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Abstract

The entropy production of a Brownian particle in a non-isothermal and non-stationary heat bath is studied

within the context of stochastic thermodynamics. The full phase space dynamics are considered, with a varia-

tional approach being employed to obtain an approximate solution in the limit of large damping to the Kramers

equation which governs the probability density function of the system. This allows for the calculation of simple

expressions for the average rate of entropy production, as well as the average rate of the three constituent

components related to the housekeeping and the excess heat. This is then compared with an equivalent de-

scription of the system using stochastic differential equations, for which an average as well as a distribution of

the entropy production can be obtained by the simulation of many stochastic particle trajectories. Using this

method also allows us to check whether the relevant entropy related fluctuation relations hold for this system.

The particular case of a sinusoidally varying quadratic temperature profile is looked at in detail, and although

there is reasonable agreement between the averages obtained through both approaches there are also clearly

some problems which are not resolved and still need to be investigated more closely.
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Chapter 1

Introduction

The huge success of equilibrium thermodynamics lies in its ability to provide a description of systems with an

enormous number of degrees of freedom in terms of just a few simple state variables. At the heart of this de-

scription is entropy, a quantity which the second law of thermodynamics famously states can only ever increase

and is used to explain the apparent irreversibility of all non-idealized macroscopic processes. The second law of

thermodynamics has a vast collection of empirical evidence backing it up as well as being in agreement with our

everyday experience of the one way nature of most processes, but is in many ways difficult to fully understand

and as such still attracts a lot of discussion today. In particular, how can there be a physical quantity which

only ever increases given that the underlying microscopic laws are entirely time reversible, a problem known

as Loschmidt’s paradox[1]. The simple answer is that there cannot be, and so the modern interpretation of

entropy has been to view it as a measure of information or of our uncertainty in the microscopic details of the

system, but even with this interpretation there are questions to address. One potential problem is Liouville’s

theorem which proves for Hamiltonian systems that the flow in phase space is incompressible, making entropy

as defined by Gibbs a constant of motion [2]. However Liouville’s theorem only applies to systems which are

evolving deterministically according to Hamilton’s equations of motion and the fact is that trying to model every

component of a complicated system deterministically is a fool’s game, and cannot be done in practice. Indeed if

this were not the case then there would never have been the need for the subject of thermodynamics in the first

place! If we accept that our description must necessarily contain some form of coarse-graining, where generally

we will separate the total system into a system of interest and its environment and provide only roughly specified

interactions between them then it is clear that our uncertainty about the system’s details will naturally increase.

Loschmidt’s paradox is avoided by realizing that given an initial configuration this would be the case regardless

of which direction in time we evolved the system, with the apparent irreversibility of the process arising only

as a consequence of the disparity in the effect of the coupling on the system and the environment because of

their relative sizes. This report is concerned with entropy specifically as it is defined in the emerging subject of

stochastic thermodynamics, which provides a framework for describing small systems that are interacting with

an environment, and where generally fluctuations play a dominant role. Here entropy is constructed manifestly

as a measure of irreversibility and defined on the level of individual stochastic trajectories in such a way that

it remains consistent with the standard thermodynamic definition[3]. As well as having potential applications

in a number of different fields[4], the framework allows us to look closely at the nature of the second law of

thermodynamics and the physical origins of irreversibility.

The prototypical system of study in stochastic thermodynamics has been a Brownian particle in a heat bath
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which is then driven away from equilibrium in some way. Despite being a simple system it allows for the

application of all of the key principles in stochastic thermodynamics and as such a number of variants in the

type of driving applied to this system have been studied [3, 5, 6]. Additionally under certain circumstances the

use of time-dependent laser traps has allowed for quantitative experimental probing of some of the fluctuation

relations (introduced in section 2.6), as individual particle trajectories for this kind of system can be traced[6].

The objective of this project was to look at the case of a Brownian particle in a non-isothermal heat bath

with a temperature profile which varies both spatially and temporally and to calculate the entropy produced in

such a process both analytically and by simulating many particle trajectories. In addition to this the entropy

production can be split into three different components[13], each of which has a particular thermodynamic

interpretation and so we wanted to calculate each of these and look at their distributions, as well as checking

that they and the total entropy obey the relevant fluctuation relations.
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Chapter 2

Stochastic Thermodynamics

This chapter first gives a brief introduction to some techniques which can be used to model the dynamics

of a stochastic system before going on to introduce stochastic thermodynamics and the definition of entropy.

The main idea behind stochastic thermodynamics is to model the interaction of a system and its environment

with additional stochastic terms in the system’s equations of motion, and then to extend various classical

thermodynamic quantities such as heat, work done and entropy so that they can be meaningfully defined

for individual stochastic trajectories. In the final section some of the entropy related fluctuation theorems

are introduced, which under certain conditions make exact thermodynamic statements about non-equilibrium

systems[9].

2.1 Stochastic Master Equations and the Fokker-Planck Equation

We start by considering a simple stochastic system which can occupy a set of finite states {xi} at discrete times

labelled by tn where n is an integer. Demanding that the system is Markovian, so that the probability of being

in the state xm at time tn+1 depends only upon the state of the system at time tn, (i.e. that it has no memory

of its previous history), a master equation governing the evolution of the probability distribution can then be

written[7]:

p(xm, tn+1) =
∑
m′

p(xm, tn+1|xm′ , tn)p(xm′ , tn) (2.1)

This is then be generalized to systems which can occupy a continuous range of states x by using a probability

density p(x,t) and introducing a transition probability density T (∆x|x, t) which is the probability density of

making a transition of ∆x in a time τ given a value of x and t. This gives

p(x, t+ τ) =

∫
p(x−∆x, t)T (∆x|x−∆x, t)d∆x (2.2)

a result known as the Chapman-Kolmogorov equation[8]. Assuming that p(x,t) and T (∆x|x, t) are both con-

tinuous functions of the variable x we can take a Taylor expansion of the integrand of equation 2.2 so that:

p(x−∆x, t)T (∆x|x−∆x, t) = p(x, t)T (∆x|x, t) +

∞∑
n=1

1

n!
(−∆x)n

∂n(p(x, t)T (∆x|x, t))
∂xn

(2.3)
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Then using the fact that normalization requires
∫
T (∆x|x, t)d∆x = 1 and defining the Kramers-Moyal coeffi-

cients Mn(x, t) = 1
τ

∫
d∆x(∆x)nT (∆x|x, t) we arrive at the Kramers-Moyal equation

p(x, t+ τ)− p(x, t)
τ

=

∞∑
n=1

(−1)n

n!

∂n(Mn(x, t)p(x, t))

∂xn
(2.4)

Taking the limit τ → 0 all terms in this expansion above n = 2 can be dropped[10] so that

∂p(x, t)

∂t
= −∂(M1(x, t)p(x, t)

∂x
+

1

2

∂2(M2(x, t)p(x, t))

∂x2
(2.5)

This is known as the Fokker-Planck equation, and governs the evolution of the probability density function for

a system evolving under continuous Markovian stochastic dynamics.

2.2 Stochastic Calculus

A similar and closely related approach to studying the dynamics of stochastic systems is to describe them with

a set of differential equations where deterministic evolution is supplemented with stochastic noise. Consider a

system described by a set of variables x = {xi(t)}, each of which is governed by a stochastic differential equation

of the form

dxi = Ai(x, t) dt+Bi(x, t) dWi (2.6)

where dWi is a stochastic white noise term representing a Wiener process[7], and which has the properties

〈dWi〉 = 0 and 〈dW 2
i 〉 = dt1/2. We assume there is no correlation between these noise processes for the different

variables, and can rewrite dWi = w(t)dt1/2 where w(t) is a number drawn from a normal distribution with zero

mean and unit variance. It will be demonstrated in the next section that this description of a stochastic system

is equivalent to the use of a generalized Fokker-Planck equation.

If we have a function which depends upon these stochastic variables, we must be careful when considering

how this function will change with time. For simplicity consider the case of a continuous function of just one

stochastic variable x and time, f(x, t). A small change in f is given by a Taylor expansion

δf ≈ ∂f

∂t
δt+

∂f

∂x
δx+

1

2

∂2f

∂x2
(δx)2 + ... (2.7)

In the case of non-stochastic variables for small enough changes this could be truncated after the second term,

however because δx has a term that goes as δt1/2 it is actually necessary to include the third term as well, even

to first order. There are various other subtelties involved in performing calculus with stochastic variables, such

as requiring δt to be short in terms of the variation in x and f(x,t) but long with respect to fluctuations in the

stochastic noise, but these will not be explored here. When they are accounted for the result is Itô’s Lemma[11]

δf =
∂f

∂t
δt+

∂f

∂x
δx+

B(x, t)2

2

∂2f

∂x2
δt (2.8)

This can then be generalized to functions of more stochastic variables f(x, t) such that:

δf =
∂f

∂t
δt+

∑
i

(
∂f

∂xi
δxi +

Bi(x, t)
2

2

∂2f

∂x2
i

δt

)
(2.9)
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As a final point worth noting it should be realized that this is just one way of performing calculus with stochastic

variables, and other equivalent interpretations are possible but will not be referred to in this report[11].

2.3 Stochastic Differential Equations and Relationship with Gener-

alized Fokker-Planck Equations

Systems which have their variables described by stochastic differential equations of the form in equation 2.6

clearly can also be described by a probability density function p(x, t). If we consider an arbritrary continuous

function f(x) with no explicit time dependence, we can construct the average of its time derivative in two ways

(remembering that 〈dWi〉 = 0)

〈
df(x)

dt

〉
=

〈∑
i

(
∂f

∂xi
Ai(x, t) +

B2
i (x, t)

2

∂2f

∂x2
i

)〉
=
∑
i

∫
p(x, t)

(
∂f

∂xi
Ai(x, t) +

B2
i (x, t)

2

∂2f

∂x2
i

)
dx (2.10)

〈
df(x)

dt

〉
=

∫
f(x)

∂p(x, t)

∂t
dx (2.11)

Integrating the first of these by parts and assuming that p(x, t) and all its derivative go to zero at infinity we

find that ∫
f(x)

∂p(x, t)

∂t
dx =

∫
f(x)

∑
i

(
1

2

∂2(B2
i (x, t) p(x, t))

∂x2
i

− ∂(Ai(x, t) p(x, t))

∂xi

)
dx (2.12)

However as f(x) is arbitrary it follows

∂p(x, t)

∂t
=
∑
i

(
1

2

∂2(B2
i (x, t) p(x, t))

∂x2
i

− ∂(Ai(x, t) p(x, t))

∂xi

)
(2.13)

giving us a partial differential equation governing the evolution of the probability density function. From this

we see that we can identify the A term in equation 2.6 with the first Kramers-Moyal coefficient in equation 2.5

M1 and the second Kramers-Moyal coefficient M2 with
√
B.

2.4 Entropy In Stochastic Thermodynamics

Stochastic thermodynamics is really an extension of ”Stochastic Energetics” introduced by Sekimoto[12] whereby

the quantities of heat and work are meaningfully defined for individual stochastic trajectories and a first-law

like energy balance holds. Stochastic thermodynamics takes this a step further by also defining entropy on the

level of individual trajectories. To proceed we imagine a system whose evolution is governed by a protocol λ(t)

(for an example an external force) and we define a particular trajectory of the system as X = {x(t) | 0 ≤ t ≤ τ}
and P[X] as the probability density for that particular trajectory under the forward protocol. To then construct

a quantity which acts as a measure of irreversibility we have to think about what it means for a process to be

reversed. For a deterministic system if time is ran forward and the system (and environment) follow a particular

path, an application of the time-reversal operator T̂ to all of the system and environmental coordinates (so that

positions are unchanged, but velocities are reversed, i.e. v → −v) and running the protocol in reverse would

lead to the system following exactly the reverse trajectory. So we can ask for a given stochastic trajectory X

if we were to apply a time-reversal to all the coordinates of only the system and run the protocol in reverse

what is the probability of observing the reverse trajectory, where the reversed trajectory of X is defined as
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X̄ =
{
T̂x(τ − t) | 0 ≤ t ≤ τ

}
. We can then also define a probability density of seeing any given trajectory

under the time reversed protocol λ̄(t) = λ(τ−t) as PR[X]. With these definitions in place we then construct the

most clear measure of irreversibility for any particular stochastic trajectory and define it as the (dimensionless)

entropy production[1]

∆S[X] = ln

(
P[X]

PR[X̄]

)
(2.14)

Note that with this definition it is perfectly allowable for the entropy to take on negative values, however it will

be demonstrated in section that 2.6 that this quantity is always greater than or equal to zero on average. If we

consider systems which are described by stochastic differential equations of the form in equation 2.6, we make

the definitions

Airi (x, t) =
1

2
(Ai(x, t) + εiAi(T̂x, t))

Arevi (x, t) =
1

2
(Ai(x, t)− εiAi(T̂x, t))

Di(x, t) = B2
i (x, t)

(2.15)

where εi = ±1 depending on whether the coordinate is even or odd when the time reversal operator is applied,

i.e. T̂ xi = εixi. It can then be shown with the use of short time propagators that the small increment in entropy

defined in this way along any stochastic trajectory is given by[13]

d∆Stot = −d (ln(p(x))) +
∑
i

(
Airi
Di

dxi −
Arevi Airr
Di

dt+
∂Airi
∂xi

dt− ∂Arevi
∂xi

dt

− 1

Di

∂Di

∂xi
dxi +

(Airi −Arevi )

Di

∂Di

∂xi
dt− ∂2Di

∂x2
i

dt+
1

Di

(
∂Di

∂xi

)2

dt

)
(2.16)

This is actually a completely robust definition for the entropy of any stochastic system, however we are interested

particularly in thermodynamic systems when there is a well defined environmental temperature.

2.5 Splitting the Entropy into Three Components

It has recently been proposed that the entropy production described in the previous section can be naturally

separated into three components[13], each of which is also defined in terms of conditional path probability

densities. As such they are also well defined for any system which is described by a set of stochastic differential

equations, however they take on particular thermodynamic interpretations when there is an environmental

temperature. Before proceeding we define for any particular stochastic path X = {x(t) | 0 ≤ t ≤ τ} two further

paths, XR = {x(τ − t) | 0 ≤ t ≤ τ} and XT =
{
T̂x(t) | 0 ≤ t ≤ τ

}
. We then also introduce the probability

density of any given path X under the adjoint dynamics as Pad[X], where the adjoint dynamics are defined with

respect to the forward protocol and are such that if at any time the protocol was frozen and the system allowed to

relax, then the stationary state reached under the adjoint dynamics would have the opposite probability current

to the stationary state reached under the forward protocol. With these definitions in place three different

components ∆S1, ∆S2 and ∆S3 are defined as follows

∆S1 = lnP[X]− lnPad,R[XR] (2.17)

∆S2 = lnP[X]− lnPad[XT ] (2.18)
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∆S3 = lnPad[XT ] + lnPad,R[XR]− lnP[X]− lnPR[X̄] (2.19)

It then follows trivially that ∆Stot = ∆S1 + ∆S2 + ∆S3.

In a situation when an environmental temperature is well defined these somewhat obscurely defined quanti-

ties can be mapped on to thermodynamic quantities related to the housekeeping and excess heat[14]. In such a

situation the change in entropy along a given trajectory can be written as

∆Stot = ln

(
p(x(0), 0)

p(x(τ), τ)

)
+

∫ τ

0

d

(
∆Q

kTenv(x(t), t)

)
(2.20)

such that it is the sum of the change in system entropy and the change in medium entropy. We can then divide

the heat transfer to the environment into two components known as the housekeeping heat and the excess heat.

The housekeeping heat is defined as the heat required to maintain a non-equilibrium steady state and the excess

is the remainder so that ∆Q = ∆Qhk + ∆Qex. We then associate ∆S1 with the excess heat so that

∆Qex = (∆S1 −∆Ssys)kTenv (2.21)

Although the equivalency of these two quantities is not necessarily obvious, it is clear that the excess heat is

related to the relaxation of the system towards a stationary state and that in a stationary state it would equal

zero. This is also true of ∆S1 as defined in equation 2.18 given the definition of XR and the adjoint dynamics so

that it will only take on non-zero values in the presence of relaxation. We then separate the housekeeping heat

into the generalized housekeeping heat and the transient housekeeping heat so that ∆Qhk = ∆Qhk,G + ∆Qhk,T

and associate ∆S2 and ∆S3 with each of these quantities so that

∆Qhk,G = ∆S2kTenv (2.22)

∆Qhk,T = ∆S3kTenv (2.23)

∆S2 arises as a result of the absence of detailed balance, and so contributes whenever a system is not in

equilibrium, however ∆S3 can be shown to only be non-zero when there are system coordinates which are odd

with respect to the application of the time-reversal operator. With the three components defined like this it is

then possible to show (and will be discussed in the next section) that ∆Stot, ∆S1 and ∆S2 are always more than

or equal to zero on average, however this is not the case for ∆S3 which can take on negative average values.

2.6 Fluctuation Relations

The fluctuation relations are a number of mathematical relationships which can be derived within the context of

stochastic thermodynamics (and also using other formalisms as well)[15] where under certain conditions exact

thermodynamic statements can be made about systems arbritrarily far from equilibrium, something which tra-

ditionally has been very difficult to achieve. The focus of this section will only be on the two main fluctuation

relations explicitly relating to entropy production, however a number of other interesting and closely related

results have also been derived [16, 17, 1].

The first important relation is the integral fluctuation relation for the total entropy production, which allows

us to demonstrate that entropy defined in this way is consistent with the second law of thermodynamics. If we

consider the entropy production over a given time interval and consider the average of the quantity exp
(
−∆Stot

k

)
8



over all possible trajectories we find that〈
exp

(
−∆Stot

k

)〉
=

∫
dX P[X]

PR[X̄]

P[X]
=

∫
dX̄ PR[X̄] = 1 (2.24)

as dX and dX̄ are defined on the same space. Then using a version of Jensen’s inequality[18]

〈expA〉 ≥ exp〈A〉 (2.25)

it follows that that 〈∆Stot〉 ≥ 0; a statistical statement of the second law. By the same argument it follows that

any quantity which is of the form ln(P[X])− ln(P∗[X∗]) will also satisfy an integral fluctuation theorem, where

X∗ is some path for which the transformation X → X∗ has a Jacobian equal to one and P∗ is a path probability

density for a given choice of dynamics[13]. As defined in equations 2.18 and 2.19 ∆S1 and ∆S2 clearly satisfy

these requirements and as such also obey an integral fluctuation theorem. However as there is no way to write

∆S3 in this form it does not satisfy the integral fluctuation theorem and can in fact take negative average values.

The second relevant fluctuation relation is known as the detailed fluctuation theorem[1] and gives a much

stronger condition on the distribution of entropy production, but only holds true under the correct conditions

rather than for all times. The necessary conditions are that the entropy production is taken over a time interval

0 ≤ t ≤ τ where the system probability density function is the same at the beginning and at the end, and that

the protocol is time symmetric such that λ(t) = λ(τ − t). When these conditions are met (for example with a

non-equilbirium steady state, or over a certain interval for an oscillatory non-equilibrium state) the following

relationship holds
P (∆Stot)

P (−∆Stot)
= exp

(
∆Stot
k

)
(2.26)

relating the probability of seeing a particular value of entropy production to the probability of seeing the negative

of that value.
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Chapter 3

Brownian Particle in a Non-Isothermal

Heat Bath

In this chapter the particular system which is the main focus of this report is introduced; a Brownian particle

in a heat bath with a spatially and temporally varying temperature profile. In the first section we will look at

the basic equations which govern the dynamics of this system and derive some simple results which will be of

use later on. In the second section we derive a general expression for the average rate of entropy production for

this system, before going on to calculate an approximate probability density function in section 3.3 and then

obtaining an expression for the average rate of entropy production and all of the individual components using

the approximately obtained PDF.

3.1 Basic Description of System

Building on earlier work which looked at the case where the temperature profile only varies spatially[13], we

consider a Brownian particle in a heat bath which has a temperature profile given by Tr(x, t) and is held in

place with a confining force F (x). The dynamics of this system are governed by the Langevin equation which

gives the evolution of the particle’s velocity[10]

dv = −γvdt+
F (x)

m
dt+

√
2kTr(x, t)γ

m
dW (3.1)

along with its position which is simply described by dx = vdt. It is worth noting that in most studies of

a Brownian particle in a heat bath which is driven in some way from equilibrium the overdamped Langevin

equation is employed, where the velocity distribution is taken to relax instantaneously so that only the position

coordinate is accounted for and which evolves according to[5]

dx =
F (x)

mγ
dt+

√
2kTr
mγ

dW (3.2)

In the case of a stationary spatially varying temperature profile this leads to zero entropy production for all

trajectories[13] and so to provide a more satisfactory description of entropy production in this system we have to

use a description in full phase space. From equation 2.16 it follows that the incremental dimensionless entropy
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change along a given stochastic trajectory is given by

d∆Stot = −d (lnp(x, t))− mv

kTr
dv +

vF

kTr
dt− γdt (3.3)

We then note that using the rules of Itô calculus that d
(
mv2

2

)
= mvdv + kTrγdt, and also that vdt = dx so

that this can be re-written as

d∆Stot = −d (lnp(x, t))− 1

kTr
d

(
mv2

2

)
+
F (x)

kTr
dx (3.4)

Written in this form it is more clearly demonstrated that the change in medium entropy is equivalent to a

heat transfer between the system and environment, i.e. d∆Smed = d∆Q
kTr

. The Fokker-Planck equation which

corresponds to the full phase description, known as the Kramers equation[10], is then

∂p(x, v, t)

∂t
= −v ∂p(x, v, t)

∂x
− ∂

∂v

[(
F (x)

m
− γv

)
p(x, v, t)

]
− kTr(x, t)γ

m

∂2p(x, v, t)

∂v2
(3.5)

which can be re-written in another useful form as

∂p(x, v, t)

∂t
+ v

∂p(x, v, t)

∂x
+
F

m

∂p(x, v, t)

∂v
= −∂J

ir
v

∂v
(3.6)

where we define J irv = −γvp(x, v, t)− kTr(x,t)γ
m

∂p(x,v,t)
∂v . This can be thought of in a way as a special case of the

Boltzmann equation[19].

We now define certain quantities and derive some equations which will be useful when we come to model

the probability density function of the system and calculate the average entropy production. As a starting point

we define ρ =
∫
p(x, v, t) dv, ρv̄ =

∫
p(x, v, t) v dv and generalize so that ρvn =

∫
p(x, v, t) vn dv. We then

integrate equation 3.6 over v:

∂

∂t

∫
p dv +

∂

∂x

∫
pv dv +

F

m

∫
∂p

∂v
dv = −

∫
∂J irv
∂v

dv (3.7)

which assuming p and ∂p
∂v go to zero at the boundaries gives a continuity equation

∂ρ

∂t
+
∂(ρv̄)

∂x
= 0 (3.8)

Multiplying equation 3.6 by v and again integrating over v then gives

∂ (ρv̄)

∂t
+
∂
(
ρv2
)

∂x
− F

m
ρ = −γv̄ρ (3.9)

Defining a system temperature T (itself also a function of position and time) in the most natural way so that

kT

m
= v2 − v̄2 (3.10)

then allows us to re-write equation 3.9 as

ρ
∂v̄

∂t
+
k

m

∂(ρT )

∂x
+ ρv̄

∂v̄

∂x
− F

m
ρ = −γρv̄ (3.11)

11



We note that in the case of a stationary temperature profile the continuity equation requires that v̄ = 0 and so

this reduces to

k
∂(ρT )

∂x
= Fρ (3.12)

which is compatible with ρ ∝ 1
T exp

(∫ x
0

F (x′)
kT (x′)dx

′
)

, the solution to the Fokker-Planck equation corresponding

to the stationary overdamped Langevin equation (provided that T is taken as Tr).

We then proceed by employing a model where p(x, v, t) = f(1 + φ), where f is defined as

f = ρ

(
m

2πkTr

)1/2

exp

(
−m(v − v̄)2

2kTr

)
(3.13)

and we shall look to approximate φ in section 3.3, so really this amounts to an expansion around the Maxwell

local equilibrium function[19]. Defined in this way and using the definitions for ρ and v̄ it is then straightforward

to show that ∫
dvfφ = 0 (3.14)

and ∫
dvvfφ = 0 (3.15)

which will be made use of in the next section where an expression for the average rate of entropy production

will be obtained.

3.2 General Expression for Average Entropy Production Rate

The average total rate of (dimensionless) entropy production in a system obeying a set of stochastic differential

equations can be obtained by averaging over equation 2.16 and is given by[13]

d〈∆Stot〉
dt

=
∑
i

∫
dx

J iri (x, t)2

p(x, t)Di(x, t)
(3.16)

where J iri is defined as

J iri (x, t) = Airi (x, t)p(x, t)− ∂(Di(x, t)p(x, t))

∂xi
(3.17)

For the system being considered this reduces to

d〈∆Stot〉
dt

=

∫
dxdv

m

kTrγp

(
J irv
)2

(3.18)

where J irv has already been introduced in the previous section as J irv = −γvp− kTrγ
m

∂p
∂v . This can be re-written

as

J irv = −γvf − γvfφ− kTrγ

m

∂f

∂v
− kTrγ

m

∂(fφ)

∂v
(3.19)

which using ∂f
∂v = − m

kTr
(v − v̄)f reduces to

J irv = −γv̄p− kTrγ

m
f
∂φ

∂v
(3.20)

12



With this result we can look to obtain an expression for the spatial density of the rate of entropy production

by carrying out the integration of equation 3.18 over velocity only∫
dv

m

kTrγp

(
J irv
)2

=

∫
dv
mγpv̄2

kTr
+ 2

∫
dvv̄γf

∂φ

∂v
+

∫
dv
kTrγ

pm
f2

(
∂φ

∂v

)2

(3.21)

Now using equations 3.14 and 3.15 and re-writing f ∂φ∂v = ∂(fφ)
∂v − φ

∂f
∂v this can be simplified so that the spatial

density of the rate of entropy production is given by∫
dv

m

kTrγp

(
J irv
)2

=
mγρv̄2

kTr
+

∫
dv

1

1 + φ

kTrγ

m
f

(
∂φ

∂v

)2

(3.22)

We will use this expression in section 3.4 to calculate an approximate expression for the average rate of entropy

production for this system once we have found an appropriate approximation for φ.

3.3 Calculation of an Approximate PDF

Using the model for the probability density function of p = f(1 + φ) where f was defined in section 3.1 we

proceed by making a power series expansion of the second term in 1
γ

fφ = f(
1

γ
φ1 +

1

γ2
φ2 + ...) (3.23)

as f has no explicit dependence on γ. We then gather all terms in the Kramers equation of order zero in 1
γ so

that we are really looking for a solution in the vicinity of the overdamped limit, which should lead to something

similar to linear irreversible thermodynamics (we also assume that v̄ ∝ 1
γ ). Doing this we are left with

∂f

∂t
+ v

∂f

∂x
+

(
F

m
− γv̄

)
∂f

∂v
=
kTrγ

m

∂

∂v

f ∂
(

1
γφ1

)
∂v

 (3.24)

where we have made use of eq 3.20. Rather than trying to solve this partial differential equation directly we

instead employ a variational approach whereby we maximize a functional which approximately corresponds to

the rate of entropy production. From now on we shall define φ = 1
γφ1 and we then note that the previous

equation is of the form

Z = L̂φ (3.25)

where L̂ is a linear operator. Defining the bilinear expression

(A,B) =

∫
dv AB (3.26)

we then construct a functional J [φ̃] which is to be extremized over trial solutions φ̃ satisfying the necessary

constraints

J [φ̃] = (φ̃, L̂φ̃)− 2(φ̃, Z) (3.27)

The first term can be written as

(φ̃, L̂φ̃) =

∫
dv φ̃

kTrγ

m

∂

∂v

(
f
∂φ̃

∂v

)
(3.28)
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which upon integrating by parts gives

(φ̃, L̂φ̃) = −
∫
dv
kTrγ

m
f

(
∂φ̃

∂v

)2

(3.29)

assuming that φ̃ does not increase exponentially or faster at the boundaries. We then note that with L̂ defined

in this way it is easy to demonstrate that for two functions of this kind α(v) and β(v) that

(L̂α, β) = (α, L̂β) (3.30)

It can then be shown that extremizing J [φ̃] will give the optimal solution φ by defining φ̃ = φ+ η so that

J [φ+ η] = (φ+ η, L̂(φ+ η))− 2(φ+ η, Z)

= (φ, L̂φ) + (φ, L̂η) + (η, L̂φ) + (η, L̂η)− 2(φ,Z)− 2(η, Z)

= J [φ] + (L̂φ, η) + (η, L̂φ) + (η, L̂η)− 2(η, Z)

= J [φ] + (η, L̂η)

(3.31)

Now looking at equation 3.29 it is clear that(η, L̂η) is negative which this means that the optimal solution of

φ̃ = φ is found by maximizing the functional J [φ̃]. We note that the functional J [φ̃] for the optimal solution is

equal to

J [φ] = −(φ, L̂φ) =

∫
dv

kTrγ

m
f

(
∂φ

∂v

)2

(3.32)

which comparing with equation 3.22 can be seen to be the rate of entropy production to first order in 1
γ in

the approximation that v̄ = 0. So the maximization of this functional is something like the application of a

maximum entropy production principle[19].

We now examine the second term in the functional and write

(φ̃, Z) =

∫
dv φ̃

∂f

∂t
+

∫
dv φ̃v

∂f

∂x
+

∫
dv φ̃

(
F

m
− γv̄

)
∂f

∂v
(3.33)

Looking at the first term here and using the earlier definition of f as well as assuming that the earlier results∫
dv fφ = 0 and

∫
dv vfφ = 0 hold for each term in the power series expansion of φ performed in equation 3.23

we can write ∫
dv φ̃

∂f

∂t
=

∫
dv φ̃

(
∂ρ

∂t

f

ρ
− f

2Tr

∂Tr
∂t

+ f

(
m(v − v̄)

kTr

∂v̄

∂t
+
m(v − v̄)2

2kT 2
r

∂Tr
∂t

))
=

∫
dv φ̃f

(
m(v − v̄)2

2kT 2
r

∂Tr
∂t

) (3.34)

Similarly for the second term∫
dv φ̃v

∂f

∂v
=

∫
dv φ̃v

(
∂ρ

∂x

f

ρ
− f

2Tr

∂Tr
∂x

+ f

(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

))
=

∫
dv φ̃vf

(
mv

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

) (3.35)
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and clearly the third term is equal to zero. This means that we are maximizing the functional

J [φ̃] = −
∫
dv

kTrγ

m
f

(
∂φ̃

∂v

)2

− m

kT 2
r

∂Tr
∂t

∫
dv φ̃f(v − v̄)2 − 2

∫
dv φ̃fv

(
mv

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
(3.36)

subject to the conditions that
∫
dv φ̃f = 0 and

∫
dv φ̃fv = 0. We then define

h(φ̃, φ̃′, v) = −kTrγ
m

f
(
φ̃′
)2

− m

kT 2
r

∂Tr
∂t

φ̃f(v − v̄)2 − 2φ̃fv

(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
+ λ1φ̃f + λ2φ̃fv

(3.37)

where φ̃′ = ∂φ̃
∂v and λ1 and λ2 are Lagrange multipliers. To get the optimal φ̃ we use the Euler-Lagrange

equation[20]
d

dv

(
∂h

∂φ̃′

)
=
∂h

∂φ̃
(3.38)

which gives

−2kTrγ

m

∂

∂v

(
f
∂φ̃

∂v

)
= − m

kT 2
r

∂Tr
∂t

f(v − v̄)2 − 2vf

(
m(v − v̄)

kTr

∂v̄

∂x
+
m(v − v̄)2

2kT 2
r

∂Tr
∂x

)
+ λ1f + λ2vf (3.39)

We can then re-write the left hand side as

−2kTrγ

m

∂

∂v

(
f
∂φ̃

∂v

)
= −2kTrγ

m

(
−m(v − v̄)

kTr

∂φ̃

∂v
f + f

∂2φ̃

∂v2

)
(3.40)

and reverting to the notation φ̃ = φ we try a trial solution of φ = φ0 + a(v − v̄) + b(v − v̄)2 + c(v − v̄)3. For

notational convenience define z = v − v̄ so that substitution into equation 3.39/3.40 gives

−2kTrγ

m

(
−mz
kTr

(a+ 2bz + 2cz2) + 2b+ 6cz

)
= − m

kT 2
r

∂Tr
∂t

z2−2(z+ v̄)

(
mz

kTr

∂v̄

∂x
+

mz2

2kT 2
r

∂Tr
∂x

)
+λ1 +λ2(z+ v̄)

(3.41)

Comparing coefficients of z then gives us four equations:

λ1 + λ2v̄ = −4kTrγ

m
b (3.42)

−2v̄m

kTr

∂v̄

∂x
+ λ2 = −2kTrγ

m

(
−a m

kTr
+ 6c

)
(3.43)

− m

kTr

(
1

Tr

∂Tr
∂t

+ 2
∂v̄

∂x
+

v̄

Tr

∂Tr
∂x

)
= 4γb (3.44)

− m

kT 2
r

∂Tr
∂x

= 6γc (3.45)
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We can immediately read off from the last two that b = − m
4kTrγ

(
1
Tr

∂Tr
∂t + 2 ∂v̄∂x + v̄

Tr
∂Tr
∂x

)
and c = − m

6γkT 2
r

∂Tr
∂x .

To get the other coefficients we first have to impose

0 =

∫
dv φf

=

∫
dz (φ0 + az + bz2 + cz3)f

=

∫
dz (φ0 + bz2)f

(3.46)

such that that φ0 + bkTr
m = 0. We then impose the second constraint

0 =

∫
dv φfv

=

∫
dz (z + v̄)(φ0 + az + bz2 + cz3)f

=

∫
dz z(az + cz3)f

(3.47)

such that a = − 3ckTr
m . Bringing this all together leaves us with

φ0 =
1

4γ

(
1

Tr

∂Tr
∂t

+ 2
∂v̄

∂x
+

v̄

Tr

∂Tr
∂x

)
a =

1

2γTr

∂Tr
∂x

b = − m

4kTrγ

(
1

Tr

∂Tr
∂t

+ 2
∂v̄

∂x
+

v̄

Tr

∂Tr
∂x

)
c = − m

6γkT 2
r

∂Tr
∂x

(3.48)

We now just need expressions for ρ and v̄ and our approximate PDF is complete. We start off by noting that

we can now evaluate ρv2

ρv2 =

∫
dv pv2 = ρ

∫
dv

(
m

2πkTr

)1/2

exp

(
−m(v − v̄)2

2kTr

)
v2(1 +φ0 + a(v− v̄) + b(v− v̄)2 + c(v− v̄)3) (3.49)

so that

v2 =
kTr
m

(
1 + φ0 + 2v̄a+ bv̄2

)
+

3k2T 2
r

m2
(b+ 2v̄c) + v̄2(1 + φ0) (3.50)

We now have v2 in terms of known quantities and v̄, so that equations 3.8 and 3.9 reduce to two differential

equations for two unknowns ρ and v̄. We will investigate obtaining numerical solutions to these equations

exactly in section 4.3, but for the rest of the analytic work we will employ a stationary approximation where

v̄ = 0 and

ρ ∝ 1

Tr(x, t)
exp

(∫
dx′

F (x′)

kTr(x′, t)

)
(3.51)

where actually once the temperature profile is defined we will employ a time average to make ρ time-independent,

which we shall call ρst. This approximation should be reasonable for large γ and for temperature profiles which

do not vary too quickly in time. Justification for using Tr rather than T for the stationary approximation comes
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from noting that equation 3.50 implies that

kT

m
=
kTr
m

(
1 + φ0 + 2v̄a+ bv̄2

)
+

3k2T 2
r

m2
(b+ 2v̄c) + v̄φ0 (3.52)

which in the case of a stationary temperature profile when φ0 = 0, b = 0 and v̄ = 0 reduces to T = Tr, and in

the non-stationary case to first order in 1
γ becomes

(T − Tr) ≈ φ0Tr +
3kT 2

r

m
b (3.53)

using the expressions just found for φ0 and b this then gives

(T − Tr) ≈
−1

2γ

∂Tr
∂t

(3.54)

so that for large enough gamma and slow variations in the environmental temperature the difference is small.

The final expression for the approximate probability density function is then given by

p(x, v, t) = ρst

(
m

2πkTr

)1/2

exp

(
−mv2

2kTr

)(
1 + φ0 + av + bv2 + cv3

)
(3.55)

3.4 Approximate Rate of Entropy Production

In this section we will use the probability density function obtained in the previous section to obtain approximate

expressions for the average rate of total entropy production as well as the rate of production for each of the

three components introduced in section 2.5. We start from equation 3.22 and take the expression to first order

in 1
γ only so that

d〈∆Stot〉
dt

=

∫
dxdv

kTrγ

m
f

(
∂φ

∂v

)2

=

∫
dxdz

kTrγ

m
ρ

(
m

2πkTr

)1/2

exp

(
−−mz

2

2kTr

)
(a2 + 4b2z2 + 9c2z4 + 6acz2)

=

∫
dx
kTrγ

m
ρ

(
18c2

(
kTr
m

)2

+ 4b2
kTr
m

) (3.56)

In the approximation that ρ ≈ ρst and v̄ = 0 so that b = −m
4kγT 2

r

∂Tr
∂t this then gives

d〈∆Stot〉
dt

=

∫
dx

k

2γTr
ρst

[(
∂Tr
∂x

)2

+
m

2kTr

(
∂Tr
∂t

)2
]

(3.57)

In the case where the temperature profile is stationary this matches the case studied by Stolovitsky[21]. We also

see in the limit γ → ∞ this goes to zero, in agreement with what is obtained from the overdamped Langevin

equation. Although it may seem unintuitive that a larger value of γ and hence a stronger coupling between the

system and environment should decrease the rate of entropy production, this can be understood by realizing

that with large γ there is a much lower spatial transport of heat despite larger transfers of heat to and from the

environment. We can then use expressions derived by Ford and Spinney[13] for the average rate of production
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of the three separate components. For this system they are given by

d〈∆S1〉
dt

=

∫
dxdv

mp

kTrγ

(
J irv
p
− J ir,stv

pst

)2

(3.58)

d〈∆S2〉
dt

=

∫
dxdv

mp

kTrγ

(
J ir,stv (T̂x)

pst(T̂x)

)2

(3.59)

d〈∆S3〉
dt

=

∫
dxdv

∂p

∂t
ln

(
pst(x)

pst(T̂x)

)
(3.60)

where pst is defined as the probability distribution the system would settle down to if the driving were frozen and

the system allowed to relax, so that with the model being used this gives pst = ρst

(
m

2πkTr

)1/2

exp
(
−mv2
2kTr

)
(1 +

av+ cv3). J ir,stv is defined in the same way as J irv but with p replaced by pst. Again in the approximation that

v̄ = 0 and ρ = ρst using equation 3.20 we can write J irv = −kTrγ
m f ∂φ∂v , so that

d〈∆S1〉
dt

=

∫
dxdv f(1 + φ)

kTrγ

m

(
1

1 + φst

∂φst
∂v
− 1

1 + φ

∂φ

∂v

)2

(3.61)

where φst is defined as (1 + av + cv3). Taking this expression to first order in 1
γ leaves

d〈∆S1〉
dt

=

∫
dxdv ρst

(
m

2πkTr

)1/2

exp

(
−mv2

2kTr

)
kTrγ

m
(−2bv)2 (3.62)

which can be integrated over v to obtain

d〈∆S1〉
dt

=

∫
dx ρ

(
∂Tr
∂t

)2
1

4γT 2
r

(3.63)

This is equal to the second term in the expression for the total rate of entropy production given in equation

3.57, and as expected for ∆S1 only has a non-zero average when the temperature profile is changing, and hence

when the system is relaxing. Equation 3.59 then becomes

d〈∆S2〉
dt

=

∫
dxdv f(1 + φ)

kTrγ

m

(
a+ 3cv2

1− av − cv3

)2

(3.64)

as clearly J ir,stv (x, t) = J ir,stv (T̂x, t). Again to first order in 1
γ this then gives

d〈∆S2〉
dt

=

∫
dxdv f

kTrγ

m

(
a+ 3cv2

)2
=

∫
dx ρst

kTrγ

m

(
a2 + 3ac

(
2kTr
m

)
+

27

4
c2
(

2kTr
m

)2
)

=

∫
dx ρst

k

2mγTr

(
∂Tr
∂x

)2

(3.65)

which corresponds to the first term in equation 3.57. This means that to first order in 1
γ there is no contribution

to the total average entropy production from ∆S3, which can be shown explicitly by noting that ln
(

1+av+cv3

1−av−cv3

)
≈
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2av + 2cv3 so that equation 3.60 becomes

d〈∆S3〉
dt

=

∫
dxdv

∂p

∂t
(2av + 2cv3) =

∫
dx

(
2a
∂(ρv̄)

∂t
+ 2c

(ρv3)

∂t

)
(3.66)

We’ve been using the approximation v̄ = 0 and when we evaluate ρv3 all terms will be of order 1
γ such that the

second term in equation 3.66 is of order 1
γ2 , so that to first order d〈∆S3〉

dt = 0.
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Chapter 4

Sinusoidally Varying Quadratic

Temperature Profile

In this section a specific temperature profile is chosen so that Tr(x, t) = T0

(
1 + κT (t)x2

2kT0

)
with κT (t) = κT (0) +

Bsin(ωt) and studied in detail, comparing the analytically predicted average entropy production to the average

production over a large number of simulated stochastic trajectories. This is then also done for each of the

three components of entropy production individually as well as looking at their distributions and attempting to

demonstrate their adherence to the relevant fluctuation relations. Although a temperature profile of this form

would be physically difficult to impose on a system, for the purposes of a theoretical study it is useful for its

simplicity and for the fact that it allows an analytic solution for ρst to be obtained. The confining force is taken

to be a simple harmonic force F (x) = −κx

Figure 4.1: The temperature profile of the heat bath being studied. The first image shows the temperature as
a function of position at two different times, whilst the second shows a density plot of the profile as a function
of position at time with the hotter regions (red) compared to the cooler regions (blue).

The first step was to choose an appropriate selection of parameters. Whilst not an obviously important step

other than to make sure that the γ being used is large enough so that the approximations made can be justified,

with hindsight a lot of time could have been saved with a more thorough investigation earlier on in the project

of how the choice of parameters can affect the results obtained from simulating the stochastic trajectories of

the particle. In particular experience has found that when the dimensionless entropy production is very small

(lower than about 10−4 for a couple of temperature cycles) that a very large number of timesteps are required

to obtain a stochastic average which does not change when you use an even larger number of timesteps (for a

20



given time interval), as well as to obtain an average which is not too noisy. The values used for the majority of

this project were chosen, largely for simplicity, to be κ = 1,m = 1, T0 = 1, k = 1, κT (0) = 0.5, B = 0.2 (or zero

when the stationary profile is looked at), ω = 8 and with γ being probed to find the appropriate value given

the approximations used. Unless otherwise specified it should be assumed that these were the parameters being

used.

4.1 Stationary Temperature Profile

We initially looked at the stationary quadratic profile (i.e. B = 0) to investigate how γ affects the agreement

between the analytic and stochastically obtained rates of entropy production. We start by using equation 3.51

to obtain an expression for ρst.

ρst ∝
1

T0

(
1 + κT (0)x2

2kT0

)exp
∫ x

0

dx′
−κx′

kT0

(
1 + κT (0)x′2

2kT0

)
 (4.1)

which when evaluated and properly normalized gives

ρst =

(
κT (0)

2πkT0

)1/2 Γ(1 + κ
κT (0) )

Γ(0.5 + κ
κT (0) )

[
1 +

κT (0)

2kT0
x2

]−1− κ
κT (0)

(4.2)

This then gives us everything which is required to calculate the average rate of entropy production analytically

with equation 3.57 and over many trajectories using equation 3.4. Figure 4.2 shows the results of these calcula-

tions over a range of γ (the code used to simulate the trajectories is included as an appendix) and it can be seen

that the agreement improves as γ is increased. Despite this, it still seems to require us to go to much higher γ

than would be expected (when compared with a similar approach in previous work where a different stationary

profile was studied)[13] before the rates are in good agreement. This could well be the result of a problem

which was only picked up much later on in the study, where for the stochastic calculations the initial positions

and velocities were sampled from a Gaussian corresponding to isothermal Brownian motion (at T0) and it was

assumed that they would quickly settle down into the correct distribution. Whilst this assumption appears to

be fine for the velocity, it seems to be the case that it takes a much longer time than in the trajectories we have

studied for the position distribution to change, especially when γ is large. This will be discussed in more detail

in the next section. Figure 4.3 shows the total entropy production for γ = 60 over a time interval of 0 → 6π
8 ,

which corresponds to three complete temperature cycles in the non-stationary case, when ω = 8. Although

there is still a slight deviation from the analytic result it was decided that this would be a sufficiently large

value of γ to begin the study of the non-stationary temperature profile with.
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Figure 4.2: The rate of entropy production in the case of a stationary quadratic temperature profile as a function
of γ. Stochastic average found over a time interval of t = 6π

8 using 20000 timesteps for each trajectory.

Figure 4.3: The total entropy production for the stationary profile in the case that γ = 60 over a time interval
of 6π

8 (which will correspond to three cycles in the non-stationary case).
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4.2 Non-Stationary Temperature Profile

In this section the full temperature profile defined at the beginning of the chapter is implemented, however the

approximation for ρst given in equation 4.2 is kept, where now Tr(x) should be interpreted as the time average

of the reservoir temperature. This is because given that the approximation v̄ = 0 is being employed it seems

appropriate in light of equation 3.8 to use a time-independent ρ, but potential improvements to this model

are discussed in section 4.3. Figure 4.4 shows a comparison of the analytically predicted entropy production

obtained by integrating equation 3.57 over position and time with the average obtained by simualting 15 million

particle trajectories. Again the initial x and v coordinates were chosen from a gaussian corresponding to a

Brownian particle in equilibrium at T0, and so the spike which is seen at the beginning of the average stochastic

trajectory should be interpreted as the system settling down, however as mentioned in the previous section this

will be a source of error as the position distribution takes a lot longer than the timescales studied here to relax

properly. Despite this there is reasonably good agreement between the two curves, and it would appear that

the PDF model being used is sufficient to capture at least all of the qualitative behaviour of the total entropy

production. Figure 4.5 shows the contributions to the total entropy production from the system and medium

entropy separately, averaged over the simulated particle trajectories. It is interesting to see that the system and

medium components individually over a cycle are about an order of magnitude larger than the total entropy

production, which suggests that the spatial transport of heat is low in comparison to the actual heat exchanges

between the system and environment (as expected for large γ). With hindsight it also looks like there may be a

slight difference between the curves in the first cycle and the second cycle which again would suggest the system

is still slowly relaxing, although it is not completely clear from this image and we would need to look at more

temperature cycles to say for sure. Figure 4.6 then shows the distribution of total entropy production over the

time interval 2π
ω →

6π
ω , demonstrating that negative entropy values along a stochastic trajectory are not at all

rare when studying small systems. It is also interesting to note how much larger quite typical values of ∆Stot

can be when compared with the average.

It is of interest as well as being a good probe of how well the numerics of the system are working to look

and see if the relevant fluctuation theorems are satisfied. For this system the integral fluctuation theorem

should be satisfied for all times, and the detailed fluctuation theorem should hold over particular time intervals.

The time intervals over which it should hold must be multiples of 2π
ω so that once the system is in a non

equilibrium oscillatory state the probability density function is the same at the beginning and the end of the

interval, and the driving protocol (the temperature of the heat bath in this case) must be symmetric about the

midpoint. Results are shown in figure 4.7 (a) over the time interval t = 7π
2ω →

11π
2ω , and despite the significant

noise the overall trend seems reasonable except around the origin where there is a strange deviation. It is not

really possible to attribute this to noise, especially given that it occurs in the region where the values of entropy

production are most common and so it is a strong indication that something is not quite working as it should

be.

Figure 4.7 (b) is a test of the integral fluctuation theorem over different lengths of time. Although the deviation

from the expected result 〈exp(−∆Stot)〉 = 1 is small, the fact that it appears to increase when the time interval

over which ∆Stot is sampled from is longer again indicates that there are some minor problems with the method

being used. In particular it would seem to suggest that the probability density function being used is not an

accurate enough representation of the underlying stochastic dynamics, which would either mean the model being

used for the PDF is inadequate in some way or again that the system has not had sufficient time to settle down
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Figure 4.4: A comparison of the analytically predicted entropy production and the average entropy production
over 15 million simulated trajectories. Each trajectory is composed of 20000 timesteps, representing an interval
of 6π

ω (3 temperature cycles).

Figure 4.5: Comparison of the contribution to the total entropy production from the system and environment
terms over two temperature cycles (t = 2π

ω →
6π
ω ), averaged over 15 million trajectories.
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Figure 4.6: Distribution of the total entropy production over the time interval t = 2π
8 →

6π
8 obtained from 15

million particle trajectories.

into the distribution predicted by the PDF.

The next thing which was tried was to calculate the average of the three components of the entropy pro-

duction over many particle trajectories as well as looking at their distributions. Analytically the averages can

be calculated from the equations in section 3.4, and the increments along any stochastic trajectory are given

by[13]:

d∆S1 = −d(ln(p))− ∂β

∂x
dx− ∂β

∂v
dv − kTrγ

m

∂2β

∂v2
(4.3)

d∆S2 =
−vκx
kTr

dt− vm

kTr
dv+

∂β(T̂x)

∂x
dx− ∂β(T̂x)

∂(−v)
dv+

kTrγ

m

[
∂β(T̂x)

∂(−v)

]2

dt−v ∂β(T̂x)

∂x
dt−(−γv+

κx

m
)
∂β(T̂x)

∂(−v)
dt

(4.4)

d∆S3 = ln

(
pst(x)pst(T̂x′)

pst(x′)pst(T̂x)

)
(4.5)

where β(x) = −ln(pst(x)) and the x′ means evaluation at the end of the incremental timestep as opposed to

the beginning. These quantities were then all calculated over particle trajectories of the same length as before

and with the same number of timesteps, with the results being shown in figures 4.8, 4.9 and 4.10.

The most interesting of these is probably ∆S1 shown figure 4.8, where it can be seen that although the overall

gradient is similar there is quite a significant difference between the analytically predicted average and the

average over particle trajectories, especially in the first half of each temperature cycle when the system is being

heated. As well as some potential problems already mentioned, it could also be the case that the value of
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Figure 4.7: (a) Test of detailed fluctuation theorem over the interval t = 7π
2ω →

11π
2ω . Results obtained from

simulation of 15 million particle trajectories and collecting the data into 400 bins for values of ∆S between
±0.2. (b) Test of integral fluctuation theorem over different lengths of time (between t = 2π

ω →
6π
ω ).

Figure 4.8: Comparison of the average of ∆S1 predicted analytically and calculated from the simulation of 15
million particle trajectories. Trajectories are over a time interval of three temperature cycles and composed of
20000 timesteps each. Initial x and v coordinates are chosen from a Boltzmann distribution at T0.
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Figure 4.9: Comparison of the average of ∆S2 predicted analytically and calculated from the simulation of 15
million particle trajectories. Trajectories are over a time interval of three temperature cycles and composed of
20000 timesteps each. Initial x and v coordinates are chosen from a Boltzmann distribution at T0.

Figure 4.10: Comparison of the average of ∆S3 predicted analytically (using the full expression in equation 3.60
rather than just to first order in 1

γ ) and as calculated from the simulation of 15 million particle trajectories.
Trajectories are over a time interval of three temperature cycles and composed of 20000 timesteps each. Initial
x and v coordinates are chosen from a Boltzmann distribution at T0.
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Figure 4.11: Comparison of the average of ∆Stot calculated as in figure 4.4 and by adding the average of ∆S1

and ∆S2 over 15 million particle trajectories between t = 2π
8 →

6π
8

the parameter B being used it too large, so that the rate of change in the temperature profile is too large

to justify the use of the approximation v̄ = 0. There also appear to be regions of slightly negative produc-

tion, which is in violation of the integral fluctuation theorem; another problem which needs to be explained.

The agreement between the two plots shown in figure 4.9 for ∆S2 is qualitatively a lot better than with ∆S1.

As S2 is associated with the imposition of a non-equilibrium constraint and S1 with the relaxation towards

a stationary state, the inclusion of v̄ 6= 0 into the model would not affect ∆S2 which perhaps would support

the idea that the qualitative difference in the analytic and stochastic ∆S1 is a result of the approximation v̄ = 0.

Although we showed that to first order in 1
γ that 〈∆S3〉 = 0 it is still possible to calculate an analytic av-

erage by using the full expression in equation 3.60 as well as calculating an average over the particle trajectories

and this is shown in figure 4.10. It is worth pointing out that really with the approximations employed any

calculation involving quantities of order 1
γ2 or higher cannot really be trusted to be reliable, however the qual-

itative agreement between the two is reasonable and we see that as expected ∆S3 is not always positive on

average. The average calculated over particle trajectories is very noisy, but this is not necessarily surprising

when it is realized that the distribution of ∆S3 covers a range of values many orders of magnitude larger than

the average and as such it is a very small signal being picked out.

Figure 4.11 shows the average total entropy averaged from the particle trajectories shown in fig. 4.4 compared

to the sum of the average of ∆S1 and ∆S2. Although they are almost the same, the fact that they differ at

all is strange and difficult to explain as ultimately they should be the average of the same quantities (albeit

expressed in different ways, and ignoring ∆S3 which is entirely negligible). Whether this is due to an error in

the code being used or something else has not yet been determined.

The distributions for each of the components is shown in figure 4.12 and compared to the distribution of

the total entropy. Clearly ∆S3 has a much narrower peak than the other components, but they all take on
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Figure 4.12: Distributions of ∆Stot, ∆S1, ∆S2 and ∆S3 from t = 2π
8 →

6π
8 .

a wide range of values when compared to their averages. It is strange to see that the peak of ∆S2 is shifted

slightly to the left of the origin, so that despite there being a positive average in total the most probable value

is actually negative; very much an unexpected result. Figure 4.13 shows a comparison of the distribution of

position values at different times over one temperature cycle compared to the model of ρst being used, and

figure 4.14 shows the same for the velocity, compared to
∫
pdx at different times. It can be seen that there is a

slight variation in the velocity distribution over the temperature cycle which is well predicted by the probability

distribution function being employed (in figure 4.14 the circles represent
∫
p dx where the corresponding line

is the distribution obtained from binning velocity values along the particle trajectories), but there is no de-

tectable variation in the position distribution. This does provide evidence that a stationary ρ should be a good

approximation, however the position distribution does not actually match up with ρst very well. The reason

for this is as alluded to earlier that the initial position values were sampled from a normal distribution and

there has not been enough time to relax into the correct distribution, which can be demonstrated by running

the stochastic equations of motion for a much longer period of time and seeing that eventually the position

distribution does change. This is shown in figure 4.15 for a time of ∆t = 50, at which point ρst is then a very

good approximation of the distribution. Unfortunately as this was only spotted late on in the project the effect

this has on all of the previous results has not yet been fully investigated, but it does not fully account for the

deviation in ∆Stot away from what is predicted analytically. This is demonstrated in figure 4.16 which shows a

comparison of the previous total entropy production from figure 4.4 compared with the average total entropy

production when the initial positions for the particle trajectories are sampled from the corrected distribution

shown in figure 4.13, over the time interval t = 2π
8 →

6π
8 . There is a distinct difference between the two and

it’s debatable as to whether the agreement with the analytically predicted curve is improved or not. On one

hand the total entropy produced over one temperature cycle is a lot closer to what is expected, however during

the actual cycle the curves seem to deviate more. This becomes even stranger when looking at what happens
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Figure 4.13: Distribution of positions over one temperature cycle from t = 4π
ω →

6π
ω compared with the

stationary approximation being used for
∫
p dv ≈ ρst. Positions are sampled from 15 million trajectories

to ∆S1 which is shown in figure 4.17. Now despite the end point of each cycle again agreeing reasonably well

with the analytic value, during the cycle the curves are very different and the problem of negative production

over certain time intervals seems to be even worse. Clearly there is another problem here which needs further

investigation. Figure 4.18 shows a comparison with ∆S2 and we see that there is negligible when the initial

position distribution is corrected. It would be interesting to see how these new results affect the adherence of

∆Stot to both the integral fluctuation theorem and detailed fluctuation theorem, as perhaps this would give a

better idea as to whether these latest results are actually better or worse than before. Something else which

was not done was to check whether ∆S1 and ∆S2 obey the integral fluctuation theorem, but looking at figure

4.17 this seems unlikely for the latest results with ∆S1. It may also be the case that ∆S1 and ∆S2 are supposed

to obey the detailed fluctuation theorem over the same interval as ∆Stot, which would have been interesting to

check.
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Figure 4.14: Distribution of velocities over one temperature cycle from t = 4π
ω →

6π
ω compared with

∫
p dx

(circles) at different times. Velocities are sampled from 15 million trajectories.

Figure 4.15: Distribution of initial positions after a long period (t = 50) of running the stochastic evolution
from an initial isothermal Gaussian distribution, compared with ρst.
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Figure 4.16: Demonstration of how using the corrected initial position distribution changes the average total
entropy production obtained from the simulation of particle trajectories. Plot shows entropy production only
over the interval t = 2π

8 →
6π
8 (two temperature cycles)

Figure 4.17: Demonstration of how using the corrected initial position distribution changes the average produc-
tion of ∆S1 obtained from the simulation of particle trajectories. Plot shows entropy production only over the
interval t = 2π

8 →
6π
8 (two temperature cycles)
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Figure 4.18: Demonstration of how using the corrected initial position distribution changes the average produc-
tion of ∆S2 obtained from the simulation of particle trajectories. Plot shows entropy production only over the
interval t = 2π

8 →
6π
8 (two temperature cycles)
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4.3 Improving the model for ρ

Although figures 4.13 and 4.15 suggest that a stationary approximation for ρ should be reasonable, it is never-

theless still a limitation of the model being employed. One way to go about improving it is to use equations 3.8

and 3.9, which along with the evaluation of v2 found in equation 3.50 give two differential equations if terms of

ρ and v̄. Solving these equations has been attempted in Mathematica, however it is not entirely obvious what

the appropriate boundary conditions to impose are. The conditions which have been tried are ρ(x, 0) = ρst,

v̄(x, 0) = 0 and then assuming that ρ and v̄ go to zero at the boundary, and the result it shown in figure 4.17.

Clearly the condition that v̄ → 0 at the boundaries is not correct and has been ignored by Mathematica. The

results seems physcially reasonable; v̄ is an odd function of position and varies periodically, as well as increasing

in magnitude for larger x where the variation in temperature is also largest. There are only very slight variations

in ρ from ρst which can be seen more clearly in figure 4.18 where ρ is plotted for particular values of x. The

variation in time would be expected to be periodic, and we see this is almost the case however the values are

falling slightly after each period. This is not a result of the system settling down as it appears to occur for all

values of x, and so there is a clear problem with this solution in that probability seems to be leaking away. It is

also the case that trying to solve the equations over a longer period of time or over too wide a range of position

values causes the solution of break down, which is another reason to doubt its reliability. Nevertheless it is of

interest to see whether using this model has any effect on the entropy production. Figure 4.19 (a) shows the

difference between the average total entropy production calculated over many particle trajectories between this

and the ρ = ρst, v̄ = 0 model (note this was done using the uncorrected initial position distribution), and (b)

shows the analytic difference (for this new model the average is calculated numerically directly from equation

3.16). In both cases the difference is very small, which if the solutions found for ρ and v̄ found can in anyway

be trusted would suggest that the ρ = ρst, v̄ = 0 approximation is good enough for the parameters being used,

meaning that the problems with previous results are still without explanation. Something which could be inter-

esting would be to try and calculate an approximate ρ and v̄ in a slightly different way and compare with the

method used here. Perhaps a reasonable approximation for ρ would be given by ρ ≈ 1
T (x,t)exp

(∫ x
0
dx′ −κx

′

kT (x′,t)

)
with T (x, t) = Tr(x, t) − 1

2γ
∂Tr
∂t as in equation 3.54. v̄ could then be calculated from the continuity equation

(equation 3.8), although again there may be a problem with what boundary conditions to impose. If we could

assume ρv̄ → 0 as |x| → ∞ then we can write

ρ(x, t) ¯v(x, t) =

∫ x

−∞

∂ρ

∂t
dx′ (4.6)

however it is not necessarily obvious whether this would be a valid thing to do. Unfortunately there has not

been enough time to investigate this more carefully.
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Figure 4.19: ρ and v̄ calculated numerically from equations 3.8 and 3.9 in Mathematica.

Figure 4.20: ρ as calculated for figure 4.17, but taken at specific values of x over the three temperature cycles.

Figure 4.21: (a) Average total entropy production obtained with this newer model compared to the previous
result, calculated by simulation of particle trajectories. (from t = 2π

ω →
6π
ω (here still using the incorrect initial

position distribution) (b) Average total entropy production predicted analytically for both models. (t = 0→ 6π
ω )
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Chapter 5

Conclusion

Overall the aims of the project have been achieved to a limited degree. There seem to be promising signs

that the method being employed is close to working properly and analytic and numerically simulated averages

for the total entropy and its three components have been calculated and are reasonably close to agreement.

However certainly there are problems which still need to be addressed, as something is not quite working as it

should be. Potential problems have been discussed and include some of the approximations used in solving the

Kramers equation as well as perhaps needing to think about using parameters corresponding to a slower change

in the heat bath temperature profile. However as the latest results were obtained too recently for them to be

thoroughly investigated, it seems likely there may be another unaccounted for source of error as well.
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Appendix A

Code to Simulate Particle Trajectories

This is the C++ code used for the simulation of particle trajectories. Note that ∆S1 is calculated using

Stratonovich rules[11], rather than Ito calculus introduced in chapter 2. This was done as the expression is a

little simpler using these rules, although in retrospect this slight simplification is not really worth it for how

much more unpleasant it makes the code to read by having to define a number of additional variables. Also in

retrospect another obvious simplification would have been to define a function for pst rather than defining so

many variations as separate arrays. In its current form it is designed to run on the UCL legion cluster.

1 #d e f i n e USE MATH DEFINES

3 #inc lude <iostream>

#inc lude <math . h>

5 #inc lude <time . h>

#inc lude <c s t d l i b>

7 #inc lude <random>

#inc lude <fstream>

9 #inc lude <sstream>

11 us ing namespace std ;

13 i n t main ( i n t argc , char ∗argv [ ] ) {

15 i n t jobno = a t o i ( argv [ 1 ] ) ; // take job number from leg ion , so that the random seed i s d i f f e r e n t f o r

each run .

17 srand ( time (NULL)+jobno ) ; // seed RNG

19 i n t k = 1000000; // number o f t r a j e c t o r i e s

i n t N = 20000; // number o f t imesteps per t r a j e c t o r y

21

// d e f i n e important constants

23

double w = 8 . 0 ; // angular f requency

25 double T = 6∗M PI/w; // per iod o f t r a j e c t o r y (3 c y c l e s )

double dt = T/(N−1) ; // time increment

27 double sqdt = sq r t ( dt ) ; // square root o f dt

double kappa = 1 ; // f o r c e constant o f c on f i n i ng p o t e n t i a l

29 double m = 1 ; // p a r t i c l e mass

double gamma = 6 0 . 0 ; // damping c o e f f i c i e n t

31 double boltzmannk = 1 . 0 ; // us ing un i t s o f k=1

double T0 = 1 . 0 ; // temp at o r i g i n ( at t=0)

33 double B = 0 . 2 ; // c o e f f i c i e n t f o r t−dependence o f r e s e r v o i r temp

double A = 0 . 5 ; // c o e f f i c i e n t f o r s p a t i a l dependence o f r e s e r v o i r temp

35 double dx = 0 .00001 ; /∗ used f o r eva lua t ing d e r i v a t i v e s . Small enough f o r e x p r e s s i o n s to agree with
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eva lua t i on o f f u l l exp r e s s i on in Mathematica to at l e a s t 5 s . f . ∗/
37

// i n i t i a l i z e RNG f o r normal d i s t r i b u t i o n

39 de fau l t random eng ine generator ;

generator . seed ( time (NULL)+jobno ) ;

41 norma l d i s t r i bu t i on<double> d i s t r i b u t i o n ( 0 . 0 , 1 . 0 ) ; // d i s t r i b u t i o n has mean 0 , stddev 1

43

// de c l a r e array v a r i a b l e s :

45 double ∗ av t ra j , ∗ a v t r a j s y s , ∗ av traj med , ∗ av t r a j d s1 , ∗ av t r a j d s2 , ∗ av t r a j d s3 , ∗dSsys ,

∗dSmed , ∗dS1 , ∗dS2 , ∗dS3 , ∗Stra j , ∗Stra j1 , ∗Stra j2 , ∗Stra j3 , ∗Smedtraj , ∗ Ssys t ra j ,

47 ∗STOT, ∗S1TOT, ∗S2TOT, ∗S3TOT, ∗x , ∗v , ∗ s t r x , ∗ s t r v , ∗dW, ∗temp , ∗dtempx , ∗ str temp ,

∗ str dtempx ,∗ dtempt , ∗ s tr tempplus , ∗ str tempminus , ∗ str dtempxplus , ∗ str dtempxminus ,

49 ∗ tempplus , ∗tempminus , ∗dtempxplus , ∗dtempxminus , ∗pdf , ∗pstat , ∗ s t r p s ta tpx ,

∗ str pstatmx , ∗ s t r p s ta tpv , ∗ str pstatmv , ∗pstatep , ∗pstatpx , ∗pstatmx , ∗pstatpv , ∗pstatmv ;

51

53 a v t r a j = new double [N ] ; // av . s t o t at each t imestep

a v t r a j s y s = new double [N ] ; // av . s s y s at each t imestep

55 av tra j med = new double [N ] ; //av . s med at each t imestep

a v t r a j d s 1 = new double [N ] ; // ’ ’ s 1 ’ ’

57 a v t r a j d s 2 = new double [N ] ; // ’ ’ s 2 ’ ’

a v t r a j d s 3 = new double [N ] ; // ’ ’ s 3 ’ ’

59

// v a r i a b l e s f o r s t o r i n g the f i n a l va lue o f entropy f o r each t r a j e c t o r y .

61 STOT = new double [ k ] ;

S1TOT = new double [ k ] ;

63 S2TOT = new double [ k ] ;

S3TOT = new double [ k ] ;

65

67 f o r ( i n t y=0; y<N; y++) {
a v t r a j [ y ]=0 . 0 ;

69 a v t r a j s y s [ y ]=0 . 0 ;

av tra j med [ y ]=0 . 0 ;

71 a v t r a j d s 1 [ y ]=0 . 0 ;

a v t r a j d s 2 [ y ]=0 . 0 ;

73 a v t r a j d s 3 [ y ]=0 . 0 ;

}
75

77 // s t a r t i t e r a t i o n o f k t r a j e c t o r i e s

f o r ( i n t i =0; i < k ; i++) {
79

// generate random no i s e f o r each t imestep o f the t r a j e c t o r y

81 dW = new double [N ] ;

83 f o r ( i n t r =0; r < N; r++) {
dW[ r ] = d i s t r i b u t i o n ( generator ) ∗ sqdt ;

85 }

87

/∗Note on v a r i a b l e s which begin with s t r . . . .

89 Used to eva luate Delta S 1 as the expr e s s i on us ing Stratonov ich c a l c u l u s i s s imple r (

a l t e r n a t i v e to I t o ca l cu lu s ,

s ee r e f e r e n c e X) , but the ex p r e s s i o n s must be eva luated at the midpoint o f each incrementa l

t imestep . In h inds i ght

91 t h i s wasn ’ t nece s sa ry . ∗/

93 // de c l a r e v a r i a b l e s to be used f o r each t r a j e c t o r y .

v = new double [N ] ; // v e l o c i t y along t r a j e c t o r y

95 x = new double [N ] ; // p o s i t i o n along t r a j e c t o r y

s t r v = new double [N ] ; // v e l o c i t y at the midpoint o f each t imestep i . e . 0 . 5 ( v [ j +1]+v [ j ] )

97 s t r x = new double [N ] ; // p o s i t i o n at midpoint o f each t imestep

temp = new double [N ] ; // temperature at po int on t r a j e c t o r y .

99 tempplus = new double [N ] ; // eva luated at x [ j ]+dx ( to eva luate d e r i v a t i v e s )
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tempminus = new double [N ] ; // eva luated at x [ j ]−dx

101 str temp = new double [N ] ; // temp with p o s i t i o n eva luated at midpoint o f t imestep .

s t r t empplus = new double [N ] ; /∗temp eva luated at s l i g h t l y l a r g e r x value . Used f o r

103 d e r i v a t i v e o f ps ta t ∗/
str tempminus = new double [N ] ; // temp at s l i g h t l y lower x value

105 dtempx = new double [N ] ; // d e r i v a t i v e o f temp wrt x at each point on t r a j e c t o r y

dtempxplus = new double [N ] ;

107 dtempxminus = new double [N ] ;

str dtempx = new double [N ] ; // as above eva luated at midpoint .

109 s tr dtempxplus = new double [N ] ; // de r iv o f temp wrt x eva luated at s l i g h t l y l a r g e r x

str dtempxminus = new double [N ] ; // eva l . s l i g h t l y lower x .

111 dtempt = new double [N ] ; // d e r i v a t i v e o f temp wrt t at each point on t r a j e c t o r

pdf = new double [N ] ; // prob . dens i ty func t i on at each point on t r a j e c t o r y .

113 pstat = new double [N ] ; // d i s t r i b u t i o n which would r e l a x to i f d r i v i ng were suddenly f r o z en

pstatpx = new double [N ] ; // eva l at x+dx

115 pstatmx = new double [N ] ; // eva l at x−dx

pstatpv = new double [N ] ; // eva l at v+dx

117 pstatmv = new double [N ] ; // eva l at v−dx

pstatep = new double [N ] ; // ps tat eva luated at −v

119 s t r p s t a t p x = new double [N ] ; // ps tat eva luated at 0 . 5 ( x [ j ]+x [ j +1])+dx

str pstatmx = new double [N ] ; // at 0 . 5 ( x [ j ]+x [ j +1])−dx

121 s t r p s t a t p v = new double [N ] ; // at 0 . 5 ( v [ j ]+v [ j +1])+dx

str pstatmv = new double [N ] ; // at 0 . 5 ( v [ j ]+v [ j +1])−dx

123 S t r a j = new double [N ] ; // cumulat ive t o t a l entropy product ion along t r a j e c t o r y

S s y s t r a j = new double [N ] ; // cumulat ive system entropy

125 Smedtraj = new double [N ] ; // cumulat ive medium entropy

St ra j 1 = new double [N ] ; // cumulat ive S1

127 St ra j 2 = new double [N ] ; // cumulat ive S2

St ra j 3= new double [N ] ; // cumulat ive S3

129 dSsys = new double [N ] ; // incrementa l i n c r e a s e at t imestep

dSmed = new double [N ] ;

131 dS1 = new double [N ] ;

dS2 = new double [N ] ;

133 dS3 = new double [N ] ;

135

// sample i n i t i a l va lues from a boltzmann d i s t r i b u t i o n at T0

137 x [ 0 ] = d i s t r i b u t i o n ( generator ) ∗ s q r t ( boltzmannk∗T0/kappa ) ;

v [ 0 ] = d i s t r i b u t i o n ( generator ) ∗ s q r t ( boltzmannk∗T0/m) ;

139 temp [ 0 ] = T0∗(1+A∗(x [ 0 ] ∗ x [ 0 ] / ( 2∗ boltzmannk∗T0) ) ) ;

// t h i s i s a l l which i s r equ i r ed to c a l c u l a t e next x and v va lues .

141

// I n i t i a l i z e these to zero .

143 S t r a j [ 0 ] = 0 . 0 ;

S s y s t r a j [ 0 ] = 0 . 0 ;

145 Smedtraj [ 0 ] = 0 . 0 ;

S t ra j 1 [ 0 ] = 0 . 0 ;

147 St ra j 2 [ 0 ] = 0 . 0 ;

S t ra j 3 [ 0 ] = 0 . 0 ;

149 dSsys [ 0 ] = 0 . 0 ;

dSmed [ 0 ] = 0 . 0 ;

151 dS1 [ 0 ] = 0 . 0 ;

dS2 [ 0 ] = 0 . 0 ;

153 dS3 [ 0 ] = 0 . 0 ;

155 // begin main s imu la t i on o f the kth t r a j e c t o r y

f o r ( i n t j =0; j<(N−1) ; j++) {
157 x [ j +1] = x [ j ] + v [ j ]∗ dt ;

v [ j +1] = v [ j ] −(gamma∗v [ j ]∗ dt ) − ( ( kappa∗x [ j ] ) /m)∗dt +

159 s q r t ( (2∗ boltzmannk∗temp [ j ]∗gamma) /m)∗dW[ j ] ;

s t r x [ j +1] = 0 .5∗ ( x [ j ]+x [ j +1]) ;

161 s t r v [ j +1] = 0 .5∗ ( v [ j ]+v [ j +1]) ;

163 // d e f i n e to s i m p l i f y ps tat e x p r e s s i o n s .

double skapT0 = A+B∗ s i n (w∗dt∗ j ) ;

165 double skapT02 = A + B∗ s i n (w∗( j +1)∗dt ) ;
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167 temp [ j +1] = T0∗(1+(A+(B∗ s i n (w∗( j +1)∗dt ) ) ) ∗(x [ j +1]∗x [ j +1]/(2∗ boltzmannk∗T0) ) ) ;

tempplus [ j +1] = T0∗(1+(A+(B∗ s i n (w∗( j +1)∗dt ) ) ) ∗ ( ( x [ j +1]+dx ) ∗(x [ j +1]+dx ) /(2∗ boltzmannk∗T0) ) ) ;

169 tempminus [ j +1] = T0∗(1+(A+(B∗ s i n (w∗( j +1)∗dt ) ) ) ∗ ( ( x [ j +1]−dx ) ∗(x [ j +1]−dx ) /(2∗ boltzmannk∗T0) ) ) ;

s tr temp [ j +1] = T0∗(1+(A+(B∗ s i n (w∗ j ∗dt ) ) ) ∗( s t r x [ j +1]∗ s t r x [ j +1]/(2∗ boltzmannk∗T0) ) ) ;

171 s t r t empplus [ j +1] = T0∗(1+(A+(B∗ s i n (w∗ j ∗dt ) ) ) ∗ ( ( s t r x [ j +1]+dx ) ∗( s t r x [ j +1]+dx )

/(2∗ boltzmannk∗T0) ) ) ;

173 str tempminus [ j +1] = T0∗(1+(A+(B∗ s i n (w∗ j ∗dt ) ) ) ∗ ( ( s t r x [ j +1]−dx ) ∗( s t r x [ j +1]−dx )

/(2∗ boltzmannk∗T0) ) ) ;

175

dtempx [ j +1] = (A+B∗ s i n (w∗dt ∗( j +1) ) ) ∗(x [ j +1]/( boltzmannk ) ) ;

177 dtempxplus [ j +1] = (A+B∗ s i n (w∗dt ∗( j +1) ) ) ∗ ( ( x [ j +1]+dx ) /( boltzmannk ) ) ;

dtempxminus [ j +1] = (A+B∗ s i n (w∗dt ∗( j +1) ) ) ∗ ( ( x [ j +1]−dx ) /( boltzmannk ) ) ;

179 str dtempx [ j +1] = (A+B∗ s i n (w∗dt∗ j ) ) ∗( s t r x [ j +1]/( boltzmannk ) ) ;

s t r dtempxplus [ j +1] = (A+B∗ s i n (w∗dt∗ j ) ) ∗ ( ( s t r x [ j +1]+dx ) /( boltzmannk ) ) ;

181 str dtempxminus [ j +1] = (A+B∗ s i n (w∗dt∗ j ) ) ∗ ( ( s t r x [ j +1]−dx ) /( boltzmannk ) ) ;

183 dtempt [ j +1] = (x [ j +1]∗x [ j +1]/(2∗ boltzmannk ) ) ∗(w∗B∗ cos (w∗dt ∗( j +1) ) ) ;

185 //Note constant f a c t o r s l e f t out as only concerned with log ( pdf [ j +1]/ pdf [ j ] ) .

pdf [ j +1] = sq r t ( (1/ temp [ j +1]) )∗exp(−(m∗v [ j +1]∗v [ j +1]) /(2∗ boltzmannk∗temp [ j +1]) )

187 ∗pow((1+(A∗x [ j +1]∗x [ j +1]) /(2∗ boltzmannk∗T0) ) ,(−1∗( kappa/A)−1) )

∗(1+(1/(4∗gamma∗temp [ j +1]) )∗dtempt [ j +1] + (1/(2∗gamma∗temp [ j +1]) )

189 ∗dtempx [ j +1]∗v [ j +1] − (m/(4∗ boltzmannk∗gamma∗temp [ j +1]∗temp [ j +1]) )

∗dtempt [ j +1]∗v [ j +1]∗v [ j +1]−(m/(6∗gamma∗boltzmannk∗temp [ j +1]∗temp [ j +1]) )

191 ∗dtempx [ j +1]∗v [ j +1]∗v [ j +1]∗v [ j +1]) ;

193

pstat [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

195 tgamma(0.5+( kappa/skapT02 ) ) )∗pow( temp [ j +1],−1−(kappa/skapT02 ) )

∗ s q r t (m/(2∗M PI∗boltzmannk∗temp [ j +1]) )∗exp(−(m∗v [ j +1]∗v [ j +1])

197 /(2∗ boltzmannk∗temp [ j +1]) ) ∗(1+(1/(2∗gamma∗temp [ j +1]) )∗v [ j +1]∗dtempx [ j +1] −
(m/(6∗gamma∗boltzmannk∗temp [ j +1]∗temp [ j +1]) )∗v [ j +1]∗v [ j +1]∗v [ j +1]∗dtempx [ j +1]) ;

199

201 pstatep [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

tgamma(0.5+( kappa/skapT02 ) ) )∗pow( temp [ j +1],−1−(kappa/skapT02 ) )

203 ∗ sq r t (m/(2∗M PI∗boltzmannk∗temp [ j +1]) )∗exp(−(m∗v [ j +1]∗v [ j +1])

/(2∗ boltzmannk∗temp [ j +1]) ) ∗(1−(1/(2∗gamma∗temp [ j +1]) )∗v [ j +1]∗dtempx [ j +1] +

205 (m/(6∗gamma∗boltzmannk∗temp [ j +1]∗temp [ j +1]) )∗v [ j +1]∗v [ j +1]∗v [ j +1]∗dtempx [ j +1]) ;

207

s t r p s t a t p v [ j +1] = sq r t ( skapT0 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT0 ) ) /

209 tgamma(0.5+( kappa/skapT0 ) ) )∗pow( str temp [ j +1],−1−(kappa/skapT0 ) )

∗ s q r t (m/(2∗M PI∗boltzmannk∗ str temp [ j +1]) )∗exp(−(m∗( s t r v [ j +1]+dx )

211 ∗( s t r v [ j +1]+dx ) ) /(2∗ boltzmannk∗ str temp [ j +1]) )∗(1+

(1/(2∗gamma∗ str temp [ j +1]) ) ∗( s t r v [ j +1]+dx )∗ str dtempx [ j +1] −
213 (m/(6∗gamma∗boltzmannk∗ str temp [ j +1]∗ str temp [ j +1]) ) ∗( s t r v [ j +1]+dx )∗

( s t r v [ j +1]+dx ) ∗( s t r v [ j +1]+dx )∗ str dtempx [ j +1]) ;

215

217 pstatpv [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

tgamma(0.5+( kappa/skapT02 ) ) )∗pow( temp [ j +1],−1−(kappa/skapT02 ) )

219 ∗ sq r t (m/(2∗M PI∗boltzmannk∗temp [ j +1]) )∗exp(−(m∗((−1∗v [ j +1])+dx )

∗((−1∗v [ j +1])+dx ) ) /(2∗ boltzmannk∗temp [ j +1]) ) ∗(1+(1/(2∗gamma∗temp [ j +1]) )

221 ∗((−1∗v [ j +1])+dx )∗dtempx [ j +1]− (m/(6∗gamma∗boltzmannk∗temp [ j +1]∗temp [ j +1]) )

∗((−1∗v [ j +1])+dx ) ∗((−1∗v [ j +1])+dx ) ∗((−1∗v [ j +1])+dx )∗dtempx [ j +1]) ;

223

225 s t r pstatmv [ j +1] = sq r t ( skapT0 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT0 ) ) /

tgamma(0.5+( kappa/skapT0 ) ) )∗pow( str temp [ j +1],−1−(kappa/skapT0 ) )

227 ∗ s q r t (m/(2∗M PI∗boltzmannk∗ str temp [ j +1]) )∗exp(−(m∗( s t r v [ j +1]−dx )

∗( s t r v [ j +1]−dx ) ) /(2∗ boltzmannk∗ str temp [ j +1]) )∗(1+

229 (1/(2∗gamma∗ str temp [ j +1]) ) ∗( s t r v [ j +1]−dx )∗ str dtempx [ j +1] −
(m/(6∗gamma∗boltzmannk∗ str temp [ j +1]∗ str temp [ j +1]) ) ∗( s t r v [ j +1]−dx )

231 ∗( s t r v [ j +1]−dx ) ∗( s t r v [ j +1]−dx )∗ str dtempx [ j +1]) ;
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233

pstatmv [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

235 tgamma(0.5+( kappa/skapT02 ) ) )∗pow( temp [ j +1],−1−(kappa/skapT02 ) )∗
sq r t (m/(2∗M PI∗boltzmannk∗temp [ j +1]) )∗exp(−(m∗((−1∗v [ j +1])−dx )∗

237 ((−1∗v [ j +1])−dx ) ) /(2∗ boltzmannk∗temp [ j +1]) ) ∗(1+(1/(2∗gamma∗temp [ j +1]) )

∗((−1∗v [ j +1])−dx )∗dtempx [ j +1]− (m/(6∗gamma∗boltzmannk∗temp [ j +1]∗temp [ j +1]) )

239 ∗((−1∗v [ j +1])−dx ) ∗((−1∗v [ j +1])−dx ) ∗((−1∗v [ j +1])−dx )∗dtempx [ j +1]) ;

241

s t r p s t a t p x [ j +1] = sq r t ( skapT0 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT0 ) ) /

243 tgamma(0.5+( kappa/skapT0 ) ) )∗pow( s t r t empplus [ j +1],−1−(kappa/skapT0 ) )

∗ s q r t (m/(2∗M PI∗boltzmannk∗ s t r t empplus [ j +1]) )∗exp(−(m∗ s t r v [ j +1]∗ s t r v [ j +1])

245 /(2∗ boltzmannk∗ s t r t empplus [ j +1]) ) ∗(1+(1/(2∗gamma∗ s t r t empplus [ j +1]) )

∗ s t r v [ j +1]∗ s tr dtempxplus [ j +1] − (m/(6∗gamma∗boltzmannk∗ s t r t empplus [ j +1]

247 ∗ s t r t empplus [ j +1]) )∗ s t r v [ j +1]∗ s t r v [ j +1]∗ s t r v [ j +1]∗ s tr dtempxplus [ j +1]) ;

249

pstatpx [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

251 tgamma(0.5+( kappa/skapT02 ) ) )∗pow( tempplus [ j +1],−1−(kappa/skapT02 ) )

∗ s q r t (m/(2∗M PI∗boltzmannk∗ tempplus [ j +1]) )∗exp(−(m∗v [ j +1]∗v [ j +1]) /

253 (2∗ boltzmannk∗ tempplus [ j +1]) ) ∗(1−(1/(2∗gamma∗ tempplus [ j +1]) )∗v [ j +1]

∗dtempxplus [ j +1] + (m/(6∗gamma∗boltzmannk∗ tempplus [ j +1]∗ tempplus [ j +1]) )

255 ∗v [ j +1]∗v [ j +1]∗v [ j +1]∗dtempxplus [ j +1]) ;

257

s t r pstatmx [ j +1] = sq r t ( skapT0 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT0 ) ) /

259 tgamma(0.5+( kappa/skapT0 ) ) )∗pow( str tempminus [ j +1],−1−(kappa/skapT0 ) )

∗ s q r t (m/(2∗M PI∗boltzmannk∗ str tempminus [ j +1]) )∗exp(−(m∗ s t r v [ j +1]∗
261 s t r v [ j +1]) /(2∗ boltzmannk∗ str tempminus [ j +1]) ) ∗(1+(1/(2∗gamma∗

str tempminus [ j +1]) )∗ s t r v [ j +1]∗ str dtempxminus [ j +1] −
263 (m/(6∗gamma∗boltzmannk∗ str tempminus [ j +1]∗ str tempminus [ j +1]) )

∗ s t r v [ j +1]∗ s t r v [ j +1]∗ s t r v [ j +1]∗ str dtempxminus [ j +1]) ;

265

267 pstatmx [ j +1] = sq r t ( skapT02 /(2∗M PI∗boltzmannk∗T0) ) ∗(tgamma(1+(kappa/skapT02 ) ) /

tgamma(0.5+( kappa/skapT02 ) ) )∗pow( tempminus [ j +1],−1−(kappa/skapT02 ) )

269 ∗ s q r t (m/(2∗M PI∗boltzmannk∗tempminus [ j +1]) )∗exp(−(m∗v [ j +1]∗v [ j +1]) /

(2∗ boltzmannk∗tempminus [ j +1]) ) ∗(1−(1/(2∗gamma∗tempminus [ j +1]) )∗v [ j +1]∗
271 dtempxminus [ j +1] + (m/(6∗gamma∗boltzmannk∗tempminus [ j +1]∗ tempminus [ j +1]) )

∗v [ j +1]∗v [ j +1]∗v [ j +1]∗dtempxminus [ j +1]) ;

273

275 /∗ do not c a l c u l a t e an increment when j =0. Saves having to d e f i n e the zero value o f every

array being used separa te ly , and n e g l i g i b l e d i f f e r e n c e . ∗/
277 i f ( j==0) {

dSsys [ j +1] = 0 ;

279 dSmed [ j +1] = 0 ;

dS1 [ j +1] = 0 ;

281 dS2 [ j +1] = 0 ;

dS3 [ j +1] = 0 ;

283 } e l s e {
dSsys [ j +1] = −( l og ( pdf [ j +1]) − l og ( pdf [ j ] ) ) ;

285

dSmed [ j +1] = (−1/(boltzmannk∗temp [ j ] ) ) ∗(m/2) ∗(v [ j +1]∗v [ j +1]−v [ j ]∗ v [ j ] ) −
287 ( kappa∗x [ j ] / ( boltzmannk∗temp [ j ] ) )∗v [ j ]∗ dt ;

289 dS1 [ j +1] = ( ( log ( s t r p s t a t p x [ j +1])−l og ( s t r pstatmx [ j +1]) ) /(2∗dx ) ) ∗(x [ j +1]−x [ j ] ) +

( ( l og ( s t r p s t a t p v [ j +1])−l og ( s t r pstatmv [ j +1]) ) /(2∗dx ) ) ∗(v [ j +1]−v [ j ] ) ;

291

dS2 [ j +1] = −(v [ j ]∗ x [ j ]∗ dt /( boltzmannk∗temp [ j ] ) ) −
293 (m∗v [ j ]∗ ( v [ j +1]−v [ j ] ) ) /( boltzmannk∗temp [ j ] ) −

( x [ j +1]−x [ j ] ) ∗ ( ( l og ( pstatpx [ j ] )−l og ( pstatmx [ j ] ) ) /(2∗dx ) ) −
295 ( v [ j +1]−v [ j ] ) ∗ ( ( l og ( pstatpv [ j ] )−l og ( pstatmv [ j ] ) ) /(2∗dx ) )

+(boltzmannk∗temp [ j ]∗gamma∗dt/m)∗pow ( ( ( l og ( pstatpv [ j ] )−l og ( pstatmv [ j ] ) ) /(2∗dx ) )

,2 )
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297 +v [ j ]∗ dt ∗ ( ( l og ( pstatpx [ j ] )−l og ( pstatmx [ j ] ) ) /(2∗dx ) ) −
dt ∗(gamma∗v [ j ]−(x [ j ] /m) ) ∗ ( ( l og ( pstatpv [ j ] )−l og ( pstatmv [ j ] ) ) /(2∗dx ) ) ;

299

dS3 [ j +1] = log ( ( ps tat [ j ] / ps tat [ j +1]) ∗( pstatep [ j +1]/ pstatep [ j ] ) ) ;

301

}
303 // cumulat ive o f each entropy component along t r a j e c t o r y .

S s y s t r a j [ j +1] = S s y s t r a j [ j ]+ dSsys [ j +1] ;

305 Smedtraj [ j +1] = Smedtraj [ j ]+dSmed [ j +1] ;

S t r a j [ j +1] = St r a j [ j ]+ dSmed [ j +1] + dSsys [ j +1] ;

307 St ra j 1 [ j +1] = St ra j 1 [ j ] + dS1 [ j +1] + dSsys [ j +1] ;

S t r a j 2 [ j +1] = St ra j 2 [ j ] + dS2 [ j +1] ;

309 St ra j 3 [ j +1] = St ra j 3 [ j ] + dS3 [ j +1] ;

311 /∗ add cumulat ive value at each t imestep to the average va lues f o r that t imestep .

Divide by t o t a l no . t r a j e c t o r i e s l a t e r when data i s analyzed , as data comes from

313 mult ip l e runs o f t h i s code on the Legion c l u s t e r anyway∗/
a v t r a j [ j +1] += St ra j [ j +1] ;

315 a v t r a j s y s [ j +1] += S s y s t r a j [ j +1] ;

av tra j med [ j +1] += Smedtraj [ j +1] ;

317 a v t r a j d s 1 [ j +1] += St ra j 1 [ j +1] ;

a v t r a j d s 2 [ j +1] += St ra j 2 [ j +1] ;

319 a v t r a j d s 3 [ j +1] += St ra j 3 [ j +1] ;

321 } //end o f j loop ( end o f t r a j e c t o r y )

323 // save va lues o f s t o t ( from 2 pi /8 −> 6 pi /8 here )

STOT[ i ] = St r a j [N−1] − S t r a j [N−13334] ;

325 S1TOT[ i ] = St ra j 1 [N−1] − St ra j 1 [N−13334] ;

S2TOT[ i ] = St ra j 2 [N−1] − St ra j 2 [N−13334] ;

327 S3TOT[ i ] = St ra j 3 [N−1] − St ra j 3 [N−13334] ;

329 // c l e a r v a r i a b l e s f o r next t r a j e c t o r y . Does l ead to problems i f t h i s s tep i sn ’ t taken .

d e l e t e [ ] tempin i t ;

331 d e l e t e [ ] x i n i t ;

d e l e t e [ ] v i n i t ;

333 d e l e t e [ ] S t r a j 1 ;

d e l e t e [ ] S t r a j 3 ;

335 d e l e t e [ ] dS3 ;

d e l e t e [ ] pstatep ;

337 d e l e t e [ ] dS1 ;

d e l e t e [ ] s t r t empplus ;

339 d e l e t e [ ] str tempminus ;

d e l e t e [ ] s t r dtempxplus ;

341 d e l e t e [ ] str dtempxminus ;

d e l e t e [ ] p s ta t ;

343 d e l e t e [ ] s t r p s t a t p v ;

d e l e t e [ ] s t r pstatmv ;

345 d e l e t e [ ] s t r p s t a t p x ;

d e l e t e [ ] s t r pstatmx ;

347 d e l e t e [ ] S t r a j ;

d e l e t e [ ] Smedtraj ;

349 d e l e t e [ ] S s y s t r a j ;

d e l e t e [ ] x ;

351 d e l e t e [ ] v ;

d e l e t e [ ] temp ;

353 d e l e t e [ ] dtempt ;

d e l e t e [ ] dtempx ;

355 d e l e t e [ ] pdf ;

d e l e t e [ ] dSsys ;

357 d e l e t e [ ] dSmed ;

d e l e t e [ ] s t r x ;

359 d e l e t e [ ] s t r v ;

d e l e t e [ ] str dtempx ;

361 d e l e t e [ ] tempplus ;

d e l e t e [ ] tempminus ;
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363 d e l e t e [ ] dtempxplus ;

d e l e t e [ ] dtempxminus ;

365 d e l e t e [ ] s t r temp ;

d e l e t e [ ] dS2 ;

367 d e l e t e [ ] S t r a j 2 ;

d e l e t e [ ] pstatpv ;

369 d e l e t e [ ] pstatmv ;

d e l e t e [ ] pstatpx ;

371 d e l e t e [ ] pstatmx ;

373 } //end o f s imu la t i on

375 // output data

double randno=rand ( ) %100000+999;

377 os t r ings t r eam os1 ;

o s t r ing s t r eam os2 ;

379 os t r ings t r eam os3 ;

o s t r ing s t r eam os4 ;

381 os t r ings t r eam os5 ;

o s t r ing s t r eam os6 ;

383 os t r ings t r eam os7 ;

o s t r ing s t r eam os8 ;

385 os t r ings t r eam os9 ;

o s t r ing s t r eam os10 ;

387 os1 << ” s t o t t r a j ” << randno << ” . txt ” ;

os2 << ” s s y s t r a j ” << randno << ” . txt ” ;

389 os3 << ”smedmedtraj” << randno << ” . txt ” ;

os4 << ” s 1 t r a j ” << randno << ” . txt ” ;

391 os5 << ” s 2 t r a j ” << randno << ” . txt ” ;

os6 << ” s 3 t r a j ” << randno << ” . txt ” ;

393 os7 << ” s t o t h i s t ” << randno << ” . txt ” ;

os8 << ” s 1 h i s t ” << randno << ” . txt ” ;

395 os9 << ” s 2 h i s t ” << randno << ” . txt ” ;

os10 << ” s 3 h i s t ” << randno << ” . txt ” ;

397 s t r i n g s t r 1 = os1 . s t r ( ) ;

s t r i n g s t r 2 = os2 . s t r ( ) ;

399 s t r i n g s t r 3 = os3 . s t r ( ) ;

s t r i n g s t r 4 = os4 . s t r ( ) ;

401 s t r i n g s t r 5 = os5 . s t r ( ) ;

s t r i n g s t r 6 = os6 . s t r ( ) ;

403 s t r i n g s t r 7 = os7 . s t r ( ) ;

s t r i n g s t r 8 = os8 . s t r ( ) ;

405 s t r i n g s t r 9 = os9 . s t r ( ) ;

s t r i n g s t r 10 = os10 . s t r ( ) ;

407 ofstream outone ( s t r 1 ) ;

o f stream outtwo ( s t r 2 ) ;

409 ofstream outthree ( s t r 3 ) ;

o f stream out four ( s t r 4 ) ;

411 ofstream o u t f i v e ( s t r 5 ) ;

o f stream out s i x ( s t r 6 ) ;

413 ofstream outseven ( s t r 7 ) ;

o f stream oute ight ( s t r 8 ) ;

415 ofstream outnine ( s t r 9 ) ;

o f stream outten ( s t r 10 ) ;

417 outone . p r e c i s i o n (10) ;

outtwo . p r e c i s i o n (10) ;

419 outthree . p r e c i s i o n (10) ;

out four . p r e c i s i o n (10) ;

421 o u t f i v e . p r e c i s i o n (10) ;

ou t s i x . p r e c i s i o n (10) ;

423 outseven . p r e c i s i o n (10) ;

oute i ght . p r e c i s i o n (10) ;

425 outnine . p r e c i s i o n (10) ;

outten . p r e c i s i o n (10) ;

427

f o r ( i n t l =0; l < N; l++) {

43



429 outone << a v t r a j [ l ] << ” ” ;

outtwo << a v t r a j s y s [ l ] << ” ” ;

431 outthree << av tra j med [ l ] << ” ” ;

out four << a v t r a j d s 1 [ l ] << ” ” ;

433 o u t f i v e << a v t r a j d s 2 [ l ] << ” ” ;

ou t s i x << a v t r a j d s 3 [ l ] << ” ” ;

435 }

437 f o r ( i n t h=0; h<k ; h++) {
outseven << STOT[ h ] << ” ” ;

439 oute i ght << S1TOT[ h ] << ” ” ;

outnine << S2TOT[ h ] << ” ” ;

441 outten << S3TOT[ h ] << ” ” ;

}
443

re turn 0 ;

445

}
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