuration has been reached after long
times as shown in Figure 3. This is a result of a low planet vorticity gradient which causes more instability in zonal
structures (zonal structures have a larger growth rate with small 3)?3. The velocity profile for the unstable (3 = 1)
configuration looks very similar (smaller magnitude) to the velocity profile of the stationary configuration, however,
this can be deceiving as there are clearly no stable jets. We can therefore see that by having a different 5 value,
the jet configuration can be dramatically affected. These integrations of the QL system took two hours on average
which would make investigating the parameter space extremely inefficient and computationally very costly.

We can also numerically compute the energy balance in the system to verify the assumptions on smallness for
viscosity and scale separation between the zonal and non-zonal flows. The left plot in Figure 4 shows the energy
evolution for = 4.5 which converges to the stationary energy predicted by the stationary energy balance Eq.(18).
This confirms our viscosity smallness assumption as the stationary energy is close to unity. The right contour plot
of the vorticity field in Figure 4 shows that zonal bands develop in regions of jets in the velocity profile, therefore,
the small scale structures have become anisotropic and sheared zonally due to the jets. This is the shear-straining
mechanism that is thought to cause jet organisation.
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FIG. 3: Top-left: Hovmoéller diagram of U(y,t) showing jet emergence and stability of four jets by integration of Eq.(12)
with @ = 0.01, 8=4.5, v =1x 107%, p =2, h = 0.001, Uy = sin(2y), k. = 11 and 0k = 1. Bottom-left: Hovmdller diagram
of U(y,t) showing no stable jet configurations when 8 = 1. Top-right and bottom-right: Shown is U(y, ¢ = 2000) (solid blue

line) and U” (y,t = 2000) (dashed red line) where the stationary (unstable in the case of the bottom plot) velocity jet
profile can be seen.

IV. STOCHASTIC AVERAGING AND LARGE TIME-SCALE SEPARATION

For the QL system Eq.(12) and NL system Eq.(3) dynamics, there exist parameter ranges where multiple fixed
points (meta-stable jet configurations) exist. We want to compute these fixed points much more efficiently than
through analysing the NL and QL systems.

We will now introduce stochastic averaging which is a tool that can be used to study the dynamics of a system with
a fast evolving stochastic process coupled to a slowly evolving variable. Consider a fast-slow stochastic dynamical
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Uy = sin(2y), k« = 11 and 0k = 1. Theoretical stationary energy (dashed red line) computed from Eq.(18) is also shown.
Right: Vorticity contour plot w(z,y,t = 2000) showing shearing of small scale structures.

system

dY = L(X,Y)dt + J-o(X,Y)dW (1), (23)

{atX = [(X.Y)
where f: R™ x R™ — R™ and b : R™ x R® — R™ are vector fields, W(t) € RP is a standard Wiener process,
o :R™"™ — R"™P and 0 < a < 1 (see ref3Y ). In this system, the variable X evolves on a time-scale of order 1/«
and Y evolves on a time-scale of order one. Therefore, large time-scale separation is present in the system when
a < 1. The aim of stochastic averaging is to give the dynamical behaviour of X on a time-scale order of 1/« whilst
the contributions of Y on X have been averaged out.

We can represent our QL system in the form of Eq.(23) as

U =10 —U — V(—@Z)pU
1 5 (24)
do = ~AT(U)wdt +\/2odW (1)
where the vorticity evolution equation is a stochastic PDE and an Ornstein-Uhlenbeck process with drift
L(U) =Udy + (02U — B)0, A" + a+ v(=A)P. (25)

To obtain Eq.(24), we have rescaled time by a, replaced the unimportant viscosity v with av and oof = x (where
()1 is the Hermitian transpose). Dissipation of order « is present in the drift term which is different from Eq.(23),
therefore, there will be some « dependence in the slow zonal evolution equation. The system Eq.(24) can be
discretised to be of form

X; = Ziji,j,kyk + RX;
7.k
dyj = — Z Fj,lcyk dt + Zoj’dek
k k

where R is a constant and M is a symmetric matrix and is studied by Bouchet et al.>? as a test case. As we will
see next, in the limit o — 0, we can write down a law of large numbers (LLN) for Eq.(24).
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A. Virtual-fast process

The dynamics of the velocity field (U) is obtained by stochastic averaging and the dynamics of the vorticity (w)
is approximated by its stationary dynamics while having U fixed. In systems such as Eq.(23), the statistics of Y
are very close to a ”virtual fast process”, ffx, with X = z held fixed due to time-scale separation at leading order.
If 1 < §t < 1/a, then over a time interval of [t,t + d¢], the zonal velocity profile U(t) has hardly changed while
the turbulent vorticity fluctuations w(t) can be assumed to be independent as the vorticity evolves on a time-scale
order of one. It is therefore natural to introduce a virtual fast process while keeping the slow variable fixed. The
virtual fast process is only valid when a time-scale separation exists between the variables X and Y in Eq.(23). We
can define such a process for our system Eq.(24) in the limit & — 0 as

dioy = —T(u)@udr + V20dW (1), (26)

where the zonal velocity is held fixed U = u and we rescale time to the natural time-scale of the zonal flow , 7 = t/a.
Let g(U,w) := 1w — U — u(—@i)pU, we assume that the virtual fast process is ergodic at every u with respect to
the invariant measure s, (dw) and so the following expectation exists®’

G(U) / 9(U, ) (o)

(27)

1 T
Tlg%O ?/0 g(u, @, (7)) dr,
where in the second line we have used ergodicity of the long-time average being equal to the phase-space average.
Then there exists an LLN for the mean U (formal derivation given by Bouchet et al.*?)

P(U®#) -U@) <e)—1 Vt,as a—0 (28)
where € > 0. The evolution equation for U(t) is then given by

O = Ey [Bpig] — U — v(—APT
1 -1 ~ ~ o r7 PT7 (29)
=7 | (047 Eg [0 (2, y)o (@' y)]) ooy dr = U —v(=A)T,

where v, is the velocity corresponding to the vorticity of the virtual fast process. The assumption of ergodicity
implies that the solution of S3T%2! in the limit of large time-scale separation converges to the LLN equation
Eq.(29). We can write down the invariant measure of the virtual fast process as it is an Ornstein-Uhlenbeck
process which is a linear stochastic process and the correlation matrix of the virtual fast process Cy(z,y,2',y’) =
Eg [0p(z, y)@g (2, y")] fulfills the stationary Lyapunov equation

(U)Cq + CT(U)F = 2007, (30)

which we obtain by applying Ito’s formula to Eq.(26). That is, the Lyapunov equation Eq.(30) has a unique station-
ary solution when the virtual fast process Eq.(26) has an invariant measure. This property can be shown numerically
by integrating the virtual fast process for long times and comparing the covariance with that of the the Lyapunov
equation Eq.(30) solution. This comparison is shown in Figure 5 for one zonal wavenumber (k = 1) for simplicity
and it holds for all zonal wavenumbers. The virtual fast process was integrated using the Euler-Maruyama®' method
with samples taken at stationarity to compute the covariance. As x is a function of distances instead of absolute
coordinates (Eq.(6)), x is rebuilt to Toeplitz form (for translational invariance) which if all zonal wavenumbers
are to be considered, would be a tensor of size N, x N, x N, X N, (or Ny,N, x N,N,), therefore, only a single
wavenumber was considered which reduces dimensionality to N, x IV, and significantly reduces computational cost.
Figure 5 shows that the structure and magnitude of both covariance functions is very similar with even a small
number of samples (N = 200) which confirms Eq.(30) for our system.

We can therefore conclude that the zonal dynamics can be modelled by the solution of the LLN Eq.(29) in the limit
of infinite time-scale separation o — 0,

_ 1 _
00 =7 [ (087 Colwy ' )y do = U = v(-APT (31)
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FIG. 5: Left: Contour plot showing Cy computed from the Lyapunov equation Eq.(30) for a single zonal wavenumber
(k = 1) Right: Showing numerical covariance &g (z,y)@g (z',y") computed from integrating Eq.(26) for a single zonal
wavenumber (k = 1).

where we can compute Cy(x,y,2’,y") from the solution of Eq.(30) and the system is now deterministic.

B. Numerical Computation

As stated in the previous section, the solution of the full Lyapunov equation would include computations with
extremely large matrices. We can therefore use the property of translational invariance in the zonal direction and
linearity in T'(U) to simplify the computation greatly. Our computational domain is discretised such that the y-
direction is kept in real space with NN, grid points and the x-direction is in Fourier space with IV, grid points. The
vorticity can be expanded in zonal harmonics without loss of generality such that

w(z,y,t) = Zd}k(y, t)etke (32)
k

for the Fourier coefficients @ (y,t). Therefore, I'(U) decouples in k and the forcing is chosen such that it separates
in k a-priori, so we can compute the Lyapunov equation Eq.(30) independently for each k. We can rewrite the
Reynolds stress term in Eq.(31) and so the algorithm in total reads

N./2
AU(y) = " diag [~2k(32 — k)73 [Cul(y,y)]] -~ Uly) — v(~APU () (33)
k=0

where for each ¢ and all k£ the matrix C}, is defined by

T1(U)Cy + CiTw (U)' = 20401, (34)
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in the regime v < a < 1 where Cy, 'y (U) € CNv*Nv| g4, € RNy, diag[A] is the main diagonal of matrix A and
$([B] is the imaginary part of B. The matrix I'y(U) is of the form
Uy d2U, /dy? - B
T (U) = ik +ik (D2 — k1)~
Un, d*Uy, /dy* - B
=U =D2U-p

+ al —|—1/(— D§+k2|)p

where D12; is the discretised 0y, operator and | is the identity matrix. We aim to find fixed points, 0;U(y) = 0 of
the LLN system Eq.(33), therefore we can view the system as a pre-conditioned iterative descent algorithm. As
the integration is carried out on only the slow time-scale, the fast variable does not impact the numerical stability
with the harshest stability condition imposed by the hyper-viscosity term. As before, we treat both linear terms in
Eq.(33) using ETD1 and solve the Lyapunov equation using the Bartels-Stewart algorithm®? implemented by the
solvecontinuouslyapunov function in Python. We use IV, = 128 and N, = 64 for the grid size with the same
forcing as when solving the QL system and we obtain the fixed point after only a few iterations.

C. Numerical Results

We integrated Eq.(33) with the same parameters as in the QL system in Section III with § = 4.5 for comparison.
We can see in the left figure of Figure 6 that the solution of the LLN equation found the stable four jet configuration
starting from the unstable two jet configuration. The velocity magnitude is very similar between the QL (top-left
figure of Figure 3) and LLN systems. The small differences are because time-scale separation is never infinite and
the zonal dynamics experience some fluctuations above their mean. However, this still means that the LLN system
is a good approximation of QL system dynamics. An interesting observation is that in this LLN system (with these
parameters), it is always retrograde jets that split and prograde jets that merge. Computationally, the integration
of the LLN system took a maximum of two minutes to find the fixed point; much faster than integration of the QL
system. Of course, as a gets smaller, the LLN system solution will approach the QL solution.

6 0.03 6
5 0.02 51
4 0.01 4
= g 0.00 =5
9 —0.01 2]
1 —0.02 N
0 —0.03 o

0 250 500 750 1000 1250 1500 1750 2000
t

FIG. 6: Left: Hovmoller diagram of U(y,t) showing jet emergence and stability of four jets by integration of Eq.(33) with
the same parameters as used in the QL integration with. Right: Velocity profile plot U(y,t = 2000) showing similarity
between the QL (solid blue line) and LLN (dash-dotted green line) velocity profiles.
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FIG. T: Top-left: Velocity profile U(y, t = 2000) of the only stable two jet configuration for & = 2 x 10™* and 8 = 1.6.
Bottom-left: Comparison of zonal mean flow showing a bifurcation structure with varying energy input rate by unit mass
showing between the QL and LLN systems with o = 0.001, 5 = 4.5, k. = 13 and dk = 1 . Top-right: Velocity profile plot

U(y,t = 2000) showing the stable five jet (solid red) and six jet (solid pale green) configurations. Bottom-right: Bifurcation
diagram for the number of jets (n) with varying 8 for o = 0.0014, k« = 13 and 6k = 1 where the red points are the QL

system solutions.

We can utilise the efficiency of the LLN system to find parameters at which multiple fixed points (jet configurations)
are meta-stable. The top figures of Figure 7 show examples of multiple fixed points existing for various parameter
values such as when o = 2x107% and 8 = 1.6, there exists only the one stable jet configuration of two jets. However,
when o = 7 x 107* and 8 = 5.3, both the five and six jet configurations are stable with the five jet configuration
having a very small basin of attraction. Therefore, it is very likely that Jupiter did indeed lose a jet as multiple jet
configurations can be stable for the same Coriolis parameter according to our numerics.
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D. Jet stability in the parameter space

Constantinou et al.?? states that there exists a critical energy input rate (e.) which when € < €., no stable coherent

zonal structures can exist. Here we show that this property is reproduced by the LLN system dynamics. We define
the zonal-mean-flow index® as

(zmf) = Eu /(Eu + Ey), (35)

where (.) denotes the time average when stationarity is reached. We investigate the zonal-mean-flow index as a
function of e. Energy input rate by unit mass is defined as € = v/4rl,L? and we vary this parameter by varying .
The bottom-left figure in Figure 7 shows that this energy input rate bifurcation structure exists in the LLN system
as well as the QL system. The critical energy input rate is nearly equal for both systems at ¢, ~ 500 which again
confirms that the LLN system is a good approximation for QL dynamics. This is an important result as it can help
identify which processes lead to jet emergence by analysing the model close to e.. Stochastic averaging therefore
allows much more efficient analysis of such dynamics compared to computations with the QL and S3T systems.

We can vary the planetary rotation parameter g for a given o and study the meta-stable configurations that arise
with a planetary rotation bifurcation or stability diagram. The bottom-right figure of Figure 7 shows that as S is
increased, the jet configurations with more jets are stable. For the chosen range of 0.1 < 8 < 20, the most stable
configuration is the two jet configuration and we can see that the QL stationary jet configurations (red points) agree
with the LLN results. There are various g values where two meta-stable jet configurations exist such as § = 10
for two and three jets and g = 16 for four and five jets. We have only observed saddle points which are transition
states between various jet configurations with the parameters that we have tested. This means that the simple
LLN system can be used to study the complex stability dynamics of the QL approximation in the inertial limit
(v < a < 1) which is a very exciting result.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a stochastic non-linear system for modelling the emergence and stability of turbulent
jets on Jovian atmospheres with the f-effect and barotropic assumptions. We decomposed this system to obtain
a quasi-linear approximation of jet dynamics by neglecting the non-linear terms and integrated this system for
long times using spectral methods. Zonal jets were observed for certain chosen parameters and an energy balance
was numerically verified to confirm our assumptions about time-scale separation. Exploiting the large time-scale
separation in the QL system, we applied the classical tool of stochastic averaging to obtain a law of large numbers
equation through a heuristic derivation. The stochastic QL system was reduced to a deterministic evolution of mean
zonal velocity with averaged non-zonal fluctuations. Integration of the LLN system showed excellent agreement
with QL system dynamics with LLN computation being much more efficient compared to the QL system. We have
confirmed that the LLN system exhibits the property of a bifurcation at a critical energy input rate €. where jets
will not emerge if € < €, which coincides with that of the QL system. Having been convinced by the LLN results,
we varied the Coriolis parameter 8 where we observed multiple meta-stable fixed points such as the two and three
jet configuration being stable at § = 10.

These results are very promising as it means that the complex QL system can be reduced to a deterministic system
using stochastic averaging while retaining most of the dynamics of the original system in the inertial limit. As
stated in the introduction of this report, jet emergence and stability are of great interest to the scientific community
as jets are present in most planetary atmospheres as well as plasma confinement devices. The tools presented in this
report can aid massively in the prediction and stability of jets in both systems which can advance our understanding
of atmospheric processes and lead to more efficient plasma confinement.

In the system we have studied in this report, we have assumed complete and clean time-scale separation between
the fast and slow variables. In practice, however, the system does not cleanly separate. With our rescaling, the
hyper-viscosity term contains an a which in the limit of & — 0 will vanish. Therefore, more work has to be carried
out in choosing the correct non-dimensionalisation and as a consequence, the validity of time-scale separation in
this system.
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Instead of varying the 8 parameter to study transitions, we can utilise more sophisticated tools such as the string
method®® to compute the heteroclinic orbits connecting various meta-stable states. We can also find unstable
fixed points using the minimum action method3* and the Hamiltonian equations of our system. These methods,
however, do not estimate the relative stability of a fixed point, the transition probabilities or the exit times. To
more concretely describe the complete dynamics, we can apply both the Central Limit Theorem (CLT) and the
Large Deviation Principle (LDP)3° to our system. The CLT would describe typical fluctuations of the zonal velocity
while the LDP would describe the large fluctuations (rare-events). These tools can, of course, be applied to other
similar systems with time-scale separation such as the generalised Hasegawa-Mima equation®® which is a model for
magnetised plasma turbulence.
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