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With the current explosion of ”Big Data”, there has been an increase in the usage of

statistical techniques that are able to extract information from different types of data.

These techniques are often labelled as Statistical Learning Methods, and have become

ubiquitous, not only in scientific fields of study, but also in other disciples such as market-

ing, finance and economics [1]. One of the most widely used tools of statistical learning

is artificial neural networks, a class of powerful machine learning tools that can cope

with high dimensional and unstructured data such as facial images. This dissertation

will focus on exploring the usage of artificial neural networks for extracting information

from facial images. Hence, it will study five applications of artificial neural networks on

facial images: gender classification, age prediction, dimensionality-reduction, frontalisa-

tion and keypoints detection. Moreover, it will provide some insights into the history and

applications of machine learning and artificial neural networks, in addition to discussing

some of the theories regarding these topics.

http://www2.warwick.ac.uk/
http://www2.warwick.ac.uk/fac/sci
http://www2.warwick.ac.uk/fac/sci/statistics
A.Boustati@warwick.ac.uk


Acknowledgements

First and foremost, I would like to thank my supervisor, Dr Ben Graham for his support

and guidance throughout the course of this project, and for sharing with me his vast

experience in the fields of statistical learning and machine learning. I would also like to

thank my tutor, Dr Dario Spano for his help and support throughout the progression of

my degree. I would further like to extend my gratitude to all the professors and staff in

the Department of Statistics for sharing their knowledge and making my degree such an

enjoyable and rewarding experience. I am also grateful to my colleagues whom I have

had a great pleasure in meeting and interacting with. Finally, I would like to thank my

parents, Mamoun Boustati and Nazli Alouch, and my sister, Alma, for their support

and encouragement during my years away from home.

iv



Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Facial Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Types of Learning Problems . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Types of Supervised Learning . . . . . . . . . . . . . . . . . . . . . 7

2.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Fitting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Simple Linear Regression in a Machine Learning Setting . . . . . . 8

2.3 Multivariate Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



Contents vi

2.3.2 Multivariate Linear Regression in a Machine Learning Setting . . . 9

2.4 The Gradient Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 The Minimisation Problem . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 The Sigmoid Function . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.4 The Machine Learning Formulation . . . . . . . . . . . . . . . . . 13

2.6 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Logistic Regression Revisited . . . . . . . . . . . . . . . . . . . . . 15

2.6.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.4 Forward-Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.5 Another Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.6 Backward Propagation of Errors . . . . . . . . . . . . . . . . . . . 19

2.7 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.3 Froward Propagation of Convolutional Layers . . . . . . . . . . . . 22

2.7.4 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.5 Sub-Sampling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.2 Over-Fitting and Regularisation . . . . . . . . . . . . . . . . . . . 24

2.8.3 The Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8.4 Mini-Batch Gradient Descent . . . . . . . . . . . . . . . . . . . . . 26

2.8.5 Nesterov’s Accelerated Gradient Descent . . . . . . . . . . . . . . . 27

2.8.6 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.7 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.8 The Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Gender Prediction from Facial Images 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Training and Test Data . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Building the Neural Networks . . . . . . . . . . . . . . . . . . . . . 32

3.3 Gender Classification Network 1 (GCN1) . . . . . . . . . . . . . . . . . . 32

3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Gender Classification Network 2 (GCN2) . . . . . . . . . . . . . . . . . . 34

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Gender Classification Network 3 (GCN3) . . . . . . . . . . . . . . . . . . 36



Contents vii

3.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Comparison of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Age Prediction from Facial Images 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Training and Test Data . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Building the Neural Networks . . . . . . . . . . . . . . . . . . . . . 39

4.3 Age Prediction Network 1 (APN1) . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Age Prediction Network 2 (APN2) . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Age Prediction Network 3 (APN3) . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Comparison of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Non-Linear Dimensionality Reduction of Facial Images 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Training and Test Data . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.2 Building the Neural Networks . . . . . . . . . . . . . . . . . . . . . 47

5.3.3 An Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Architectures of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Dimensionality Reduction Network 1 (DRN1) . . . . . . . . . . . . 47

5.4.2 Dimensionality Reduction Network 2 (DRN2) . . . . . . . . . . . . 48

5.4.3 Dimensionality Reduction Network 3 (DRN3) . . . . . . . . . . . . 49

5.5 Comparison of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Frontal Facial Pose Reconstruction 51

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Training and Test Data . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.2 Building the Neural Networks . . . . . . . . . . . . . . . . . . . . . 52

6.3 Architectures of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Frontal Pose Reconstruction Network 1 . . . . . . . . . . . . . . . 52

6.3.2 Frontal Pose Reconstruction Network 2 . . . . . . . . . . . . . . . 53

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Facial Keypoints Detection 54

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 Training and Test Data . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.2 Building the Neural Networks . . . . . . . . . . . . . . . . . . . . . 55



Contents viii

7.3 Facial Keypoints Detection Network 1 (FKDN1) . . . . . . . . . . . . . . 55

7.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 Facial Keypoints Detection Network 2 (FKDN2) . . . . . . . . . . . . . . 56

7.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Comparison of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusion 60

A Convergence of Gradient Descent 61

B Python Code for Building the Neural Networks 63

B.1 Gender Classification Networks . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2 Age Prediction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 Dimensionality Reduction Networks . . . . . . . . . . . . . . . . . . . . . 68

B.4 Frontal Pose Reconstruction Networks . . . . . . . . . . . . . . . . . . . . 70

B.5 Facial Keypoint Detection Networks . . . . . . . . . . . . . . . . . . . . . 72

C Visual Representations of Neural Network Architectures 74

C.1 Gender Classification Networks . . . . . . . . . . . . . . . . . . . . . . . . 75

C.1.1 GCN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C.1.2 GCN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1.3 GCN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.2 Age Prediction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2.1 APN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2.2 APN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.2.3 APN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.3 Dimensionality Reduction Networks . . . . . . . . . . . . . . . . . . . . . 80

C.3.1 DRN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.3.2 DRN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.3.3 DRN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.4 Frontal Pose Reconstruction Networks . . . . . . . . . . . . . . . . . . . . 81

C.4.1 FPRN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.4.2 FPRN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.5 Facial Keypoint Detection Networks . . . . . . . . . . . . . . . . . . . . . 83

C.5.1 FKDN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.5.2 FKDN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D Samples from the Dimensionality Reduction Networks 85

D.1 DRN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.2 DRN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.3 DRN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E Samples from the Frontal Pose Reconstruction Networks 89

E.1 FPRN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E.2 FPRN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents ix

F R Code for the Analysis of the Results 92

F.1 Gender Classification Networks . . . . . . . . . . . . . . . . . . . . . . . . 93

F.2 Age Prediction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

F.3 Dimensionality Reduction Networks . . . . . . . . . . . . . . . . . . . . . 96

F.4 Facial Keypoint Detection Networks . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99



List of Figures

2.1 A graph of the sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 A neural network representation of logistic regression. . . . . . . . . . . . 15

2.3 An illustration of two layers of a fully-connected network. . . . . . . . . . 17

2.4 An illustration of a convolutional layer [28] (edited). . . . . . . . . . . . . 23

2.5 Large learning rate causes divergence [29]. . . . . . . . . . . . . . . . . . . 26

2.6 Small learning rate causes slow convergence [29]. . . . . . . . . . . . . . . 26

3.1 Bar-Plots showing the distribution of the results of GCN1 versus the
actual distribution of gender in the testing data. . . . . . . . . . . . . . . 34

3.2 Bar-Plots showing the distribution of the results of GCN2 versus the
actual distribution of gender in the testing data. . . . . . . . . . . . . . . 35

3.3 Bar-Plots showing the distribution of the results of GCN3 versus the
actual distribution of gender in the testing data. . . . . . . . . . . . . . . 37

4.1 Enhanced scatter-plot of the predicted age against the real age for APN1. 41

4.2 Enhanced scatter-plot of the predicted age against the real age for APN2. 42

4.3 Enhanced scatter-plot of the predicted age against the real age for APN3. 44

5.1 An example of an autoencoder network. . . . . . . . . . . . . . . . . . . . 46

5.2 Distribution of the PSNR values for output of DRN1. . . . . . . . . . . . 50

5.3 Distribution of the PSNR values for output of DRN2. . . . . . . . . . . . 50

5.4 Distribution of the PSNR values for output of DRN3. . . . . . . . . . . . 50

7.1 Sample 1 of the output of FKDN1. . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Sample 2 of the output of FKDN1. . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Sample 3 of the output of FKDN1. . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Sample 4 of the output of FKDN1. . . . . . . . . . . . . . . . . . . . . . . 57

7.5 Sample 1 of the output of FKDN2. . . . . . . . . . . . . . . . . . . . . . . 58

7.6 Sample 2 of the output of FKDN2. . . . . . . . . . . . . . . . . . . . . . . 58

7.7 Sample 3 of the output of FKDN2. . . . . . . . . . . . . . . . . . . . . . . 58

7.8 Sample 4 of the output of FKDN2. . . . . . . . . . . . . . . . . . . . . . . 58

C.1 Network architecture for GCN1. . . . . . . . . . . . . . . . . . . . . . . . 75

C.2 Network architecture for GCN2. . . . . . . . . . . . . . . . . . . . . . . . 76

C.3 Network architecture for GCN3. . . . . . . . . . . . . . . . . . . . . . . . 76

C.4 Network architecture for APN1. . . . . . . . . . . . . . . . . . . . . . . . . 77

C.5 Network architecture for APN2. . . . . . . . . . . . . . . . . . . . . . . . . 78

C.6 Network architecture for APN3. . . . . . . . . . . . . . . . . . . . . . . . . 79

C.7 Network architecture for DRN1. . . . . . . . . . . . . . . . . . . . . . . . 80

x



List of Figures xi

C.8 Network architecture for DRN2. . . . . . . . . . . . . . . . . . . . . . . . 80

C.9 Network architecture for DRN3. . . . . . . . . . . . . . . . . . . . . . . . 81

C.10 Network architecture for FPRN1. . . . . . . . . . . . . . . . . . . . . . . . 81

C.11 Network architecture for FRN2. . . . . . . . . . . . . . . . . . . . . . . . . 82

C.12 Network architecture for FKDN1. . . . . . . . . . . . . . . . . . . . . . . . 83

C.13 Network architecture for FKDN2. . . . . . . . . . . . . . . . . . . . . . . . 84

D.1 A sample of the original images compared to the reconstructed images for
DRN1. In each pair of columns, the images on the right are the originals
and the images on the left are the reconstruction. . . . . . . . . . . . . . . 86

D.2 A sample of the original images compared to the reconstructed images for
DRN2. In each pair of columns, the images on the right are the originals
and the images on the left are the reconstruction. . . . . . . . . . . . . . . 87

D.3 A sample of the original images compared to the reconstructed images for
DRN3. In each pair of columns, the images on the right are the originals
and the images on the left are the reconstruction. . . . . . . . . . . . . . . 88

E.1 A sample comparing the original images to the reconstructed images for
FPRN1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E.2 A sample comparing the original images to the reconstructed images for
FPRN2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Tables

3.1 Confusion matrix for the results of GCN1. . . . . . . . . . . . . . . . . . . 33

3.2 Confusion matrix for the results of GCN2. . . . . . . . . . . . . . . . . . . 35

3.3 Confusion matrix for the results of GCN3. . . . . . . . . . . . . . . . . . . 36

3.4 Comparison table for the gender classification networks. . . . . . . . . . . 37

4.1 Comparison table for the age prediction networks. . . . . . . . . . . . . . 44

5.1 Comparison table for the dimensionality reduction networks. . . . . . . . 50

7.1 Comparison table for the facial keypoints detection networks. . . . . . . . 59

xii



To my parents:

Mamoun Boustati

and
Nazli Alouch

xiii



Chapter 1

Introduction

1.1 Statistical Learning

1.1.1 Overview

Statistical Learning encompasses tools and models that are designed to extract infor-

mation from complex data. These tools are primarily used in problem settings where

the objective is predictive rather than explanatory. Statistical learning is different from

traditional statistical modelling, as it relies heavily on algorithmic modelling without

making many assumptions on the generating mechanism of the data [2]. Hence, most

statistical learning methods assume that the data was generated from a black-box and

the aim is to find a function that can predict the response to this data from known

observations. This means that the tools of statistical learning are primarily driven by

the quality of their results; hence, they employ different validation criteria than the ones

used in traditional statistical modelling .

1.1.2 History

According to James, G., et al. [1], the term ”statistical learning” is relatively new;

however, some of the tools employed in statistical learning date back to as far as the

beginning of the nineteenth century, when Legendre and Gauss came up with the method

of least squares, introducing the early version of linear regression. Linear regression was

incredibly useful for predicting continuous quantitative values; however, it fell short

when the target values were qualitative, such as predicting whether it was going to rain

or not the next day. Hence, this led Fisher to develop the linear discriminant analysis

in 1936 and various authors like Pearl, R., et. al. [3] to propose logistic regression in

1
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1940. In 1972, Nelder and Wedderburn introduced generalised linear models [4], a class

of models that include linear regression and logistic regression as special cases. Most

of the statistical learning techniques that were introduced before the 1980s were linear

methods, because of the computational infeasibility of modelling non-linear relationships.

However, the improvement in computing technology in the 1980s opened to door to

exploring non-linear learning models. In 1984, Breiman, Friedman, Olshen and Stone

introduced classification and regression tree (CART) models [5], and in 1986 Hastie and

Tibshirani proposed generalised additive models extending generalised linear models to

non-linear settings [6]. With the introduction of these new models and many others,

statistical learning became an exciting new sub-field of statistics. Furthermore, the

revival of computationally heavy statistical learning techniques, such as artificial neural

networks in the late 1980s [7], and the introduction of new ones in the 1990s, such

as support vector machines in 1992 [8], helped bridge the gap between statistics and

computer science, introducing machine learning as a shared area of interest between

the two fields. By the turn of the twenty-first century, statistical learning and its sister

field, machine learning, became prominent academic fields, with many researchers from

the top statistics and computer science departments around the world contributing in

their development. With the huge advancements in computer technology and the rise

of Big Data in the late 2000s and early 2010s, statistical learning and machine learning

became widely used and crucially important in many industries and disciplines inside

and outside of the scientific sphere.

1.2 Artificial Neural Networks

1.2.1 Overview

Artificial Neural Networks are a class of non-linear machine learning algorithms, that are

inspired by the biological model of the neurons in the brain [9]. They are complex models

that are capable of performing the two main supervised learning tasks, classification and

regression. Artificial neural networks are capable of learning from different formats of

data such as structured data, images, sounds, etc. Neural networks are particularly

good at performing pattern recognition tasks; hence, most of their applications are in

this area. One of the strengths of artificial neural networks, is that they do not make

any assumptions about the input data, but try to learn the relationship between the

inputs and outputs by example. This is a similar fashion to how the human brain

learns. Hence, artificial neural networks are very useful in problem settings where the

underlying relationship between the inputs and the outputs are unknown.



Dissertation 3

1.2.2 History

According to Bishop [9], the study of artificial neural networks, has been inspired by the

study of its biological counterpart. In 1943, McCulloh and Pitts [10], proposed an ”all-

or-none” model for the activity of neurons, in which a single neuron takes in a weighted

sum of inputs from other neurons, and it is then either activated by these inputs and

it stays dormant. In 1949, Donald Hebb proposed a learning mechanism for neural

networks, which can be summarised by his ”neurons that fire together, wire together”

principle [11]. The first artificial neural network was created by Minsky in 1951 while

he was a student at Princeton University. This network was called the Stochastic Neural

Analog Reinforcement Calculator (SNARC) and was based Hebb’s theory. SNARC was a

physical network created from 3000 vacuum tubes and constituted of 40 neurons [12]. In

1958, the first attempt to create an artificial neural network for pattern recognition was

made by Rosenbalt at Cornell University. Rosenbalt tried to implement the techniques of

neural networks for the purpose of character recognition, creating the Mark I Perceptron

[13], a single layer network. However, despite being one of the pioneers of the study of

artificial neural networks, Minsky, along with his colleague Papert proved that single

layer networks like the Mark I Perceptron were very limited when it comes to pattern

recognition [13] [14]. Hence, more complex networks were needed to perform this task.

It was not until 1986, when the back-propagation algorithm was developed, that multi-

layer networks were possible to implement. The general method of the back-propagation

algorithm was first discovered in 1974 by Werbos [15]. However, in 1986, Rumelhart,

Hinton and Williams [16] managed to independently rediscover the work of Werbos and

were able to popularise a special case of his general method that became the version

of the back-propagation algorithm that is used today. Nevertheless, in the late 1990s

and early 2000s, interest in artificial neural networks began to fade in favour of other

statistical learning algorithm, most notably, support vector machines. However, this

trend changed in 2006 when Deep Learning came into prominence when Hinton came up

with a working implementation of the idea of deep layered networks [17]; thus, sparking

renewed interest in artificial neural networks.

1.2.3 Applications

Artificial neural networks have been used in a wide variety of applications. From engi-

neering to finance and urban planning to medicine, the use of artificial neural networks

is becoming more and more omnipresent. One of the most popular applications of neural

networks is pattern recognition. To this end, LeCun and Battou [18] successfully used a

convolutional neural network to recognise generic objects, such as animals, cars, plane,
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etc. in cluttered scenes with different poses and lighting conditions. Furthermore, con-

volutional neural networks have also been used in the classification of YouTube videos

into a large number of categories by Karpathy, et. al. [19].

In engineering, artificial neural networks are used to aid in the optimisation of different

processes. For instance, Google’s Jim Gao [20] developed an artificial neural network

that models the performance of Google’s data centres to aid in optimising the energy

efficiency of these data centres.

Neural networks are also used in medical applications, especially, as an aid in the diag-

nosis of cancer. For example, neural networks can be used to analyse the results of CT

scans of the lungs to help in the early detection of lung cancer [21].

With the recent progress in Deep Learning, neural networks are rapidly becoming an

integral part in many modern scientific and industrial applications.

1.3 Facial Images

1.3.1 Overview

The human face contains a great deal of information about its subject, such as their

identity, gender, age and emotional state. In some cases, it can even reveal some infor-

mation about the subject’s personality. Humans have the innate ability to analyse the

facial appearances of their fellow humans, and extract some of this information. This

ability is a remarkable feature in human intelligence and extending it to machines can

be a big first step towards creating a sentient Artificial Intelligence, among many other

useful applications.

1.3.2 Potential Applications

The ability to study and extract information from faces can enhance many systems that

are in use today. For instance, it can revolutionise the fields of robotics and artificial

intelligence. There are already some implementations of facial recognition and emo-

tion detection in some robotic prototypes [22] [23]; hence, adding other facial analysis

abilities can help in enhancing these concepts, making them more lifelike. Age predic-

tion and gender classification systems can help in the automation of some aspects of

market research; for instance, retail companies can utilise systems that analyse facial

photographs of their customers to gain insight into their customers’ demographics. Fa-

cial detection and recognition can considerably enhance biometric and security systems.

In fact, some security systems currently employ facial recognition methods to identify

unwanted individuals [24].
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1.4 Outline

The aim of this dissertation is to explore some of the applications of artificial neural

networks with regard to facial image processing and information extraction. Hence,

it will start by developing some background theory on machine learning and artificial

neural networks in Chapter 2. This is followed by a study of five applications of artificial

neural networks on facial images: gender classification in Chapter 3, age prediction in

Chapter 4, dimensionality reduction in Chapter 5, facial frontalisation in Chapter 6 and

keypoints detection in Chapter 7.



Chapter 2

Theory

2.1 Introduction

2.1.1 Machine Learning

Machine Learning is an interdisciplinary field combining statistical learning and com-

puter science. The aim of machine learning is to create machines that are able to learn

and generalise from data without explicit programming.

2.1.2 Types of Learning Problems

In machine learning, there are two types of problems:

• Unsupervised Learning is learning from unlabelled data. Unsupervised learning

aims to discover a hidden structure or relationship within the data. Clustering and

the Hidden Markov Models are examples of unsupervised learning problems.

• Supervised Learning is learning from labelled data. For a pair of vectors (x, y),

supervised learning aims to produce a function fθ(x) such that for some parameter

vector θ, fθ(x) = y [25]. In other words, in supervised learning, the objective is to

find a function that links the observation x to the label y.

This dissertation is primarily focused on supervised learning; hence, the theory that is

covered in this chapter will only involve supervised learning.

6
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2.1.3 Types of Supervised Learning

There are two main types of supervised learning problems:

• Classification: the task in classification problems is to assign an observation x

to one of n classes Ci for i ∈ {1, . . . , n}.

• Regression: regression problems assign a value equal y to an observation x, where

y is a continuous variable.

2.2 Simple Linear Regression

2.2.1 Formulation

A trivial example of supervised learning is Simple Linear Regression. Recall, for a pre-

dictor variable X and response variable Y , assuming an approximate linear relationship

between the two, it is possible to predict Y from X by setting:

Y = β0 + β1X + ε

In this model, β0 and β1 are constants, called the parameters of the model, and ε is an

unknown error term, which could be modelled as a normal random variable with mean

0 and variance σ2 (i.e. N(0, σ2)). Hence, from the formulation of the model it is easy

to note that:

E[Y |X] = β0 + β1X (2.1)

(2.1) could be used to approximate the value of Y from the value of X.

2.2.2 Fitting the Model

In practice, the model parameters β0 and β1 are unknown; consequently, they have to

be estimated from observed data. Consider n pairs of observations from X and Y :

(x1, y1), (x2, y2), . . . , (xn, yn)

Good approximations for β0 and β1 (denoted as β̂0 and β̂1 respectively) are ones that

can produce estimates ŷi = β̂0 + β̂1xi of yi that are as close as possible to the observed

value of yi for i ∈ {1, 2, . . . , n}. Geometrically, this is the line with intercept β̂0 and

slope β̂1 that runs as close as possible to all n points. To do this, it is essential to define
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a measure of closeness between yi and ŷi. The most common choice for such measure in

linear regression is (yi− ŷi)2 which is the square distance between the observed value yi

and the predicted value ŷi. This can also be presented as e2i , the square of the residual

ei = yi − ŷi = yi − β̂0 − β̂1xi. Summing the residuals for all n the observed points, will

yield an expression that quantifies the amount of the overall deviation of the line from

all of the n points [1]. This expression is called the Residual Sum of Squares (RSS).

RSS =
n∑
i=1

e2i =
n∑
i=1

(yi − β̂0 − β̂1xi)2 (2.2)

Notice that the RSS is nothing but the square of the L2-norm of the vector of the

residuals. To find the best values of β̂0 and β̂1 that minimise the RSS (2.2), all is

needed is to solve the following minimisation problem:

arg min
β̂0,β̂1

n∑
i=1

(yi − β̂0 − β̂1xi)2

The problem can be easily solved analytically, to find the optimal values of β̂0 and β̂1:

β̂1 =

∑n
i=1(xi −

∑n
i=1 xi
n )(yi −

∑n
i=1 yi
n )∑n

i=1(xi −
∑n
i=1 xi
n )2

β̂0 =

∑n
i=1 yi
n

− β̂1
∑n

i=1 xi
n

2.2.3 Simple Linear Regression in a Machine Learning Setting

In a machine learning setting, the relationship Y = β0 + β1X is called a hypothesis and

its associated function:

hβ0,β1(x) = β0 + β1x

is called the hypothesis function, as it represents the hypothesis that X and Y are linearly

related. Furthermore, the square distance is an example of a cost function, a function

that quantifies the cost of the deviation from the hypothesis for each point. Hence, the

RSS (2.2) represents the total cost of the deviation from the hypothesis for all n points.

For simple linear, regression the cost function is:

c(β0, β1) = (y − hβ0,β1(x))2

And the total cost is:

C(β0, β1) =
n∑
i=1

(yi − hβ0,β1(xi))
2
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Accordingly, the minimisation problem becomes:

arg min
β0,β1

C(β0, β1)

with β̂0 and β̂1 as the solution.

2.3 Multivariate Linear Regression

2.3.1 Formulation

The idea of simple linear regression can be easily extended to incorporate more than one

predictor variables. Given p predictors X1, X2, . . . Xp and a single response variable Y .

The Multivariate Linear Regression model takes the following form:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

Like in the simple linear regression model, ε ∼ N(0, σ2). Consequently,

E[Y |X1, X2, . . . , Xp] = β0 + β1X1 + β2X2 + · · ·+ βpXp (2.3)

2.3.2 Multivariate Linear Regression in a Machine Learning Setting

For the multivariate linear regression model, the hypothesis is Y = β0 + β1X1 + β2X2 +

· · ·+ βpXp, yielding a hypothesis function:

hβ(x) = β0 + β1x2 + β1x2 + · · ·+ βpxp

A cost function:

c(β) =
(
y − β0 −

p∑
j=1

βjxj
)2

And a total cost of:

C(β) =

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij
)2

The cost function for multivariate linear regression is multivariate. Hence, attempting to

solve for β̂0, β̂1, . . . , β̂p analytically requires a great deal of mathematical prowess and is

ultimately very impractical if p is large. Fortunately, there are other methods to find the

solution to arg min
β

C(β). One method involves converting the cost function to matrix

form and using linear algebra to solve the minimisation problem. However, this method
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is not going to be discussed here as it is beyond the scope of the dissertation. Another

method is to solve the minimisation problem numerically by applying an algorithm called

Gradient Descent, which will be introduced in the next section (Section 2.4). Although

computationally intensive, gradient descent is very efficient and produces very accurate

solutions.

2.4 The Gradient Descent Algorithm

2.4.1 The Minimisation Problem

Consider a smooth and convex f :

f : Rn → R

Finding the minimum of this function analytically requires solving a system of n equa-

tions that are possibly non-linear. This task is straight forward for small n; however,

it gets increasingly difficult and inefficient as the number of variables n increases. A

more efficient way to minimise f is to attempt to find the minimum numerically using

an iterative algorithm called the gradient descent algorithm.

2.4.2 Notation

Before describing the gradient descent algorithm, it is beneficial to define some notation

for the convenience of the reader:

• x = (x1, x2, . . . , xn) is the vector of n variables; hence, f(x) = f(x1, x2, . . . , xn).

• ∇f(x) = ( δfδx1 ,
δf
δx2
, . . . , δfδxn ) is the gradient of the function f .

• τ ∈ {0, 1, 2 . . . } is the current iteration number, starting from 0 in the initialisation

phase and moving on to 1, 2, . . .

• x(τ) is the value of x in the τ th iteration.

• α is the step size or the learning rate parameter.

2.4.3 The Algorithm

The idea of gradient descent is simple, starting from an initial point, every iteration the

algorithm moves a short distance in the direction of the greatest rate of decrease of the

function f [9]. This is represented algorithmically as follows:
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1. Initialise x0.

2. For τ = 1, 2, . . . do:

x(τ) = x(τ−1) − α∇f(x(τ−1)) (2.4)

Calculate f(x(τ))

3. Stop when a certain criteria is met.

Hence, after the initialisation, in each iteration x is updated by moving a short distance

scaled by α in the direction of the negative of the gradient, i.e. the direction of the

steepest descent.

2.4.4 Stopping Criteria

The stopping criteria of the algorithm varies according to the nature of the problem

and the accuracy of the results that is required. One natural choice for the stopping

criteria is to stop when ||∇f(x(τ))||2 < ε, where ε is some threshold, typically a very

small number. ||.||2 is the L2-norm. This stopping criteria refers to when the rate of the

greatest decrease becomes very small causing only very small change or none whatsoever

to the value of f(x(τ)) in consequent iterations. Another possible choice for the stopping

criteria is ||f(x(τ))−f(x(τ−1))||2 < ε. This means that the algorithm stops when the size

of the change of f(x(τ)) between consequent iterations is less that a specified threshold

ε. It is even possible to not specify any stopping criteria at all, and keep the algorithm

running as long as there is patience for it to run.

2.4.5 Convergence

The two necessary conditions for the convergence of the gradient descent algorithm to

the minimum (or at least a local minimum), is for the function f to be convex and

smooth, i.e. continuously differentiable (up to at least the second derivative). The

convergence of gradient descent follows from the following theorem:

Theorem:

Let f(x) be differentiable in Rn, and let the gradient of f(x) satisfy the Lipschitz

condition:

||∇f(x)−∇f(y)||2 ≤ L||x− y||2 (2.5)

Also, let f(x) be bounded below:

f(x) ≥ f∗ > −∞ (2.6)
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And let α satisfy the condition:

0 < α <
2

L
(2.7)

Then, in (2.4), the gradient tends to zero:

lim
τ→∞

∇f(x(τ)) = 0

And the function monotonically decreases:

f(x(τ)) ≤ f(x(τ−1))

The proof of this theorem can be found in Appendix A.

Although the theorem above suggests that the smoothness and convexity of the objective

function are important conditions for the convergence of the gradient descent algorithm,

in practice, the algorithm may converge even if these conditions are violated. However,

in this case an absolute minimum is not guaranteed, but a ”very good” local minimum

is attainable.

2.5 Logistic Regression

2.5.1 Motivation

Linear regression is very useful in predicting a continuous response. However, it is very

limited when it comes to classification problems, as its output is not restricted to the

interval (0, 1), even if the observed values of the response are binary. This means that

its output cannot be interpreted as a probability. An intuitive way to circumvent this,

is to map the output of linear regression to the interval (0, 1) [26]. This gives rise to

Logistic Regression.

2.5.2 The Sigmoid Function

Consider the function g:

g : R→ (0, 1)

g(x) =
1

1 + e−x

This function is called the logistic sigmoid function, and has the property that its output

always lies in the interval (0, 1). Figure 2.1 shows the plot of the sigmoid function.
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Figure 2.1: A graph of the sigmoid function.

2.5.3 Formulation

The sigmoid function can be used to map the output of linear regression to the interval

(0, 1), where one can perform two-class classification by specifying a probability threshold

above which the subject will be allocated to a certain class, and below which the subject

will be allocated to the other. Hence, for logistic regression with a feature vector X =

(X1, X2, . . . , Xp), the hypothesis is [1]:

p(X) = P(Y = 1|X) = g(β0 + β1X1 + · · ·+ βpXp) (2.8)

In other words, the probability that the observation belongs to class Y = 1 is the sigmoid

of the output of the linear regression on the feature vector X.

2.5.4 The Machine Learning Formulation

The hypothesis (2.8) yields the following hypothesis function:

hβ(x) =
1

1 + e−(β0+β1x1+···+βpxp)
(2.9)

Note that, due to the nature of classification problems, the square distance between the

hypothesis function hβ(x) and the label y cannot be used as a as cost function, because

this will yield a non-convex function. An more suitable alternative to use in classification
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problems, is to score the cost of misclassification for each known observation. One can

do this using the following function:

m : (0, 1)× {0, 1} → R

m(hβ(x), y) =

{
− log(hβ(x)) if y = 1

− log(1− hβ(x)) if y = 0

Another formulation of m is:

m(hβ(x), y) = −y log(hβ(x))− (1− y) log(1− hβ(x))

This function is often referred to as the cross-entropy function. Hence, m(hβ(x), y) can

be used as a cost function.

Having defined a convex cost function, it is now possible to derive the total cost:

C(β) =

n∑
i=1

m(hβ(x), y)

To find the optimal parameter vector β̂ = (β̂0, β̂1, . . . , β̂p) for logistic regression, it is

possible to solve the minimisation problem arg min
β

C(β) using gradient descent (2.4).

2.6 Artificial Neural Networks

2.6.1 Motivation

Artificial Neural Networks are a family of machine learning models that can learn from

high dimensional data. Artificial neural networks attempt to mimic the behaviour of the

neurons in the brain. They are complex computational models that assume a non-linear

relationship between their inputs and their outputs. A neural network consists of an

input layer, zero or more hidden layers and an output layer. Each layer applies a function

called an activation function, on a weighted subset of the neurons from another layer.

If there are no feedback loops between the layers of the network, the network is called

an Feed-Forward Network. However, if some layers in the network take inputs from

consequent layers in the same network, the network is then called a Recurrent Neural

Network. Note that this dissertation is not concerned with recurrent neural networks;

hence, the theory presented in this chapter will only consider feed-forward networks. A

network is said to be fully-connected, if all the neurons in each layer are connected to all

the neurons in the next layer.
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2.6.2 Logistic Regression Revisited

A good start to motivate the theory of neural networks, is to consider logistic regres-

sion. A logistic regression model of p features can be represented by the graph in Figure

2.2. The neural network representing logistic regression in the figure, takes x1, x2, . . . , xp

as inputs, in addition to the +1 term, called the bias term, which corresponds to the

intercept term in logistic regression. These inputs form the first layer of the network,

the Input Layer. The weights on the directed arrows leading to the Output Layer are

the coefficients of logistic regression, which act as the parameters of the model. Hence,

the inputs in the first layer are weighted then fed into the output layer, which applies a

sigmoid activation function g(z) on the sum of the weighted inputs. Hence, the hypoth-

esis function for this neural network is exactly the same as the hypothesis function for

logistic regression (2.9), introduced in Section 2.5.4. Furthermore, the cost function for

this neural network is the cross-entropy function, again the same as the cost function

for standard logistic regression. Hence, this leads to a total cost of:

C(β) =

n∑
i=1

m(hβ(x), y)

Where m is the cross-entropy function.

Figure 2.2: A neural network representation of logistic regression.
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2.6.3 Notation

Before attempting to derive any results about artificial neural networks, it is beneficial

to introduce some notation. Consider a neural network of L+ 1 layers each containing

Nl neurons for l ∈ {0, 1, . . . , L}. This network takes p features as inputs; hence, N0 = p

corresponding to the p inputs. The first hidden layer of this network contains N1 neurons

each taking as input the p neurons from the input layer, in addition to an extra bias

unit corresponding to the intercept. In general, any layer l consists of Nl neurons, each

taking Nl−1 + 1 inputs corresponding to the neurons in the previous layer plus a bias

unit. The output layer of the network produces NL outputs. For this neural network,

the following are defined:

• W (l)
ij is the weight associated with the connection going from the ith neuron in the

layer l−1 to the jth neuron in the layer l, for i ∈ {1, 2, . . . , Nl−1}, j ∈ {1, 2, . . . , Nl}
and l ∈ {1, 2, . . . , L}.

• b(l)j is the weight associated with the bias unit going to the jth neuron in the layer

l, for j ∈ {1, 2, . . . , Nl} and l ∈ {1, 2, . . . , L}.

• f (l)(z) is the activation function in the neurons of the layer l for l ∈ {1, 2, . . . , L}.
Note that, the hypothesis function of a neural network is h(z) = f (L)(z).

• z(l)j =
∑Nl−1

i=1 W
(l)
ij a

(l)
i + b

(l)
j is the weighted sum of the output of the neurons

from layer l − 1 plus the bias term, all going to the jth neuron in the layer l,

for j ∈ {1, 2, . . . , Nl} and l ∈ {1, 2, . . . , L}. Note that, for the first hidden layer

z
(1)
j =

∑p
i=1W

(1)
ij xi + b

(1)
j , where x1, x2, . . . , xp are the p input features.

• a(l)j = f (l)(z
(l)
j ) is the activation of z

(l)
j , i.e. the output of the jth neuron in the

layer l, for j ∈ {1, 2, . . . , Nl} and l ∈ {1, 2, . . . , L}.
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2.6.4 Forward-Propagation

From the definitions in Section 2.6.3, one can construct a set of equations that describes

a general neural network as follows:

z
(1)
j =

p∑
i=1

W
(1)
ij xi + b

(1)
j for j ∈ {1, 2, . . . , N1}

a
(1)
j = f (1)(z

(1)
j ) for j ∈ {1, 2, . . . , N1}

z
(2)
j =

N1∑
i=1

W
(2)
ij a

(1)
i + b

(2)
j for j ∈ {1, 2, . . . , N2}

a
(2)
j = f (2)(z

(2)
j ) for j ∈ {1, 2, . . . , N2}

...

z
(L)
j =

NL−1∑
i=1

W
(L)
ij a

(L−1)
i + b

(L)
j for j ∈ {1, 2, . . . , NL}

a
(L)
j = hj(z

(L)
j ) = f (L)(z

(L)
j ) for j ∈ {1, 2, . . . , NL}

The equations above describe what is called the forward propagation process of the

neural network. These equations define the relationship between the input features

x1, x2, . . . , xp and the outputs of the neural network h1, h2, . . . , hNL . Figure 2.3, is an

illustration of the structure of the forward propagation of a feed-forward network.
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(𝑙)

𝑎𝑁𝑙
(𝑙)

Layer 𝑙 Layer 𝑙 + 1

𝑊𝑁𝑙1

𝑊11

𝑏𝑗

𝑓 𝑙+1 (𝑧1
𝑙+1

)

𝑓 𝑙+1 (𝑧𝑁𝑙+1
𝑙+1

)

𝑎𝑖
(𝑙)

𝑓 𝑙+1 (𝑧𝑗
𝑙+1

)

𝑊𝑖1
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𝑏𝑁𝑙+1

𝑊1𝑗

𝑊𝑖𝑗

𝑊𝑁𝑙𝑗

𝑊1𝑁𝑙+1

𝑊𝑖𝑁𝑙+1

𝑊𝑁𝑙𝑁𝑙+1

Figure 2.3: An illustration of two layers of a fully-connected network.
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2.6.5 Another Formulation

It is possible to re-formulate the forward propagation equations using linear algebra to

simplify the notation and to make the equations easier for manipulation. Hence, the

following are defined:

• W(l) is anNl×Nl−1 matrix representing the weights associated with all connections

between layer l − 1 and layer l.

• b(l) is an Nl × 1 column vector representing all the weights associated with the

bias unit connecting to layer l.

• z(l) = W(l)a(l−1) + b(l) is an Nl × 1 column vector representing the weighted sum

of the activated neurons from the layer l − 1 plus the bias term.

• a(l) = f (l)(z(l)) is an Nl×1 column vector representing the activation of the neurons

in the layer l.

Consequently, it is possible to rewrite the forward propagation equations for the neural

network as follows:

z(1) = W(1)x + b(1)

a(1) = f (1)(z(1))

z(2) = W(2)a(1) + b(2)

a(2) = f (2)(z(2))

...

z(L) = W(L)a(L−1) + b(L)

a(L) = hW,b(z(L)) = f (L)(z(L)) (2.10)

The equation (2.10) defines the hypothesis function for a neural network hW,b(z(L)) =

f (L)(z(L)), where W and b represent the parameters W(1),W(2), . . . ,W(L) and b(1),b(2), . . . ,b(L).

From the hypothesis function, one can define a total cost for the neural network:

C(W,b) =

n∑
i=1

c(hW,b(z
(L)
i ),yi) (2.11)

Where c(.) is a cost function, and yi is the label vector for the ith training example for

i ∈ {1, 2, . . . , n}, where n is the number of training samples. To find the optimal choice

for the parameters W and b the following minimisation problem must be solved:

arg min
W,b

C(W,b)
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This problem can be solved using gradient descent as before; however, due to the com-

plexity of the cost function, it is not easy to obtain its partial derivatives for the gradient

descent task. Fortunately, there exists an algorithm called the Backward Propagation

of Errors that exploits the chain rule, in order to simplify the task of obtaining the

derivatives.

2.6.6 Backward Propagation of Errors

The backward propagation of errors algorithm makes use of the chain rule to derive the

partial derivatives of the cost function with respect to all the parameters. Let,

δ(l) :=
δC

δz(l)

Hence,

δ(l−1) =
δC

δz(l−1)

=
δC

δz(l)
δz(l)

δz(l−1)
by the chain rule

= δ(l)
δ(W(l)a(l−1) + b(l))

δz(l−1)

= δ(l)
δ(W(l)f (l−1)(z(l−1)) + b(l))

δz(l−1)

= (W(l)Tδ(l)) ◦ f ′(l−1)(z(l−1)) (2.12)

Hence, the value of δ(l−1) can be calculated from the δ(l), for l ∈ {1, 2, . . . , L}. This

means that by obtaining the value of δ(L), all other values δ(l) can be obtained.

δ(L) =
δC

δz(L)

=
δC

δa(L)

δa(L)

δz(L)

= ∇aC ◦ f ′(L)(z(L)) (2.13)
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Working backwards from the total cost function:

δC

δW(l)
=

δC

δa(l)

δa(l)

δW(l)

=
δC

δa(l)

δa(l)

δz(l)
δz(l)

δW(l)

= δ(l)
δz(l)

δW(l)

= δ(l)
δ(W(l)a(l−1) + b(l))

δW(l)

= δ(l)a(l−1)T (2.14)

Similarly,

δC

δb(l)
=

δC

δa(l)

δa(l)

δb(l)

=
δC

δa(l)

δa(l)

δz(l)
δz(l)

δb(l)

= δ(l)
δz(l)

δb(l)

= δ(l)
δ(W(l)a(l−1) + b(l))

δb(l)

= δ(l) (2.15)

Hence, the back-propagation algorithm, specified by equations (2.12), (2.13), (2.14) and

(2.15), provides a simple algorithm for computing the partial derivatives of the total

cost, allowing the network to be trained by gradient descent.

2.7 Convolutional Neural Networks

Convolutional Neural Networks are a type of feed-forward neural networks that are de-

signed to enable learning from multi-dimensional data, such as images, with minimal

preprocessing. They are able to learn directly from the raw data while preserving its

structure throughout the layers of the network. A convolutional neural network usu-

ally consists of one or more convolutional layers with optional sub-sampling layers in

between. The convolutional layers are often followed by fully-connected layers, but this

is not mandatory. Hence, a convolutional neural network can be entirely constructed by

convolutional layers only.
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2.7.1 Convolutional Layers

In a convolutional neural network, a convolutional layer is represented by a 3-dimensional

array of neurons. Each neuron in the convolutional layer receives input from a set of

neurons in a ”small neighbourhood” in the previous layer [27]. In a convolutional layer,

a 2-dimensional plane of neurons constitute a feature map; hence, a convolutional layer

of size k ×m× n, has k feature maps, each of size m× n. The ”small neighbourhood”

that the convolutional layer receives neurons from as inputs, is defined by a filter. A

filter is a 2-dimensional array of a fixed size r × s that is convolved with the feature

maps in the previous layer to produce the inputs of the convolutional layer. In other

words, a filter identifies patches of neurons of size r × s in an input feature map that

are weighted and fed into the convolutional layer to contribute to a single neuron in its

output feature map. The weights associated with the patches are exactly the same for

all other patches the same input feature map; however, these weights can be different for

other input feature maps. The weights can also be different for different output feature

maps.

2.7.2 Convolution

To understand convolutional layers more clearly, it is important to recall the definition

of a convolution for discrete 2-dimensional functions. A convolution on two function f

and g, denoted by h = f ∗ g is defined as follows:

h(i, j) = (f ∗ g)(i, j) =

+∞∑
u=−∞

+∞∑
v=−∞

f(u, v)g(i− u, j − v) (2.16)

Hence, the feature maps in a convolutional layer can be specified by the convolution of

filters with the feature maps of the previous layer. Consider the kth feature map, a
(l)
k ,

of size m×n in layer l. This feature map can be represented as a function of the indices

of its neurons:

a
(l)
k (i, j) = a

(l)
kij for i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}

That is the neuron in position (i, j) in feature map k of layer l. Similarly a filter W
(l)
k

of size r × s, associated with the kth feature map in layer l, can be represented as a

function of the indices of the weights:

W
(l)
k (i, j) = W

(l)
kij for i ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , s}
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That is the weight in position (i, j) in the filter associated with the kth feature map

in layer l. It is possible to define the convolution of the feature map with the filter as

follows:

h(i, j) = (a ∗W )
(l)
k (i, j)

=
r∑

u=1

s∑
v=1

a
(l)
k (i+ u− 1, j + v − 1)W

(l)
k (i, j) (2.17)

for i ∈ {1, 2, . . . , n+ 1− r}, j ∈ {1, 2, . . . ,m+ 1− s}

Notice that the expression in (2.17) is slightly different from (2.16). The new expression is

sometimes referred to as the cross-correlation, which is a type of mathematical operations

similar to the convolution operation. Hence, for the sake of simplicity, it will be referred

to as a convolution throughout the rest of this dissertation.

2.7.3 Froward Propagation of Convolutional Layers

Having defined, the convolution between a filter and a feature map, it is now possible to

specify the forward propagation equations of a convolutional layer. However, it is first

helpful to define some notations:

• Kl is the number of feature maps in layer l.

• a(l)k (i, j) is a function representing the kth feature map in layer l.

• Ml ×Nl is the size of the feature maps in layer l.

• W (l)
kk′(i, j) is the filter associated with the convolution with kth feature map in layer

l, going to the k′th feature map in layer l + 1. The filter specifies the weights.

• Rl × Sl, is the size of the filters associated with the layer l.

Hence, a convolutional layer is specified by the following forward propagation equations:

z
(l+1)
k′ (i, j) =

Kl∑
k=1

(a ∗Wk′)
(l)
k + bk′

a
(l+1)
k′ (i, j) = f (l+1)(z

(l+1)
k′ )

for k′ ∈ {1, 2, . . . ,Kl+1},

i ∈ {1, 2, . . . ,Ml + 1−Rl = Ml+1},

j ∈ {1, 2, . . . , Nl + 1− Sl = Nl+1}



Dissertation 23

The partial derivatives of the total cost with respect to the parameters of the convolu-

tional layers, can be easily calculated by applying the backward propagation of errors

algorithm.

2.7.4 Illustration

Consider the illustration in Figure 2.4. The figure shows two convolutional layers l and

l+1 consisting of 4 and 2 feature maps respectively. The neurons in each feature map of

layer l+ 1, are computed from the sum of the convolutions of 4 2× 2 filters, containing

the weights, with the 4 feature maps of layer l. Hence, all the neurons in a single feature

map in layer l + 1 share the same set of weights; however, these weights are different

from those of the neurons in the other feature map. Hence, for each feature map in layer

l + 1, there is a set of 16 distinct weight parameters, corresponding to 4 filters of size

of 2 × 2 and 4 input feature maps. There are 32 distinct weight parameters in total in

layer l + 1.

Figure 2.4: An illustration of a convolutional layer [28] (edited).

2.7.5 Sub-Sampling Layers

Sub-sampling layers usually follow convolutional layers. Sub-sampling layers aim to

reduce the size of the input maps from a convolutional layer. The reason behind this,

is that convolutional layers produce a very large number of features, hence, computing

consequent layers from these features can be very computationally expensive. Moreover,

the large number of features produced by multiple convolutional layers can cause the
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network to over-fit (see Section 2.8.2). Consequently, applying a function that down

samples the feature maps from convolutional layers, can help alleviate these problems.

A sub-sampling layer, performs a sampling operation on a patch of neurons in the input

feature maps, this patch identifies a pool of neurons to be sub-sampled. Hence, a sub-

sampling layer can be specified by the following equation:

a
(l+1)
k (i, j) = down

u,v∈pij
(a

(l)
k (u, v))

for pij ∈ P (l)
k ,

k ∈ {1, 2, . . . ,Kl = K(l+1)}

i ∈ {1, 2, . . . ,Ml+1 = bMl

s
c},

j ∈ {1, 2, . . . , Nl+1 = bNl

s
c}

Where down(.) is some sub-sampling function, such as max, min, mean, etc., and P lk is

the set of all pools of size s × s in feature map k in layer l. Note that, sub-sampling

layers do not contain any parameters.

2.8 Practical Considerations

2.8.1 Cross-Validation

A very common practice in machine learning is to split the available dataset into two

parts, a training dataset and a testing (or validation) dataset. This is done so that the

model can be tested on a different set of data than the one used to fit it. Hence, the

training set is used to fit the model and the testing set is used to check its performance.

The splitting is usually done after randomising the original dataset. Typical splitting

ratios for most practical applications are around 70:30 to 80:20 training samples to

testing samples.

2.8.2 Over-Fitting and Regularisation

Over-fitting occurs when the machine learning model learns to fit the training data very

well, but fails to generalise on different sets of data. This happens because the model

learns to describes the noise in the training data and fails to capture the underlying

relationship between the input features and their labels [1]. Over-fitting usually occurs

when the model is too complex, i.e. the number of parameters is large in comparison to

the number of training examples. To alleviate over-fitting, one can follow one or both

of the following suggestions:
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• Try to reduce the complexity of the model by either using more training examples,

or removing some of the features in the available data thus reducing the number

of parameters.

• Attempt to penalise the size of the parameters by adding regularisation. Regular-

isation can be added to a machine learning model by incorporating the penalty

in the total cost. Consider as an example the total cost function for an artificial

neural network:

C(W,b) =
n∑
i=1

c(hW,b(z
(L)
i ),yi)

An easy way to penalise the size of W and b, is simply to add a multiple of them

to the total cost:

Cλ(W,b) =
n∑
i=1

c(hW,b(z
(L)
i ),yi) + λ · sum(W) + λ · sum(b)

Where λ is a regularisation parameter that refers to the size of the penalty on

the parameters W and b, and ’sum’ is a function referring to the element-wise

summation of all the elements of W and b. Since fitting the model requires the

minimisation of Cλ(W,b), adding these penalty terms encourages the parameters

to be as small as possible.

2.8.3 The Learning Rate

The learning rate α in the gradient descent algorithm is usually chosen manually. Hence,

it is beneficial to introduce some guidelines to help in this choice. Inequality (A.3

in Appendix A) gives an upper-bound on the size of the learning rate, below which

the gradient descent algorithm is guaranteed to converge for smooth convex functions.

Consequently, exceeding this bound might cause the algorithm to diverge. On the other

hand, if the learning rate is very small, then the algorithm might take very long to

converge to the minimum. Figures 2.5 and 2.6 illustrates these two problems. The

choice of the learning rate must attempt to avoid these two pitfalls.

Note that, in the gradient descent algorithm, the closer the value of the update is to

the minimum, the smaller the learning rate must be in the next iteration in order to

improve the result. Hence, it is a common practice to decrease the learning rate, once

the algorithm reaches a value near the minimum, in order to improve the result. The

is often referred to as fine tuning. Alternatively, one can set the learning rate to be a

decreasing function of the number of iterations. Hence, when the algorithm reaches a

value near the minimum, the learning rate will have already become small enough to

perform the fine tuning.
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Figure 2.5: Large learning rate
causes divergence [29].

Figure 2.6: Small learning rate
causes slow convergence [29].

2.8.4 Mini-Batch Gradient Descent

Fitting a machine learning model on a set of training data requires recalculating the

value of the partial derivatives of the cost function in every iteration of the gradient

descent algorithm. Consequently, if the number of training examples is very large, this

calculation becomes very computationally expensive. To avoid this, an extension of the

gradient descent algorithm called the Stochastic Gradient Descent method, is often used

when the training dataset is large. Instead of calculating the derivatives of the total

cost function in each iteration, stochastic gradient descent estimates the gradient by

calculating the expected value of the partial derivatives from a single training example

[30]. Hence, the algorithm becomes:

1. Initialise x0.

2. For τ = 1, 2, . . . do:

x(τ) = x(τ−1) − αE(∇f(x(τ−1))) (2.18)

Calculate f(x(τ))

3. Stop when a certain criteria is met.

For instance in the case of the weights in artificial neural networks, the update step

(2.18) becomes:

W(τ) = W(τ−1) − αE(∇C(W,b))

= W(τ−1) − αE(∇
n∑
i=1

c(hW,b(z
(L)
i ),yi)) by (2.11)

= W(τ−1) − α∇c(hW,b(z
(L)
i ),yi) for a random i ∈ {1, 2, . . . , n}

Stochastic gradient descent runs much faster than normal gradient descent; however, it

might take longer to converge. Thus, a compromise between normal gradient descent
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and stochastic gradient descent can be used to combat the computational inefficiency of

ordinary gradient descent and the slow convergence of stochastic gradient descent at the

same time. This compromise consists of an optimisation method called the Mini-Batch

Gradient Descent. The idea of mini-batch gradient descent is to estimate the gradient

of the cost function from b points from the training dataset, instead of using the whole

dataset, like in normal gradient descent, or a single data point, as in stochastic gradient

descent. Hence, continuing with the weights of the artificial neural network example,

the update step (2.18) becomes:

W(τ) = W(τ−1) − α∇(

b∑
i=1

c(hW,b(z
(L)
i ),yi))

2.8.5 Nesterov’s Accelerated Gradient Descent

Gradient descent is normally a very efficient algorithm, as it does not take many itera-

tions to converge; however, naturally, the higher the complexity of the objective function

is, the greater is the time required for the gradient descent algorithm to converge. One

way to speed the optimisation process is to use a version of the gradient descent al-

gorithm called Nesterov’s Accelerated Gradient Descent (NAG). The NAG algorithm

converges faster than the normal gradient descent method. The NAG algorithm is given

below [31]:

1. Initialise x(0),ν(0), µ.

2. For τ = 0, 1, . . . do:

ν(τ+1) = µν(τ) − α∇f(x(τ) + µν(τ))

x(τ+1) = x(τ) + ν(τ+1)

Calculate f(x(τ+1))

3. Stop when a certain criteria is met.

Where ν is a velocity vector and µ is a momentum coefficient. The NAG algorithm

borrows from the idea of momentum in physics. The principle behind the NAG algorithm

and the momentum method, is to iteratively calculate a velocity vector that follows the

direction of the persistent reduction in the objective function. Hence, in each update of

x, the velocity vector ν drags the value of x towards the direction of the reduction of

the gradient. The NAG algorithm achieves convergence at a rate of O( 1
T 2 ), compared

to a rate of O( 1
T ) for the ordinary gradient descent algorithm [31]. Note that, the NAG
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algorithm can be combined with the mini-batch gradient descent algorithm to further

improve the training performance.

2.8.6 Dropout

Because of the large number of parameters in artificial neural networks, they are more

prone to over-fitting than other machine learning algorithms. Beside adding regular-

isation to the cost function, there is another method to combat over-fitting in neural

networks. This method involves adding dropout to the hidden layers of the network.

The idea behind dropout is to randomly remove units (neurons and their connections)

from the hidden layers of the network during the training phase to prevent these units

from adapting too much to the training data [32]. Dropout can be added to the network

by altering the forward propagation equations of the layers in which dropout is to be

added. This is done as follows [32]:

r
(l−1)
j ∼ Bernoulli(p), for j ∈ {1, 2, . . . , Nl−1}

r(l−1) = (r
(l−1)
1 , r

(l−1)
2 , . . . , r

(l−1)
Nl−1

)T

ã(l−1) = r(l−1) ◦ a(l−1)

z(l) = W(l)ã(l−1) + b(l)

a(l) = f (l)(z(l))

Note that, dropout is only done in the training phase; hence, during the testing phase

the weights of the dropped units are approximated by averaging out across the thinned

network. Having dropout layers in a network not only reduces over-fitting, but also

improves the training performance of the network, as the number of parameters are

reduced.

2.8.7 Activation Functions

There are various choices of activation functions that could be used in feed-forward and

convolutional neural networks. A network can even have different activation functions

in different layers. A selection of the most common choices of activation functions and

their properties in relation to neural networks is given below:

• The Identity Function

The identity function is simply f(x) = x. The identity function is a linear mapping;

hence, it does not add complexity to the network. It is often used in the final layer

to produce the output; however, it could be used in the hidden layers as well.
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• The Sigmoid Function

The sigmoid function f(x) = 1
1+e−βx

, where β is a slope coefficient, is a non-linear

mapping that maps its input to the interval [0, 1]. The sigmoid increases the

non-linear properties of the neural network, thus it is often used throughout the

hidden layers as well as the output layer. It is often used as a hypothesis function

in the output layer for 2-class classification problems as its output can signify the

probability of belonging to one of the two classes.

• The Hyperbolic Tangent Function

The hyperbolic tangent function f(x) = tanh(x) = ex−e−x
ex+e−x , maps its input to the

interval [−1, 1]. The hyperbolic tangent is a non-linear function, that is often used

throughout the layers of the neural network especially in regression problems.

• Rectified Linear Units (ReLU)

The Rectified Linear Units is defined as:

f(x) = ReLU(x) = max(0, x)

The Rectified Linear Units is used to increase the non-linear properties of the

network. It resembles the biological mechanism of the neurons, as neurons in the

brain either fire up (when x > 0) or stay dormant (when x < 0). It has an

advantage over the sigmoid and the hyperbolic tangent functions, as it helps speed

up the training of the network.

• The Softmax Function

The softmax function is a multivariate function, defined as follows:

f(x1, x2, . . . , xn) = softmax(x1, x2, . . . , xn) =

(
ex1
n∑
i=1

exi
,
ex2
n∑
i=1

exi
, . . . ,

exn

n∑
i=1

exi

)

The softmax function maps its inputs to the interval [0, 1] such that the sum of

all its outputs equals 1. Hence, it is often used in the final layer of an artificial

neural network (as a hypothesis function), for multi-class classification problems,

because its outputs can be interpreted as probabilities for mutually exclusive events

(classes).

2.8.8 The Cost Function

The choice of the cost function in fully-connected feed-forward and convolutional neural

networks, depend primarily on the nature of the learning problem. Since this dissertation
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is only concerned with supervised regression and classification problems, the following

will give a short overview for the choice of cost function for these problems exclusively:

• Regression Problems

A popular choice for the cost function in regression problems, is the square of the

L2-norm of the difference between a label and the value of the hypothesis function

corresponding to this label (i.e. the squared distance):

c(hW,b(z
(L)
i ),yi) = ||hW,b(z

(L)
i )− yi||22

The goal in regression problems is to predict the values of a set of continuous

variables based on a set of input feature variables. Hence, this cost function

insures that the deviation of predictions from the true value is penalised.

• Classification Problems

In classification problems, a cross-entropy function is usually used as a cost func-

tion:

c(hW,b(z
(L)
i ),yi) = −y log(hβ(x))− (1− y) log(1− hβ(x))

The cross-entropy function penalises misclassification, making it a desirable choice

in classification problems.



Chapter 3

Gender Prediction from Facial

Images

3.1 Introduction

The problem of detecting a subject’s gender from their face has been studied by many

researchers around the world. Many of them, proposed complex algorithms that are

able to perform this task. For example, Shirkey and Gupta [33], proposed an algorithm

that detects the facial features of the subject and compares them to a database of

”Male versus Female” features, making probabilistic conclusions about the subject’s

gender, based on these features. However, this approach is fairly complex and requires

building databases of Male and Female features, which might be expensive to compile.

An alternative approach to this method, is to use neural networks to try to learn the

facial features of each gender and classify the subject accordingly. Hence, this chapter

introduces and compares three network architectures that are used to perform gender

classification.

3.2 Methodology

3.2.1 Training and Test Data

The data used in this task comes from the Facial Recognition Technology (FERET)

Database [34]. The FERET Database contains facial photographs of 994 different sub-

jects, with different facial orientations and facial expressions for each subject. The

FERET Database also contains background information about the subjects, labelled
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as Ground Truths. The ground truths files contain information such as, gender, date

of birth, date photographed, etc. Hence, the gender information of the subjects were

extracted from the these files, and were coded as binary digits, as labels for the image

data. The photographs of the subjects in the dataset were all wide shots. Accordingly,

before they were loaded into computer memory, they were cropped using an open-source

software called SNFaceCrop. Consequently, the cropped facial images were loaded as

8-bit grayscale images, resized to 50× 50 pixels and labelled according to the subject’s

gender. Finally, the labelled images were split into training and testing datasets ac-

cording to the identities of their subjects, where 100 random subjects where chosen as

testing data and the rest were used as training data.

3.2.2 Building the Neural Networks

To build the neural networks, an edited version of a Python implementation of artificial

neural networks, developed by Dr Ben Graham, was used. This implementation uses

a Python library called Theano [35] that can manipulate the layers of the network

efficiently. A Python script was coded to build three different gender classification

neural networks, using this implementation. These networks are classification networks;

hence, the cross-entropy function was used as the cost function for this problem. The

architectures of the networks, along with a summary of their performances are specified

in the consequent sections.

3.3 Gender Classification Network 1 (GCN1)

3.3.1 Architecture

The architecture of GCN1 is fairly deep, consisting of 6 hidden layers, in addition to the

input and the output layers (i.e. 8 layers in total). The structures of these layers are

specified below:

• The Input Layer: is the two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 20 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 50 feature maps.
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• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 4.

• The 5th Hidden Layer: reshapes the outputs of the previous layer to a one-

dimensional array.

• The 6th Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation.

• The Output Layer: is a single neuron layer with a sigmoid activation.

Note that since GCN1 contains two convolutional layers, it is considered a convolutional

neural network. Figure C.1 is a visual illustration of the architecture of the network.

3.3.2 Evaluation of the Results

Overall GCN1 managed to classify 92.6% of the testing data correctly. Hence, only 7.4%

of the testing samples were misclassified as female when in fact they were male, or as

male when in fact they were female. To see the results of the classification more clearly,

two bar-plot are produced in Figure 3.1. The first bar-plot shows the distribution of the

gender from the output of GCN1, while the second bar-plot shows the actual distribution

of the gender in the testing data. To examine the results further, a confusion matrix

was produced in Table 3.1.

Actual Gender
Male Female Total

Predicted Gender
Male 292 12 304
Female 25 171 196
Total 317 183 500

Table 3.1: Confusion matrix for the results of GCN1.

From Table 3.1, GCN1 classified 292 out of 317 males in the testing data correctly; that

is approximately 92.1% percent of males in the test set. For the females, GCN1 was

slightly more accurate, classifying 171 females out of 183 from the test data correctly;

that is an approximately 93.4% accuracy.
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Figure 3.1: Bar-Plots showing the distribution of the results of GCN1 versus the
actual distribution of gender in the testing data.

3.4 Gender Classification Network 2 (GCN2)

3.4.1 Architecture

GCN2 has a fairly shallow but wide fully-connected architecture, consisting of 5 hidden

layers in total. The structures of the layers are specified below:

• The Input Layer: is a one dimensional representation of the facial image.

• The 1st Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation.

• The 2nd Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation.

• The 3rd Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation.

• The Output Layer: is a single neuron layer with a sigmoid activation.

Figure C.2 is a visual illustration of the architecture of the network.
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3.4.2 Evaluation of the Results

For GCN2, the classification accuracy was 89.2%; hence, misclassifying 10.8% of the

testing data. The distribution of the gender from the output of GCN2 compared to

the actual distribution of the gender in the testing data can be seen in the bar-plots in

Figure 3.2. To further examine the output of GCN2, a confusion matrix is produced in

Table 3.2.

Figure 3.2: Bar-Plots showing the distribution of the results of GCN2 versus the
actual distribution of gender in the testing data.

Actual Gender
Male Female Total

Predicted Gender
Male 292 29 321
Female 25 154 179
Total 317 183 500

Table 3.2: Confusion matrix for the results of GCN2.

The confusion matrix (Table 3.2) suggests that, GCN2 classified 92.1% of the males in

the testing data correctly, while only classifying %84.1 of the females correctly. These

results imply that GCN2 is biased towards classifying samples as males; hence, it is not

as capable of recognising female features as well as GCN1.
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3.5 Gender Classification Network 3 (GCN3)

3.5.1 Architecture

GCN3 has a very similar architecture to GCN2. The only difference is that GCN3

employs dropout throughout its layers. The structures of the layers of GCN3 are specified

below:

• The Input Layer: is a one dimensional representation of the facial image, with

dropout applied at a probability of 0.2.

• The 1st Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 2nd Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 3rd Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The Output Layer: is a single neuron layer with a sigmoid activation.

Figure C.3 is a visual illustration of the architecture of the network.

3.5.2 Evaluation of the Results

The classification accuracy of GCN3 was 89%, misclassifying 11% of the testing data.

The distribution of the gender from the output of GCN3, in comparison to the actual

distribution of the gender in the testing set, is provided in the bar-plots in Figure 3.3.

A quick look at the bar-plots in Figure 3.3 reveals that GCN3 managed to predict the

proportion of males to females in the testing data accurately. However, this does not

mean that the predictions themselves were accurate. An examination of the prediction

performance of GCN3 can be done by referring to the confusion matrix in Table 3.3.

Actual Gender
Male Female Total

Predicted Gender
Male 290 28 318
Female 27 155 182
Total 317 183 500

Table 3.3: Confusion matrix for the results of GCN3.
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Figure 3.3: Bar-Plots showing the distribution of the results of GCN3 versus the
actual distribution of gender in the testing data.

From the confusion matrix (Table 3.3), GCN3 classified 91.5% of the males in the testing

data correctly, while only classifying 84.7% of the females correctly. These results suggest

that, like GCN2, GCN3 is biased towards classifying samples as males and is not as

capable of recognising female features as GCN1.

3.6 Comparison of the Networks

Table 3.4 provides a comparison between the three gender classification neural networks.

The table suggests that GCN1 with the convolutional architecture performs best overall.

Both GCN2 and GCN3, seem to be biased towards classifying males, as the female

classification accuracy for both is low compared to GCN1. GCN2 is able to classify

males more accurately than GCN3, while GCN3 is slightly more accurate in classifying

females than GCN2.

Network Type Overall Accuracy Male Accuracy Female Accuracy

GCN1 Convolutional 92.6% 92.1% 93.4%
GCN2 Fully-Connected 89.2% 92.1% 84.1%
GCN3 Fully-Connected 89.0% 91.4% 84.7%

Table 3.4: Comparison table for the gender classification networks.



Chapter 4

Age Prediction from Facial

Images

4.1 Introduction

Unlike other problems concerning facial images, such as gender prediction, facial recog-

nition and facial keypoints detection, the problem of age prediction has not been studied

extensively. Only a handful of literature exists on this problem, most of which do utilise

artificial neural networks. For example, a pioneering method for age classification pro-

posed by Kwon and da Vitoria Lobo [36], extracts facial features like eyes, mouth, ears,

etc. from the images, calculates the ratios between these features and classifies the age

into three groups based on the ratios. Few other methods for age estimation utilise

artificial neural networks indirectly. For instance, Fukai, et. al. [37], propose a method

in which features are extracted from the facial images and are fed into a type of unsu-

pervised artificial neural networks called Self Organising Maps (SOMs) to produce an

estimate of the age. Another method proposed by Thakur and Verma [38], attempts to

extract parameters representing facial features and wrinkles from the facial images and

then feed these parameters into a feed-forward neural network, classifying the age into

four groups. All of the methods mentioned earlier require a great deal of pre-processing,

which could prove to be extremely cumbersome. Hence, this chapter aims to intro-

duce an efficient method for age prediction that requires minimum pre-processing, by

exploiting the power of convolutional neural networks.
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4.2 Methodology

4.2.1 Training and Test Data

For the age prediction problem, the same dataset, FERET, was used as in the gender

classification problem (see Section 3.2.1). Again, the images in the this dataset were

cropped, loaded as 8-bit grayscale images, resized to 50×50 pixels and labelled according

to the age. The age labels were constructed by extracting the year of birth of the subjects

and the year their photographs were taken from the ground truths files, and then finding

the difference between the two dates to infer the age. Rather than coding the age as a

single integer, it was coded as a string of binary digits. This allows for a probabilistic

interpretation for the output of the neural network. Consider the random variable X

representing the subject’s age. X can be redefined as:

X = IX≥1 + IX≥2 + · · ·+ IX≥100

For ages between 0 and 100, where I is an indicator function. Hence, the output of the

network E(X) can be defined as:

E(X) = E(IX≥1 + IX≥2 + · · ·+ IX≥100)

= P(X ≥ 1) + P(X ≥ 2) + · · ·+ P(X ≥ 100)

Consequently, coding the age labels as strings of binary digits (e.g. (1, 1, . . . , 1, 0, 0, . . . , 0)),

allows for this probabilistic interpretation.

Note that, for this problem, only images with frontal facial orientations were used. Thus,

images in which the subjects were facing sideways or had their heads tilted were dis-

carded. Finally, the remaining images were split into a training dataset and a testing

dataset according to the identities of their subjects, where 100 random subjects where

chosen as testing data and the rest were used as training data.

4.2.2 Building the Neural Networks

The same neural networks implementation seen in Section 3.2.2 was used to build three

different age prediction networks. Since age prediction is a regression problem, these

networks were assigned a square distance cost function. The architectures of these

networks, along with a summary of their performances are specified in the consequent

sections.
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4.3 Age Prediction Network 1 (APN1)

4.3.1 Architecture

APN1 is a fully-connected network, consisting of 5 layers in total with dropout utilised

throughout its layers. The specifications of the layers of this network are provided below:

• The Input Layer: is a one dimensional representation of the facial image, with

dropout applied at a probability of 0.2.

• The 1st Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 2nd Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 3rd Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The Output Layer: is a 100 neurons layer with a sigmoid activation.

Figure C.4 in Appendix C provides an illustration of the architecture of this network.

4.3.2 Evaluation of the Results

To understand the distribution of the age values that were predicted by APN1 in com-

parison to the real age values, an enhanced scatter-plot of the predicted age against

the real age was produced in Figure 4.1. The box-plots on the side of the axes of the

scatter-plot, suggest that the range of the predicted age values is much narrower than

the range of the real age data, suggesting that APN1 fails to capture the range of ages

present in the testing data. To test how well APN1 performs age prediction, a linear

regression model was built regressing the predicted age values on the real age values.

The linear model is represented by the solid red line in the scatter-plot in Figure 4.1.

Clearly, the linear model deviates significantly from the ideal case, represented by the

blue dashed line, in which the predicted age exactly equals the real age (i.e. line with

slope 1 and intercept 0). This suggests that APN1 performs the age prediction task

poorly.
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Figure 4.1: Enhanced scatter-plot of the predicted age against the real age for APN1.

4.4 Age Prediction Network 2 (APN2)

4.4.1 Architecture

APN2 has a convolutional architecture with a single convolutional layer and a single sub-

sampling layer. In addition, APN2 contains two fully-connected layers, plus an input

and an output layer. The specifications of the layers of this network are provided below:

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 20 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: reshapes the outputs of the previous layer to a one-

dimensional array.

• The 4th Hidden Layer: is a fully-connected layer containing 300 neurons with

a ReLu activation.

• The 5th Hidden Layer: is a fully-connected layer containing 300 neurons with

a ReLu activation.
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• The Output Layer: is a 100 neurons layer with a sigmoid activation.

Figure C.5 in Appendix C provides an illustration of the architecture of the network.

4.4.2 Evaluation of the Results

The results of APN2 are summarised in the enhanced scatter-plot in Figure 4.2. The

box-plots on the axes of the scatter-plot suggest that both the predicted age data and

the real age data have similar ranges, with the range of the predicted age only a little

narrower than that of the real age. Overall, the distributions seem to be quite similar,

suggesting that APN2 performs the age prediction for a wide range of ages. To test

the accuracy of the predictions of APN2, a linear regression model of the predicted age

against the real age was built. The linear model is represented by the solid red line in

the scatter-plot in Figure 4.2. The plot shows that the linear model is fairly close the

ideal case, represented by the blue dashed line, suggesting that APN2 is able to predict

the ages accurately.

Figure 4.2: Enhanced scatter-plot of the predicted age against the real age for APN2.
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4.5 Age Prediction Network 3 (APN3)

4.5.1 Architecture

APN3 has a convolutional architecture, consisting of 8 layers in total. The specifications

of the layers of this network are provided below:

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 10 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 4. This layer outputs 20 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: reshapes the outputs of the previous layer to a one-

dimensional array.

• The 6th Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation.

• The 7th Hidden Layer: is a fully-connected layer containing 300 neurons with

a ReLu activation.

• The Output Layer: is a 100 neurons layer with a sigmoid activation.

Figure C.6 in C provides an illustration of the architecture of APN3.

4.5.2 Evaluation of the Results

The results of APN3 are summarised in the enhanced scatter-plot in Figure 4.3. The

box-plots on the axes of the scatter-plot suggest that both the predicted age data and

the real age data have similar ranges, suggesting that APN3 manages to capture almost

the entire range of ages in the testing data. A regression model was built to test the

accuracy of the predictions of APN3. The model is represented by the solid red line in the

scatter-plot in Figure 4.3, and suggests that APN3 is fairly accurate, as its predictions

do not deviate significantly from the idea case.
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Figure 4.3: Enhanced scatter-plot of the predicted age against the real age for APN3.

4.6 Comparison of the Networks

Table 4.1, provides a short comparison of the predictions of the three networks, in com-

parison to the real age data. As can be seen from the table, APN1 performs poorly,

as its predictions have a very small variance compared to the real age, implying that it

is unable to predict a wide range of ages. Moreover, the Pearson correlation coefficient

between the predictions of APN1 and the real age data, is small compared to the other

two networks. On the other hand, both APN2 and APN3 perform well, with variances

closer to the real age variance, as well as high correlation coefficients. Furthermore, the

mean of the absolute difference between the real ages and the predicted ages (MADA),

is lower than that of APN1, confirming that both APN2 and APN3 have better perfor-

mances. It is worth noting that the performances of APN2 and APN3 are very similar

according to the chosen testing benchmarks.

Network Type Mean Variance Correlation MADA

Real Age N/A 30.400 121.333 1 N/A
APN1 Fully-Connected 29.440 3.162 0.540 8.76
APN2 Convolutional 31.635 59.570 0.762 5.695
APN3 Convolutional 30.070 50.588 0.770 5.37

Table 4.1: Comparison table for the age prediction networks.



Chapter 5

Non-Linear Dimensionality

Reduction of Facial Images

5.1 Introduction

Dimensionality reduction is an important topic in statistical and machine learning. Con-

sider a fixed amount of data from a high dimensional space. As the number of dimensions

of this space increases, the volume of this spaces increases very rapidly. Thus, the avail-

able data become increasingly more sparse with the increase of its dimension. This

problem is often referred to as the curse of dimensionality. The curse of dimensionality

affects the performance of statistical learning algorithms, as the higher the number of

dimensions of the data, the more data is needed to overcome the sparsity. This, in turn,

affects the efficiency and performance of the learning algorithm. Hence, dimensionality

reduction is often used to counteract the effects of the curse of dimensionality. There

is a wide variety of dimensionality reduction techniques, but all of them fall in one of

two categories: linear techniques or non-linear techniques. Among the most widely used

linear techniques are, Principal Component Analysis, Singular Value Decomposition and

Independent Component Analysis [39]. Another approach to dimensionality reduction,

is the use non-linear methods. One non-linear dimensionality reduction method, the

Autoencoder, uses feed-forward artificial neural networks to shrink the dimensions of the

input data. This chapter discusses the use of autoencoders on facial image data.

5.2 Background

Autoencoders are multi-layer neural networks with a small central layer. An autoencoder

network can be split into two parts: an encoder network, which is a neural network
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that takes the raw data as input and outputs a low-dimensional representation of this

data, and a decoder network, which takes the low-dimensional representation as input

and reverses the operations of the encoder to output a new set of data that has the

same structure and dimensions as the original data [40]. Hence, the low dimensional

representation of the original data is nothing but the central layer of the autoencoder.

An example of an autoencoder is given in Figure 5.1. Autoencoders are trained by

minimising the difference between the raw inputs and the reconstructed outputs.

Figure 5.1: An example of an autoencoder network.

5.3 Methodology

5.3.1 Training and Test Data

For the dimensionality reduction problem the FERET dataset -seen in the previous

problems (see Section 3.2.1)- was used. The images in the this dataset were cropped,

resized to 50 pixels and loaded as 8-bit grayscale images. The images were then dupli-

cated, with the duplicates serving as labels for the original images. All available images

were used in this problem, regardless of their subject’s facial orientation. Finally, the

labelled facial images were split into a training dataset and a testing dataset according

to the identities of their subjects, where 20 random subjects where chosen as testing

data and the rest were used as training data.
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5.3.2 Building the Neural Networks

The same neural networks implementation seen in Section 3.2.2 was used to build three

different dimensionality reduction networks. The objective of these networks is to min-

imise the difference between the original input image and the reconstructed output

image; hence, a square distance cost function was used. The architectures of these

networks, along with a summary of their performances are specified in the consequent

sections.

5.3.3 An Evaluation Metric

To quantify the quality of the reconstruction of the facial images, the Peak Signal-to-

Noise Ratio (PSNR) was used. The PSNR is a metric that is often used to measure the

quality of images that are reconstructed after compression [41]. The PSNR is defined as

follows:

PSNR(ĥ, h0) = 10 log10(
MAX2

i

mse(ĥ, h0)
) (5.1)

Where, log10 is the logarithm with base 10, ĥ is the reconstructed image and h0 is the

original image. In (5.1), mse(ĥ, h0) is the mean squared error between the original image

and the reconstructed image and MAXi is the maximum possible value for the pixels

of the image (MAXi = 256 in case of an 8-bit grayscale image as in the training data).

5.4 Architectures of the Networks

All of the three dimensionality reduction networks have convolutional architectures;

however, they differ in depth, width and filter sizes. As mentioned before, an autoencoder

network consists of an encoder network and a decoder network. The decoder network

reverses the operations of the encoder network to produce the reconstruction. Hence, for

the sake of brevity, only the architectures of the layers of the encoder will be specified in

this section; however, visual representations of the full networks can be found in Figures

C.7, C.8 and C.9 in Appendix C.

5.4.1 Dimensionality Reduction Network 1 (DRN1)

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 20 feature maps.
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• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 40 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 2. This layer outputs 60 feature maps.

• The 6th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The Central Layer: is a convolutional layer with a hyperbolic tangent activation

function and a filter of size 3. This layer outputs 200 feature maps.

5.4.2 Dimensionality Reduction Network 2 (DRN2)

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 30 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 60 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 2. This layer outputs 80 feature maps.

• The 6th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The Central Layer: is a convolutional layer with a hyperbolic tangent activation

function and a filter of size 2. This layer outputs 100 feature maps.
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5.4.3 Dimensionality Reduction Network 3 (DRN3)

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 20 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 40 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 2. This layer outputs 60 feature maps.

• The 6th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 7th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 200 feature maps.

• The Central Layer: is a convolutional layer with a hyperbolic tangent activation

function and a filter of size 3. This layer outputs 400 feature maps.

5.5 Comparison of the Networks

To compare the three dimensionality reduction networks, the histograms of the PSNR

values of the output images of the networks were produced, to allow for the examination

and comparison of their distributions. The histograms can be seen in Figures 5.2, 5.3

and 5.4. The histograms reveal that the distributions of the PSNR values for the outputs

of the three networks are very similar in shape, with the most noticeable difference being

the location of the mean.

To further differentiate between the three networks, a comparison table was compiled

and is shown in Table 5.1. In the table, the Reduction Factor refers to the ratio of

size of the low-dimensional representation of the image to the size of the dimensions

of the original image (50 × 50 = 2500). DRN1 has the highest mean PSNR at 17.033;

however, it also has the highest reduction factor. On the other hand, DRN3 has the

lowest mean PSNR at 15.397, with the lowest reduction factor 0.16. Note that DRN3
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Figure 5.2: Distribution of the
PSNR values for output of DRN1.

Figure 5.3: Distribution of the
PSNR values for output of DRN2.

Figure 5.4: Distribution of the
PSNR values for output of DRN3.

reduces the dimension considerably, while only sacrificing a little of the quality, which

might suggest that it has the best performance. That being said, the quality of image

reconstruction is mostly subjective; hence, the reader is referred to Figures D.1, D.2 and

D.3 in Appendix D, which show samples of the outputs of the three networks, to judge

the best performing network.

Network Mean PSNR Variance Dimension Size Reduction Factor

DRN1 17.033 1.638 1800 0.72
DRN2 16.646 1.611 1600 0.64
DRN3 15.397 1.589 400 0.16

Table 5.1: Comparison table for the dimensionality reduction networks.



Chapter 6

Frontal Facial Pose

Reconstruction

6.1 Introduction

Most facial recognition systems require the subject’s face to be forward oriented. Thus,

facial image frontalisation is an important problem in the domain of computer vision.

Facial alignment has been studied extensively, and many systems have been proposed

to perform the frontalisation. For example, Taigman, et. al. [42], use 3D modelling to

align the face as part of their DeepFace facial recognition algorithm. Another approach

to this problem, proposed by Cao, et. al. [43], uses a regression based method that

learns a function to map the original facial image to its frontalised counterpart. The

method that is proposed in this chapter is a variation of the regression approach using

convolutional neural networks and autoencoders.

6.2 Methodology

6.2.1 Training and Test Data

As before, for this problem, the FERET dataset was used (see Section 3.2.1). The

images in the this dataset were cropped and loaded as 8-bit grayscale images. The

images were then duplicated and the straight poses were extracted from the duplicates.

The extracted frontal poses were then used to label the original images. All the available

images were used for this problem, with exactly one straight pose label per subject. The

labelled facial images were finally split into a training dataset and a testing dataset
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according to the identities of their subjects, where 20 random subjects where chosen as

testing data and the rest were used as training data.

6.2.2 Building the Neural Networks

The same neural networks implementation seen in Section 3.2.2 was used to build two

different frontal pose reconstruction networks. The architectures of these networks,

along with a sample of their outputs are provided in the consequent sections. The

architectures of these networks are similar to that of autoencoders. The only difference

is that in this type of networks the labels are the frontal face images rather than the

original images. This incentivises the network to learn the facial features of the face

independent from its orientation, as the output is penalised according to its deviation

from the frontally oriented version of the face. Hence, a square distance cost function is

used for this purpose.

6.3 Architectures of the Networks

Since, the frontal pose reconstruction networks are special versions of autoencoders,

only the architectures of the layers of the encoder networks will be specified. The full

specifications of these networks can be found in the visual illustrations in Figures C.10

and C.11 in Appendix C.

6.3.1 Frontal Pose Reconstruction Network 1

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 20 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 40 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 2. This layer outputs 60 feature maps.
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• The 6th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The Central Layer: is a convolutional layer with a hyperbolic tangent activation

function and a filter of size 3. This layer outputs 200 feature maps.

6.3.2 Frontal Pose Reconstruction Network 2

• The Input Layer: is a two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 20 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 3. This layer outputs 40 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 5th Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 2. This layer outputs 60 feature maps.

• The 6th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The Central Layer: is a convolutional layer with a hyperbolic tangent activation

function and a filter of size 2. This layer outputs 200 feature maps.

6.4 Results

Since the output facial images are not required to be exact replicas of the frontal facial

images, the PSNR cannot be used to test their quality. Moreover, the quality of this

reconstruction is highly subjective and can differ from one person to another. For

this reason, the reader is asked to judge the quality of the reconstruction subjectively.

Hence, a sample of the reconstructed frontal faces is presented in Figures E.1 and E.2

in Appendix E. Each figure consists of three triplets of columns, with each column

containing nine images. In each triplet, the column on the right contains the input

facial images, the column in the middle contains the required facial images (required

straight poses) and the column on the left contains the output facial images (i.e. the

straight pose reconstructions).



Chapter 7

Facial Keypoints Detection

7.1 Introduction

Facial keypoints detection refers to the problem of identifying the locations of key fea-

tures in a facial image, such as the positions of the eyes mouth, the lips, the tip of the

nose, etc. This is an important problem as identifying the locations of these keypoints

can help in building 3D facial rendering and facial alignment systems. The facial key-

points detection problem has been studied extensively, and many approaches has been

proposed. For instance, Herpers, et. al. [44] propose a method for the detection of facial

keypoints, that is based detecting edges and lines locally within the facial images, util-

ising a filtering scheme based on the mathematical concept of steerable filters. Another

example of a facial keypoints detection system is the Clement, et. al. [45] approach. In

this approach, Linear Discriminant Analysis is performed on feature vectors that repre-

sent the face. This approach is proposed for 3D face scans rather that 2D facial images;

hence, it might not perform as well in the case of facial images. Other approaches for

this problem involve the use of artificial neural networks. As an example, Nouri [46],

advocates the use of convolutional neural networks for detecting the facial features and

their locations in the facial image. In this chapter, two approaches for this problem are

proposed. These approaches are based on artificial neural networks and are a variation

of Nouri’s [46] method.
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7.2 Methodology

7.2.1 Training and Test Data

For the facial keypoints detection task, the data was obtained from the Facial Keypoints

Detection competition, hosted on Kaggle.com [47]. The dataset contains 7049 96 × 96

images. Each of these images is stored as a vector of length 9216 and labelled with the

(x, y) coordinates of 15 facial keypoints. This dataset was loaded and reconstructed so

that each image is represented by a an 8-bit 2 dimensional array of size 96× 96, with its

labels attached to it. Finally, the resulting data was split into a training dataset and a

testing dataset with a split ratio of 80:20 training to testing samples.

7.2.2 Building the Neural Networks

The neural networks implementation seen in Section 3.2.2 was used to build two different

facial keypoints detection networks. Since, facial keypoints detection is a regression

problem, a squared distance cost function was used. The architectures of these networks,

along with a sample of their outputs are provided in the consequent sections.

7.3 Facial Keypoints Detection Network 1 (FKDN1)

7.3.1 Architecture

FKDN1 employs a deep and convolutional architecture. It consists of 10 layers including

the input and output layers. The structures of the layers of FKDN1 are specified below:

• The Input Layer: is the two dimensional representation of the facial image.

• The 1st Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 10 feature maps.

• The 2nd Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 2× 2.

• The 3rd Hidden Layer: is a convolutional layer with a ReLU activation function

and a filter of size 5. This layer outputs 20 feature maps.

• The 4th Hidden Layer: is a sub-sampling layer that performs max-pooling on

a pool of size 4.
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• The 5th Hidden Layer: reshapes the outputs of the previous layer to a one-

dimensional array.

• The 6th Hidden Layer: is a fully-connected layer containing 1000 neurons with

a ReLu activation. Dropout applied to this layer at a probability of 0.5.

• The 7th Hidden Layer: is a fully-connected layer containing 300 neurons with

a ReLu activation.

• The 8th Hidden Layer: is a fully-connected layer containing 100 neurons with

a ReLu activation.

• The Output Layer: is a 30 neurons layer with a sigmoid activation.

Figure C.12 in Appendix C provides a visual illustration of the architecture of the

network.

7.3.2 Results

A sample of the output of FKDN1 is presented in Figures 7.1, 7.2, 7.3 and 7.4. In each

sample, the predicted keypoint positions are marked with red crosses, while the correct

positions are marked with green crosses. It is evident from the samples that FKDN1

has a very high prediction accuracy. The mean squared error for the predicted positions

in regard to the correct positions for FKDN1 is 5.809.

7.4 Facial Keypoints Detection Network 2 (FKDN2)

7.4.1 Architecture

FKDN2 uses a deep fully-connected architecture with dropout employed throughout its

layers to speed the training process. It consists of 6 layers including the input and output

layers. The structures of the layers of FKDN2 are specified below:

• The Input Layer: is a one dimensional representation of the facial image, with

dropout applied at a probability of 0.2.

• The 1st Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 2nd Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.
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Figure 7.1: Sample 1 of the out-
put of FKDN1.

Figure 7.2: Sample 2 of the out-
put of FKDN1.

Figure 7.3: Sample 3 of the out-
put of FKDN1.

Figure 7.4: Sample 4 of the out-
put of FKDN1.

• The 3rd Hidden Layer: is a fully-connected layer containing 500 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The 4th Hidden Layer: is a fully-connected layer containing 100 neurons with

a ReLu activation. Dropout is applied to this layer at a probability of 0.5.

• The Output Layer: is a single neuron layer with a sigmoid activation.

Figure C.13 in Appendix C provides a visual illustration of the architecture of the

network.
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7.4.2 Results

A sample of the output of FKDN2 is presented in Figures 7.5, 7.6, 7.7 and 7.8. In

each sample, the predicted keypoint positions are marked with red crosses, while the

correct positions are marked with green crosses. The samples show that FKDN2 has

good accuracy; however, it falls short in comparison to FKDN1. The mean squared

error for the predicted positions in regard to the correct positions for FKDN2 is 13.582.

Figure 7.5: Sample 1 of the out-
put of FKDN2.

Figure 7.6: Sample 2 of the out-
put of FKDN2.

Figure 7.7: Sample 3 of the out-
put of FKDN2.

Figure 7.8: Sample 4 of the out-
put of FKDN2.
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7.5 Comparison of the Networks

Table 7.1 provides a brief comparison between FKDN1 and FKDN2. As mentioned

before, FKDN1 is the better performing network. This is confirmed by the fact the

its means squared error is less than that of FKDN1. The only advantage of FKDN2

over FKDN1 is the fact that, due to its fully-connected architecture, its training time is

significantly quicker than that of FKDN1.

Network Type Mean Square Error

FKDN1 Convolutional 5.809
FKDN2 Fully-Connected 13.582

Table 7.1: Comparison table for the facial keypoints detection networks.



Chapter 8

Conclusion

It was possible to achieve state-of-the-art results for the five facial image processing

tasks, gender classification, age prediction, non-linear dimensionality reduction, facial

frontalisation and facial keypoint detection. The results demonstrated the strength of

artificial neural networks, in particular that of convolutional neural networks. The fact

that all of the results were obtained on a home laptop computer, using a readily available

datasets, shows the practicality of artificial neural networks as a class of statistical

learning algorithms. That being said, the availability of more powerful hardware and

larger datasets could help in improving the results significantly, by allowing deeper

architectures to be feasibly built.
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Appendix A

Convergence of Gradient Descent

Theorem:

Let f(x) be differentiable in Rn, and let the gradient of f(x) satisfy the Lipschitz

condition:

||∇f(x)−∇f(y)||2 ≤ L||x− y||2 (A.1)

Also, let f(x) be bounded below:

f(x) ≥ f∗ > −∞ (A.2)

And let α satisfy the condition:

0 < α <
2

L
(A.3)

Then, in (2.4), the gradient tends to zero:

lim
τ→∞

∇f(x(τ)) = 0

And the function monotonically decreases:

f(x(τ)) ≤ f(x(τ−1))

The proof of this theorem is adapted from Polyak’s Introduction to Optimization [48].

Proof. The following result is given without a proof:

If f(x) is differentiable on Rn then:

f(x + y) = f(x) +∇f(x) · y +

1∫
0

((f(x + νy)−∇f(x)) · y)dν (A.4)
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Where is a · b is the dot product of a and b.

From (A.4), substituting x = x(τ) and y = −α∇f(x(τ)), and applying (A.1):

f(x(τ+1)) =f(x(τ))− α||∇f(x(τ+))||22

− α
1∫

0

(∇f(x(τ) − να∇f(x(τ)))−∇f(x(τ))) · ∇f(x(τ))dν

≤f(x(τ))− α||∇f(x(τ))||22 + Lα2||f(x(τ))||22

1∫
0

ν2dν

=f(x(τ))− α(1− 1

2
Lα)||f(x(τ))||22

Let λ = α(1− 1
2Lα) then:

f(x(τ+1)) ≤ f(x(τ))− λ||f(x(τ))||22

Summing over τ from 0 to s:

f(x(s+1)) ≤ f(x(0))− λ
s∑

τ=0

||∇f(x(τ))||22

Since λ > 0 by (A.3):

s∑
τ=0

||∇f(x(τ))||22 ≤
f(x(0))− f(x(s+1))

λ
≤ f(x(0))− f∗

λ
by (A.2)

Hence, as lims→∞
∑s

τ=0 ||∇f(x(τ))||22 =
∑∞

τ=0 ||∇f(x(τ))||22 <∞.

Yielding ||∇f(x(τ))||2 → 0, as τ →∞.



Appendix B

Python Code for Building the

Neural Networks
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B.1 Gender Classification Networks

1 from multicolumnNN import *

2

3 #Loading the Dataset

4 dataset=StaticFERETGenderDataset()

5

6 #Gender Classification Network 1

7 if False: #Toggle to True to use this network

8 y=dataset.variables[1] #Labels

9 x=InitialLayer(dataset,0) #Input Layer

10 x=LeNetConvPoolLayer(x,20,5,2) #Convolution+Maxpool

11 x=LeNetConvPoolLayer(x,50,5,2) #Convolution+Maxpool

12 x=HiddenLayer(Flatten(x),500)

#Flattening+Fully-Connected Layer↪→

13 nn=LogisticRegression(x,y,2)

#Logistic Regression X-Entropy Cost↪→

14 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

15 nag.TrainTestClassification(learningRate=0.001,

learningRateDecay=0, momentum=0.99, weightDecay=0,

restart=True, savePredictions=True)#Training

↪→

↪→

16

17 #Gender Classification Network 2

18 if False: #Toggle to True to use this network

19 y=dataset.variables[1] #Labels

20 x=InitialLayer(dataset,0)

21 x=Flatten(x) #Input Layer

22 x=HiddenLayer(x,1000) #Fully-Connected Layer

23 x=HiddenLayer(x,1000) #Fully-Connected Layer

24 x=HiddenLayer(x,1000) #Fully-Connected Layer

25 nn=LogisticRegression(x,y,2)

#Logistic Regression X-Entropy Cost↪→

26 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

27 nag.TrainTestClassification(learningRate=0.0001,

learningRateDecay=0, momentum=0.99, weightDecay=0,

restart=False, savePredictions=True)#Training

↪→

↪→
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28

29 #Gender Classification Network 3

30 if False: #Toggle to True to use this network

31 y=dataset.variables[1] #Labels

32 x=InitialLayer(dataset,0)

33 x=DropoutLayer(Flatten(x),0.2) #Input Layer+Dropout

34 x=DropoutLayer(HiddenLayer(x,1000),0.5)

#Fully-Connected Layer+Dropout↪→

35 x=DropoutLayer(HiddenLayer(x,1000),0.5)

#Fully-Connected Layer+Dropout↪→

36 x=DropoutLayer(HiddenLayer(x,1000),0.5)

#Fully-Connected Layer+Dropout↪→

37 nn=LogisticRegression(x,y,2)

#Logistic Regression X-Entropy Cost↪→

38 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

39 nag.TrainTestClassification(learningRate=0.0001,

learningRateDecay=0, momentum=0.99, weightDecay=0,

restart=True, savePredictions=True)#Training

↪→

↪→
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B.2 Age Prediction Networks

1 from multicolumnNN import *

2

3 #Loading the Dataset

4 dataset=StaticFERETAgeDataset()

5

6 #Age Prediction Network 1

7 if False: #Toggle to True to use this network

8 x=InitialLayer(dataset,0)

9 x=Flatten(x) #Input Layer

10 x=DropoutLayer(x,0.2) #Dropout

11 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

12 x=DropoutLayer(x,0.5) #Dropout

13 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

14 x=DropoutLayer(x,0.5) #Dropout

15 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

16 x=DropoutLayer(x,0.5) #Dropout

17 x=HiddenLayer(x,100,f=T.nnet.sigmoid) #Fully-Connected Layer

18 y=InitialLayer(dataset,1) #Labels

19 nn=L2Distance(y,x,1,x) #L2 Distance Cost

20 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

21 nag.TrainTestL2Distance(learningRate=0.1**4,momentum=0.99,

weightDecay=0.01,restart=True, savePredictions = False)

#Training

↪→

↪→

22

23 #Age Prediction Network 2

24 if False: #Toggle to True to use this network

25 x=InitialLayer(dataset,0) #Input Layer

26 x=LeNetConvPoolLayer(x,20,5,2) #Convolution+Maxpool

27 x=Flatten(x) #Flatenning Layer

28 x=HiddenLayer(x,300,f=ReLu) #Fully-Connected Layer

29 x=HiddenLayer(x,300,f=ReLu) #Fully-Connected Layer

30 x=HiddenLayer(x,100,f=T.nnet.sigmoid) #Fully-Connected Layer

31 y=InitialLayer(dataset,1) #Labels

32 nn=L2Distance(y,x,1,x) #L2 Distance Cost
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33 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

34 nag.TrainTestL2Distance(learningRate=0.1**3,momentum=0.99,

weightDecay=0,restart=True , savePredictions = True)

#Training

↪→

↪→

35

36 #Age Prediction Network 3

37 if False: #Toggle to True to use this network

38 x=InitialLayer(dataset,0) #Input Layer

39 x=LeNetConvPoolLayer(x,10,5,2)

#Convolution+Maxpool↪→

40 x=LeNetConvPoolLayer(x,20,4,2) #Convolution+Maxpool

41 x=Flatten(x) #Flatenning Layer

42 x=HiddenLayer(x,1000,f=ReLu) #Fully-Connected Layer

43 x=HiddenLayer(x,300,f=ReLu) #Fully-Connected Layer

44 x=HiddenLayer(x,100,f=T.nnet.sigmoid) #Fully-Connected Layer

45 y=InitialLayer(dataset,1) #Labels

46 nn=L2Distance(y,x,1,x) #L2 Distance Cost

47 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

48 nag.TrainTestL2Distance(learningRate=0.1**4,momentum=0.99,

weightDecay=0.01,restart=True, savePredictions = True)

#Training

↪→

↪→
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B.3 Dimensionality Reduction Networks

1 from multicolumnNN import *

2

3 #Loading the Dataset

4 dataset=StaticFERETDataset(batchSize=100)

5

6 #Dimensionality Reduction Network 1

7 if False: #Toggle to True to use this network

8 a=InitialLayer(dataset,0) #Input Layer

9 b=LeNetConvPoolLayer(a,20,3,2) #Convonvolution+Maxpool

10 b=LeNetConvPoolLayer(b,40,3,2) #Convonvolution+Maxpool

11 b=LeNetConvPoolLayer(b,60,2,2) #Convonvolution+Maxpool

12 b=LeNetConvPoolLayer(b,200,3,1)#Convonvolution

13 c=LeNetUnConvPoolLayerC(b,60,3,1)#Reverse Convonvolution

14 c=LeNetUnConvPoolLayerC(c,40,2,2)

#Reverse Convonvolution+Maxpool↪→

15 c=LeNetUnConvPoolLayerC(c,20,3,2)

#Reverse Convonvolution+Maxpool↪→

16 c=LeNetUnConvPoolLayerC(c,1,3,2,T.tanh)

#Reverse Convonvolution+Maxpool↪→

17 nn=L2Distance(a,c,1,a) #L2 Distance Cost

18 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

19 nag.TrainTestEmbedding(b,0.001,momentum=0.99,weightDecay=0.01

,restart=True, saveReconstruction = True) #Training↪→

20

21 #Dimensionality Reduction Network 2

22 if False: #Toggle to True to use this network

23 a=InitialLayer(dataset,0) #Input Layer

24 b=LeNetConvPoolLayer(a,30,3,2) #Convonvolution+Maxpool

25 b=LeNetConvPoolLayer(b,60,3,2) #Convonvolution+Maxpool

26 b=LeNetConvPoolLayer(b,80,2,2) #Convonvolution+Maxpool

27 b=LeNetConvPoolLayer(b,100,2,1)#Convonvolution

28 c=LeNetUnConvPoolLayerC(b,80,2,1)#Reverse Convonvolution

29 c=LeNetUnConvPoolLayerC(c,60,2,2)

#Reverse Convonvolution+Maxpool↪→
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30 c=LeNetUnConvPoolLayerC(c,30,3,2)

#Reverse Convonvolution+Maxpool↪→

31 c=LeNetUnConvPoolLayerC(c,1,3,2,T.tanh)

#Reverse Convonvolution+Maxpool↪→

32 nn=L2Distance(a,c,1,a) #L2 Distance Cost

33 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

34 nag.TrainTestEmbedding(b,0.001,momentum=0.99,weightDecay=0.01

,restart=True, saveReconstruction = True) #Training↪→

35

36 #Dimensionality Reduction Network 3

37 if False: #Toggle to True to use this network

38 a=InitialLayer(dataset,0) #Input Layer

39 b=LeNetConvPoolLayer(a,20,3,2) #Convonvolution+Maxpool

40 b=LeNetConvPoolLayer(b,40,3,2) #Convonvolution+Maxpool

41 b=LeNetConvPoolLayer(b,60,2,2) #Convonvolution+Maxpool

42 b=LeNetConvPoolLayer(b,200,3,1)#Convonvolution

43 b=LeNetConvPoolLayer(b,400,3,1)#Convonvolution

44 c=LeNetUnConvPoolLayerC(b,200,3,1)

#Reverse Convonvolution↪→

45 c=LeNetUnConvPoolLayerC(c, 60,3,1)#Reverse Convonvolution

46 c=LeNetUnConvPoolLayerC(c,40,2,2)

#Reverse Convonvolution+Maxpool↪→

47 c=LeNetUnConvPoolLayerC(c,20,3,2)

#Reverse Convonvolution+Maxpool↪→

48 c=LeNetUnConvPoolLayerC(c,1,3,2,T.tanh)

#Reverse Convonvolution+Maxpool↪→

49 nn=L2Distance(a,c,1,a) #L2 Distance Cost

50 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

51 nag.TrainTestEmbedding(b,0.001,momentum=0.99,weightDecay=0.01

,restart=True, saveReconstruction = True) #Training↪→
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B.4 Frontal Pose Reconstruction Networks

1 from multicolumnNN import *

2

3 #Loading the Dataset

4 dataset=StaticFERETDataset(batchSize=100)

5

6 #Frontal Pose Reconstruction Network 1

7 if False: #Toggle to True to use this network

8 a=InitialLayer(dataset,0) #Input Layer

9 d=InitialLayer(dataset,1) #Labels

10 b=LeNetConvPoolLayer(a,20,3,2) #Convonvolution+Maxpool

11 b=LeNetConvPoolLayer(b,40,3,2) #Convonvolution+Maxpool

12 b=LeNetConvPoolLayer(b,60,2,2) #Convonvolution+Maxpool

13 b=LeNetConvPoolLayer(b,200,3,1) #Convolution

14 c=LeNetUnConvPoolLayerC(b,60,3,1) #Reverse Convonvolution

15 c=LeNetUnConvPoolLayerC(c,40,2,2)

#Reverse Convonvolution+Maxpool↪→

16 c=LeNetUnConvPoolLayerC(c,20,3,2)

#Reverse Convonvolution+Maxpool↪→

17 c=LeNetUnConvPoolLayerC(c,1,3,2,T.tanh)

#Reverse Convonvolution+Maxpool↪→

18 nn=L2Distance(d,c,1,a) #L2 Distance Cost

19 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

20 nag.TrainTestEmbedding(b,0.01,momentum=0.99,weightDecay=0.01,

restart=False) #Training↪→

21

22 #Frontal Pose Reconstruction Network 2

23 if False: #Toggle to True to use this network

24 a=InitialLayer(dataset,0) #Input Layer

25 d=InitialLayer(dataset,1) #Labels

26 b=LeNetConvPoolLayer(a,20,3,2) #Convonvolution+Maxpool

27 b=LeNetConvPoolLayer(b,40,3,2) #Convonvolution+Maxpool

28 b=LeNetConvPoolLayer(b,60,2,2) #Convonvolution+Maxpool

29 b=LeNetConvPoolLayer(b,200,2,1) #Convonvolution

30 c=LeNetUnConvPoolLayerC(b,60,2,1) #Reverse Convonvolution
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31 c=LeNetUnConvPoolLayerC(c,40,2,2)

#Reverse Convonvolution+Maxpool↪→

32 c=LeNetUnConvPoolLayerC(c,20,3,2)

#Reverse Convonvolution+Maxpool↪→

33 c=LeNetUnConvPoolLayerC(c,1,3,2,T.tanh)

#Reverse Convonvolution+Maxpool↪→

34 nn=L2Distance(d,c,1,a) #L2 Distance Cost

35 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

36 nag.TrainTestEmbedding(b,0.01,momentum=0.99,weightDecay=0.01,

restart=False) #Training↪→
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B.5 Facial Keypoint Detection Networks

1 from multicolumnNN import *

2

3 #Loading the Dataset

4 dataset=StaticFacialDataset()

5

6 #Facial Keypoint Detection Network 1

7 #Good! Number 15 on Kaggle 6th April 2015!!!!

8 if True: #Toggle to True to use this network

9 x=InitialLayer(dataset,0) #Input Layer

10 x=LeNetConvPoolLayer(x,10,5,2) #Convolution+Maxpool

11 x=LeNetConvPoolLayer(x,20,5,2) #Convolution+Maxpool

12 x=Flatten(x) #Flatenning Layer

13 x=HiddenLayer(x,1000,f=ReLu) #Fully-Connected Layer

14 x=DropoutLayer(x,0.5) #Dropout

15 x=HiddenLayer(x,300,f=ReLu) #Fully-Connected Layer

16 x=HiddenLayer(x,100,f=ReLu) #Fully-Connected Layer

17 x=HiddenLayer(x,30,f=T.nnet.sigmoid) #Fully-Connected Layer

18 y=InitialLayer(dataset,1) #Labels

19 nn=L2Distance(y,x,0.01,x) #L2 Distance Cost

20 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

21 nag.TrainTestL2Distance(learningRate=0.0**6,momentum=0.99,

weightDecay=0.01,restart=True, savePredictions = True)

#Training

↪→

↪→

22

23 #Facial Keypoint Detection Network 2

24 if False: #Toggle to True to use this network

25 x=InitialLayer(dataset,0)

26 x=Flatten(x) #Input Layer

27 x=DropoutLayer(x,0.2) #Dropout

28 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

29 x=DropoutLayer(x,0.5) #Dropout

30 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

31 x=DropoutLayer(x,0.5) #Dropout

32 x=HiddenLayer(x,500,f=ReLu) #Fully-Connected Layer

33 x=DropoutLayer(x,0.5) #Dropout
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34 x=HiddenLayer(x,100,f=ReLu) #Fully-Connected Layer

35 x=DropoutLayer(x,0.5) #Dropout

36 x=HiddenLayer(x,30,f=T.nnet.sigmoid) #Fully-Connected Layer

37 y=InitialLayer(dataset,1) #Labels

38 nn=L2Distance(y,x,0.01,x) #L2 Distance Cost

39 nag=NAGtrainer(dataset,nn)

#Nestrov Accelerated Gradient Descent↪→

40 nag.TrainTestL2Distance(learningRate=0.1**6,momentum=0.99,

weightDecay=0.01,restart=True, savePredictions = True)

#Training

↪→

↪→
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C.1 Gender Classification Networks

C.1.1 GCN1

Figure C.1: Network architecture for GCN1.
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C.1.2 GCN2

Figure C.2: Network architecture for GCN2.

C.1.3 GCN3

Figure C.3: Network architecture for GCN3.
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C.2 Age Prediction Networks

C.2.1 APN1

Figure C.4: Network architecture for APN1.
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C.2.2 APN2

Figure C.5: Network architecture for APN2.
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C.2.3 APN3

Figure C.6: Network architecture for APN3.
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C.3 Dimensionality Reduction Networks

C.3.1 DRN1

Figure C.7: Network architecture for DRN1.

C.3.2 DRN2

Figure C.8: Network architecture for DRN2.
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C.3.3 DRN3

Figure C.9: Network architecture for DRN3.

C.4 Frontal Pose Reconstruction Networks

C.4.1 FPRN1

Figure C.10: Network architecture for FPRN1.
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C.4.2 FPRN2

Figure C.11: Network architecture for FRN2.
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C.5 Facial Keypoint Detection Networks

C.5.1 FKDN1

Figure C.12: Network architecture for FKDN1.
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C.5.2 FKDN2

Figure C.13: Network architecture for FKDN2.
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D.1 DRN1

Figure D.1: A sample of the original images compared to the reconstructed images
for DRN1. In each pair of columns, the images on the right are the originals and the

images on the left are the reconstruction.
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D.2 DRN2

Figure D.2: A sample of the original images compared to the reconstructed images
for DRN2. In each pair of columns, the images on the right are the originals and the

images on the left are the reconstruction.
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D.3 DRN3

Figure D.3: A sample of the original images compared to the reconstructed images
for DRN3. In each pair of columns, the images on the right are the originals and the

images on the left are the reconstruction.
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E.1 FPRN1

Figure E.1: A sample comparing the original images to the reconstructed images for
FPRN1.
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E.2 FPRN2

Figure E.2: A sample comparing the original images to the reconstructed images for
FPRN2.
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F.1 Gender Classification Networks

1 #Functions

2 usePackage <- function(p) {

3 if (!is.element(p, installed.packages()[,1]))

4 install.packages(p, dep = TRUE)

5 require(p, character.only = TRUE)

6 }

7

8 #Loading the data

9 data <- read.csv(file = ’predictions.csv’, header = FALSE, col.names=

c(’predicted’, ’real’))↪→

10 attach(data)

11

12 #Barplots

13 par(mfrow = c(1,2))

14 bp1 <- barplot(table(predicted), names.arg = c(’Female’, ’Male’),

main = ’Bar Plot of Predicted Gender’, xlab=’Gender’, col=c(

’deepskyblue3’, ’firebrick’))

↪→

↪→

15 text(bp1, 80, round(table(predicted), 1),cex=2,pos=3)

16 bp2 <- barplot(table(real), names.arg = c(’Female’, ’Male’), main =

’Bar Plot of Actual Gender’, xlab=’Gender’, col=c(’deepskyblue3’,

’firebrick’))

↪→

↪→

17 text(bp2, 80, round(table(real), 1),cex=2,pos=3)

18 dev.off()

19

20 #Confusion

21 usePackage(’caret’) #UserDefined

22 confusion <- confusionMatrix(predicted, real)

23 confusion$table

24

25 #Misclassification

26 mis <- sum(abs(real-predicted))

27 mis/length(real)*100

28 100-mis/length(real)*100
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F.2 Age Prediction Networks

1 #Functions

2 usePackage <- function(p) {

3 if (!is.element(p, installed.packages()[,1]))

4 install.packages(p, dep = TRUE)

5 require(p, character.only = TRUE)

6 }

7

8 #Loading the data

9 data <- read.csv(file = ’comp.csv’, header = FALSE, col.names= c(

’predicted’, ’real’, ’abs.diff’))↪→

10 attach(data)

11

12 #Scatter

13 plot(real, predicted, xlab = ’Real Age’, ylab = ’Predicted Age’, main

= ’Real vs Predicted Age’↪→

14 , xlim = c(10,70), ylim = c(10,50))

15 abline(0, 1, col=’red’)

16

17 #Box Plot

18 boxplot(predicted, real, names=c(’Predicted’, ’Real’), ylab=’Age’,

main=’Box Plot of Real and Predicted Age’)↪→

19 abline(,0,30, col=’red’, lty=2)

20

21 #Histograms

22 par(mfrow = c(1,2))

23 hist(predicted, main = ’Histogram of Predicted Age’, xlab=’Age’,

probability = TRUE)↪→

24 lines(density(predicted), col=’red’, lty=2)

25 hist(real, main = ’Histogram of Real Age’, xlab=’Age’, , probability

= TRUE)↪→

26 lines(density(real), col=’red’, lty=2)

27 dev.off()

28

29 #Linear Model

30 model <- lm(real~predicted)

31 summary(model)
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32 coef(model)

33 plot(predicted, real, xlab = ’Predicted Age’, ylab = ’Read Age’, main

= ’Real vs Predicted Age’↪→

34 , xlim = c(18,50), ylim = c(10,70))

35 abline(model, col=’red’)

36 abline(0,1, col =’blue’, lty=2)

37 legend(43, 20, c(’Linear Model’, ’Y=X’) ,lty = c(1,2), col = c(’red’,

’blue’))↪→

38

39 #Correlation

40 cor(real,predicted)

41

42 #Mean

43 mean(real)

44 mean(predicted)

45

46 #Variance

47 var(real)

48 var(predicted)

49

50 #Confusion Matrix

51 binned.real = cut(real, breaks=c(0, 20, 25, 30, 35, 40, 45, 50, 100))

52 binned.predicted = cut(predicted, c(0, 20, 25, 30, 35, 40, 45, 50,

100))↪→

53

54 usePackage(’caret’) #UserDefined

55 confusion <- confusionMatrix(binned.predicted, binned.real)

56 confusion$table
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F.3 Dimensionality Reduction Networks

1 #Loading the data

2

3 recon <- read.csv(file = ’output.csv’, header = FALSE)

4 labels <- read.csv(file = ’labels.csv’, header = FALSE)

5

6 #MSE

7

8 diff <- recon - labels

9 diff2 <- diff^2

10 mse <- rowSums(diff2)/ncol(diff2)

11

12 #Peak Signal to Noise Ratio

13

14 psnr <- 10*log10(1/mse)

15

16 #Analysis of Results

17 mean(psnr)

18 var(psnr)

19 hist(psnr, main=’Density of PSNR for Reconstructed Faces’, xlab=

’Peak Signal to Noise Ratio’, probability = TRUE)↪→

20 lines(density(psnr), col=’red’, lty=2)

21 boxplot(psnr, ylab=’PSNR Value’, main=

’Box Plot for the PSNR for the Reconstructed Faces’)↪→
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F.4 Facial Keypoint Detection Networks

1 #Functions

2 usePackage <- function(p) {

3 if (!is.element(p, installed.packages()[,1]))

4 install.packages(p, dep = TRUE)

5 require(p, character.only = TRUE)

6 }

7

8 #Loading Data

9 labels <- read.csv(file = ’labels.csv’, header = FALSE)*96

10 x.lab <- labels[, seq(1,30,by=2)]

11 y.lab <- labels[, seq(2,30,by=2)]

12

13 predictions <- read.csv(file = ’predictions.csv’, header = FALSE)*96

14 x.pred <- predictions[, seq(1,30,by=2)]

15 y.pred <- predictions[, seq(2,30,by=2)]

16

17 #samples

18 usePackage(’png’)

19

20 sample1 <- t(matrix(rev(readPNG(’image1.png’)), 96, 96))

21

22 image(1:96, 1:96, sample1, col=gray((0:255)/255))

23

24 points(96 - x.lab[624,], 96 - y.lab[624,], col = ’green’, pch=3)

25 points(96 - x.pred[624, -which(is.na(x.lab[624,]))], 96 - y.pred[624,

-which(is.na(x.lab[624,]))], col = ’red’, pch=3)↪→

26 legend(’bottomright’, pch = c(3,3), c(’Correct Position’,

’Predicted Position’), col = c(’green’, ’red’))↪→

27

28 sample2 <- t(matrix(rev(readPNG(’image2.png’)), 96, 96))

29

30 image(1:96, 1:96, sample2, col=gray((0:255)/255))

31

32 points(96 - x.lab[848,], 96 - y.lab[848,], col = ’green’, pch=3)

33 points(96 - x.pred[848,], 96 - y.pred[848,], col = ’red’, pch=3)
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34 legend(’bottomright’, pch = c(3,3), c(’Correct Position’,

’Predicted Position’), col = c(’green’, ’red’))↪→

35

36 sample3 <- t(matrix(rev(readPNG(’image3.png’)), 96, 96))

37

38 image(1:96, 1:96, sample3, col=gray((0:255)/255))

39

40 points(96 - x.lab[254,], 96 - y.lab[254,], col = ’green’, pch=3)

41 points(96 - x.pred[254, -which(is.na(x.lab[254,]))], 96 - y.pred[254,

-which(is.na(x.lab[254,]))], col = ’red’, pch=3)↪→

42 legend(’bottomright’, pch = c(3,3), c(’Correct Position’,

’Predicted Position’), col = c(’green’, ’red’))↪→

43

44 sample4 <- t(matrix(rev(readPNG(’image4.png’)), 96, 96))

45

46 image(1:96, 1:96, sample4, col=gray((0:255)/255))

47

48 points(96 - x.lab[590,], 96 - y.lab[590,], col = ’green’, pch=3)

49 points(96 - x.pred[590, -which(is.na(x.lab[590,]))], 96 - y.pred[590,

-which(is.na(x.lab[590,]))], col = ’red’, pch=3)↪→

50 legend(’bottomright’, pch = c(3,3), c(’Correct Position’,

’Predicted Position’), col = c(’green’, ’red’))↪→

51

52 #Mean Squared Error

53 mse <- mean((predictions - labels)^2, na.rm=TRUE)
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