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Abstract
Campylobacter is the most common bacteria causing gastroenteritis in UK. Although near 280 thousand cases
per year are estimated, detected outbreaks are relatively rare. Therefore, mathematical approaches are suitable
when exploring notification data to identify epidemics. This report proposes four different methods for detecting
potential outbreaks. Three of them are based on the spatio-temporal distribution of reported cases, whilst the last
one uses the genetic distances among Campylobacter samples. A sentinel surveillance dataset containing 743
incidents in Oxfordshire in the period April 2010 - March 2011 is used, dataset funded and collected by Public
Health England and the Food Standards Agency. Information about spatial and temporal locations is included,
as well as the structure of the whole genome. Although some outbreaks are identified in the spatio-temporal
analysis, a genome-to-genome comparison among cases is not conclusive. Results obtained based on a genetic
distance analysis suggest that the methodology potentially detects outbreaks but future testing and improvements
are required.
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1. Introduction
Bacteria are always present in the human body. Some of them
are harmless to humans while others are the main causes of
diseases, especially when transmitted through consumption
of contaminated food or contact with infected animals. In
UK, the most common bacteria implicated in food-borne ill-
nesses and gastroenteritis are Campylobacter (between 50%
and 80%), Salmonella and E. Coli, as reported by the Food
Standards Agency. Particularly, Campylobacter is responsible
for more than 280 thousand cases per year in UK, causing at
least 100 deaths and a cost of £900 million [3]. Therefore,
several strategies have been conducted to reduce the incidence
of cases. Since raw poultry is the common source of infection
[10], several sporadic cases are associated with undercooked
meat. However, the effectively identification of outbreaks
is relatively rare. Consequently mathematical approaches to
attack the problem are required. The main goal of this project
is to develop methodologies for outbreak detection based on
the disease notification databases.
Some statistical techniques have been studied for outbreak de-
tection, based on the spatio-temporal information of reported
cases. M. Kulldorff first proposed a spatial statistic for the
detection of clusters, assuming a multi-dimensional point pro-
cess on data [4]. Later, an alternative model was proposed by
the same author, suggesting a space-time permutation scan
statistic for finding regions with high number of cases when
compared with the remaining geographical areas [5]. An study
of the notification data from a region in New Zealand was
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described by [12]. It assumes that the number of cases per cell
follows a Poisson distribution and the estimation of the risk
associated is calculated performing a Bayesian hierarchical
model. On the other hand, the analysis of outbreak detection
based on the genome has been focussed on detecting the host
of the bacteria before transmission to humans. In [9] and [11]
genotyping models are proposed to determine the source of
infections.
This study had access to the reported cases of Campylobacte-
riosis in Oxfordshire, for a period of April 2010 - March 2011.
The dataset included demographic, spatial and temporal in-
formation, as well as the whole genome of collected samples.
None of the models developed in literature have had access to
both sources of data. This document is organised as follows.
Chapter 2 describes the databases and gives an overview of
the data. Chapter 3 describes the methodologies proposed.
Chapter 4 detailes the results obtained when applying the pro-
cedures to the databases. Finally, in Chapter 5 the results are
discussed

2. Data
Public Health of England and the Food Standards Agency
monitored Campylobacteriosis cases through a sentinel surveil-
lance in Oxfordshire, UK. A first part of the data collected
included information of the location and date of confirmed
cases from April 2010 to March 2011, as well as certain de-
mographic variables. Additionally, a second database was
constructed, comprising the genome sequences for the cases
with available processed isolates. Only 745 of the 999 cases
were considered, excluding those who traveled from abroad
in the previous weeks of the report. A detailed description
of the data is described in the following subsections. First
an overview of the epidemiological data is presented, giving
a qualitative insight into the possible outbreaks. Finally a
detailed description of the genomic data is covered. Some
notation is also introduced.

2.1 Epidemiological data
For each case, age, gender, address (postcode) and reported
date are included. When date was missing, it was replaced
by the date of notification to Public Health England. For the
analysis in this study, the area of Oxfordshire was partitioned
in the 104 postcode sectors according to the 2011 census,
obtained from the Office of National Statistics. This division
is the smaller possible based on postcodes, where each sector
comprises a population average of 5000 inhabitants, compared
to the total of 612827 in Oxfordshire. Therefore, postcode
sectors are smaller in urban areas than in rural zones, as shown
in Figure 1.
First, the distribution of occurrences as a function of time is
analysed. In Figure 2 the points represent the amount of cases
per week, starting in April 2010, while each bar corresponds
to the average amount of cases per month. The peak observed
in May, June and July represents a typical seasonal rise, result
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Figure 1. (Left) Partition of Oxfordshire in postcode sectors.
(Right) Population density in Oxfordshire, according to the
2011 census. Sectors with high population density are
enclosed in smaller areas.

that coincides with previous Campylobacteriosis seasonal-
ity studies [7]. Although there are some peaks in weeks 13
and 26, it is not strong evidence for classifying them as out-
breaks. Nevertheless, October and February have a number
of cases larger than expected compared to the overall, events
that should be tested in the quantitative analysis.
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Figure 2. Number of reported cases per week, from April
2010 to March 2011. The average of occurrences per month
are represented with bars.

Second, an evaluation of the frequency of cases as a function
of age is performed to infer potential outbreaks. In Figure
3 the distribution of age is visualised on a box plot for each
week, starting in April 2010. Weeks 1, 38, 39 and 42 are not
displayed since they are composed by few cases (less than
7 cases) and the box plots were not significative. In spite
of the fact that median for some weeks are larger than the
average (e.g week 5 and 20), no inference could be drawn that
they were potential outbreaks. However, in other studies there
has been notified breakouts where all individuals were within
the same age-group, as in [13]. Therefore, these observations
potentially support results obtained from quantitative analysis.
Finally, a study of the incidence of gender and type of loca-
tion (rural or urban) is performed. Figure 4 (top) shows the
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Figure 3. Distribution of age of reported cases per week,
from April 2010 to March 2011, excluding those with less
than 7 cases. The horizontal dotted line corresponds to the
median of age in UK (38.6 years), as calculated in the 2011
census. For each box plot, the first and third quartiles are
represented by the bottom and the top of the rectangle, while
the middle line shows the median. The upper whisker extends
from the third quartile to the maximum value below 1.5 times
the inter-quartile distance. Similarly for the lower whisker.

percentage of female cases per week, compared to the ratio
of female/total of Oxfordshire in the 2011 census (50.6%). In
general, males reports are more frequent than females ones
as observed in previous analysis performed in UK [7]. Two
possible outliers are observed in weeks 3 and 26, where the
ratio is larger than 75%. On the other hand, Figure 4 (bot-
tom) displays the percentage of rural cases, compared to the
Oxfordshire ratio (33.4%). Reported incidences in rural sec-
tors exhibited several peaks in contrast to urban cases. [7]
reported a significant correlation between Campylobacter sam-
ples and agricultural environments. Generally, agricultural
activities includes manipulation of poultry, cattle and other
host animal for Campylobacter, having an effect on incidence
rates. Although some weeks as the 34 have extreme values,
no inference can be made about the existence of outbreaks.
Oxfordshire is mostly rural, where the agriculture managed
around 80% of the county [3]. Therefore, several rural cases
are not necessarily confined to the same geographical region.

2.2 Genomic data
The epidemiological data described in the previous section
contains a link to an additional database covering the whole
Campylobacter genome of each reported case. However, this
database collected by the Food Standards Agency only in-
cludes samples (isolates) for the 71.4% of the reported inci-
dences (532 cases). The analysis of the sequence data was
performed by the software platform BIGSdb, comparing every
isolate within the database and providing a distance matrix
D of size 532×532, based on the amount of shared alleles.
Each di j ∈R represent the distance between the isolates ci and
c j, where di j = 0 indicates that both genomes are identical
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Figure 4. (Top) % of reported female cases cases per week,
from April 2010 to March 2011. The dashed line represents
the female/total ratio of Oxfordshire in the 2011 census.
(Bottom) % of reported rural cases cases per week, from
April 2010 to March 2011. The dashed line represents the
rural/total ratio of Oxfordshire in the 2011 census.

and di j = 1643 is the maximum possible value. A cumulative
plot of the obtained distances is shown in Figure 5, where the
maximum value obtained is 1637. Most of the cases are not
closely related.
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Figure 5. Cumulative frequency of distances between the
genomes, for the 532 cases with available genetic
information.

3. Methodology

The methodologies proposed in this study are divided into
the spatio-temporal ones, based in the epidemiological data,
and the genomic-based ones, derived from the genomic data.
Although the starting point of both approaches are separated,
they use the information both datasets.

3.1 Spatio-temporal analysis
In this section some methodologies for spatio-temporal data
clustering are introduced. The discrete Poisson model [4] is
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described in the first subsection. Two approaches based on
GLM are proposed in subsections 3.1.2 and 3.1.3. Based on
the partition mentioned previously, the following notation is
introduced and shall be used throughout the remainder of this
document. Let S ⊆R be the spatial area of Oxfordshire and
let I = [0,T ] be the interval of time of the observed data (T
is one year). S is divided into K = 104 postcode sectors Sk

such that S = ⋃̇
K
k=1Sk. Hence, the total spatio-temporal space

considered in this study is S× I.

3.1.1 Discrete Poisson model
As described in [4], the discrete Poisson model, or DPM,
scans a collection of subsets in the spatio-temporal space
S× [0,T ] to determine whether they are possible clusters,
and it assumes that the number of cases per region follows a
Poisson distribution. The model fixes a subset R ⊆ S×[0,T ]

to examine whether it is a cluster. Let p be the probability
of having the disease for an individual in R, and q for an
individual in RC. Then, the number of cases observed for every
region A ⊆ S×[0,T ] follows the distribution O(A) ∼Poi(p∣A∩
R∣ + q∣A∩RC∣). A permutation test is defined according to
this result: the null hypothesis consists of an homogeneous
Poisson process while the alternative one is inhomogeneous;
that is, H0 ∶ p = q while Ha ∶ p > q.
To apply the model to the epidemiological data, the software
SaTScanTM v9.4 was used [5]. The software evaluates the
hypothesis using a likelihood ratio test to determine if the
region R is a cluster or not. However, the scan is run only
for a set of regions with certain predetermined characteristics:
only regions with cylindrical shape are considered, that is,
Ck ×[a,b], where Ck is a circle with centre in ck and 0 ≤ a ≤
b ≤T . For the set of regions considered, the model chooses the
most significants according to the p-value of the hypothesis
test.
The SaTScanTM settings used for the epidemiological data
analysis were the maximum temporal length of each cylin-
der was 28 days (i.e. it only considers possible clusters of
maximum one month of duration). Additionally, each ck is
located in the centroid of a corresponding sector Sk in Oxford-
shire and the circle cannot include more than 25% of the total
population.

3.1.2 Poisson GLM approach
The Poisson GLM approach, or PGLM, considers a partition
in cells of the total spatio-temporal window S× I and assumes
that the number of cases per cell follows a Poisson distribu-
tion. Moreover, it estimates the parameter of each distribution
applying a Poisson Generalised Linear Model. Namely, let
{Sk × Il}

k=1,...,K
l=1,...,L be the partition of the space S× I where {Sk}

are the sectors in Oxfordshire, nk is the population per sector
and {Il} is a partition of the time interval I in subintervals of
four weeks. For each Sk × Il , the observed number of cases in
each cell follows a Poisson distribution Xkl ∼ Poi(λkl) where
λkl = nkλkλl is composed by a spatial rate λk (quantifying the
spatial risk of sporadic cases) and a temporal rate λl (contain-

ing the information of seasonality).
For estimating the parameters λkl a PGLM is applied; that is,
based on the epidemiological data the λkl is given by

log(
λkl

∣Sk∣
) = α +βk + γl . (1)

Each coefficient βk is related with the epidemiological risk fac-
tor of the spatial region Sk whilst each γl depicts the temporal
trend of the disease for the interval Il . To enable identifiability,
one of the β ’s and γ’s is defined to be zero.
Once the λkl’s are estimated the probability of having at least
xkl cases in the cell Sk × Il is calculated, where xkl is the
number of cases reported in the epidemiological data. This
probability is given by

pkl ∶= P(X ≥ xkl ∣λkl). (2)

To determine which cells are possibly containing an cluster,
a threshold c ∈ (0,1] is chosen such that Sk × Il is a cluster if
and only if pkl < c. If more than one neighbouring region was
detected, it would be considered one single cluster.

3.1.3 Robust Poisson GLM approach
Similarly to the previous procedure, the robust Poisson GLM
approach, or RGLM assumes that the number of cases per cell
follows a Poisson distribution with a λkl estimation described
by (1). However, the estimation of β proposed in the subsec-
tion 3.1.2 is highly sensitive to outliers [1], including potential
outbreaks. Consequently, a robust GLM for determining β

is proposed to avoid the influence of extreme values in the
estimation. The estimated parameters would then represent
the distribution of sporadic cases only.

3.2 Genomic analysis
In this section a methodology for genomic data clustering is
introduced. Let c1,...,cN be the isolates included in the analy-
sis, and let D ∈RN×N be the matrix of distances di j between
each pair of genomes ci, c j. An agglomerative hierarchical
clustering algorithm, or AHC, is applied to D, with the aim
of finding clusters of cases according to their genetic similar-
ity. In the first step w = 1 the set of clusters {c1}, ...,{cN} is
considered. For the step w the method merges the two closest
groups Cw

1 , Cw
2 into one set Cw ∶=Cw

1 ∪Cw
2 . The iterations con-

tinue until all data conforms a single cluster {c1, ...,cN} (in
the last step w =W ). Nevertheless, each iteration requires a
measure for calculating the distance between clusters, known
as linkage criteria. In this study, the average linkage was
chosen. That is, for two clusters A,B, the distance is given by:

dist(A,B) =
1

∣A∣∣B∣

∣A∣
∑
i=1

∣B∣
∑
j=1

di j. (3)

Although more sophisticated linkage functions have been
proposed, the simplicity of the one in equation (3) fulfills the
goal of this analysis.
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The standard representation of the output of this algorithm
is a binary tree or dendogram, where the bottom of the tree
corresponds to the set of singletons {c1}, ...,{cN} and the top
to the single cluster {c1, ...,cN}. Selecting a procedure for
cutting the tree determines the definitive set of clusters. In
genetic clustering several methods for - have been defined, as
in [6]. However, none of them includes the spatio-temporal
information of each isolate. Hence, a methodology for cutting
the dendogram based on the temporal data had to be developed
and is given in Algorithm 1. Although only temporal data
is included; the procedure could be adapted to incorporate
information of the spatial distribution.

input :A series of sets: {C1,C2, . . . ,CW}

output :A series of maximal clustersMmax

initialiseM← empty set;
for w in W:1 do
T w← reported day of each ci in Cw;
vw← var(T w);
if vw < θ then
M←M∪Cw ;

end
end
Mmax← maximal elements ofM;

Algorithm 1: Methodology for cutting the tree obtained
by the agglomerative hierarchical clustering.

The algorithm starts from the bottom of the tree, when w =W .
The day in the time interval I when each isolate ci ∈ C

w was
reported is stored in a set T w. To determine if the set Cw is
a possible outbreak, the variance of T w is calculated. If the
value is less than a threshold parameter θ , the set Cw is marked
as cluster. The algorithm continues until w = 1. Finally, a set
of clusters is obtained. However, only the maximal ones are
chosen. That is, the clusters contained in another one are not
taken into account. It can be easily proved that every cluster
is either contained in another one or is maximal.

4. Results

4.1 Spatio-temporal analysis
The methodologies proposed in Section 3.1 were applied to
the epidemiological data. The clusters detected by the DPM
are given in Table 1. The geographical location and the period
of time of each cluster was included, along with the p-value
in order to evaluate the hypothesis test. The matrix of genetic
distances between cases were computed to assess the genetic
proximity between isolates. For the Campylobacter genome, a
pair of samples is genetically similar if the distance is less than
30 loci approximately. Therefore, the percentage of pairs of
isolates significantly related was calculated using a threshold
of 30 1.

1Actually, the choice of the threshold was not relevant, since the obtained
distances were considerably larger to represent related isolates.

Two outbreaks were detected by the DPM, such that the p-
value was less than 0.05. Each of them contains at least %20
of the total population. One occurred in October, while the
other only in three days of July; peaks observed in the plot
of cases in Figure 2. The distribution of age in both cases
was irrelevant and it is not included in Table 1. Moreover, the
genomes differ considerably (most of the distances were larger
than 1300 loci). However, two cases in the second outbreaks
were genetically correlated, with a distance of 20 loci. These
two isolates could be part of a real outbreak. It is important to
take into account that the source of the infection could contain
non-related Campylobacter bacteria. Then, more isolates in
this cluster could be part of the same outbreak. Although the
genetic data gave a feedback of the results, the model does
not provide any other method for testing its performance.
Comparatively, the PGLM was applied to the epidemiological
data. The area of Oxfordshire was partitioned into postcode
sectors as mentioned in Section 2.1. Nevertheless, the large
number of cells obtained in the spatio-temporal space (1352
cells) were not suitable for estimating the parameters of the
model. Consequently, the area was divided again into post-
code districts, all of which are 20 times larger on average than
the postcode sectors. The output of the model is included in
Table 2, similarly to the previous approach. In addition to
the geographical and temporal location, the probability pkl
defined in equation (2) was computed. The percentage of pairs
significantly related was also calculated using a threshold of
30.
Two clusters were detected by the PGLM, when a threshold of
c = 0.02 was fixed (for smaller thresholds no outbreaks would
be detected). The size of the population for each region is
smaller than the ones detected by the DPM, since the regions
here are fixed. Again, the distribution of age was not conclu-
sive and therefore it is not shown. Additionally, the distance
matrix of both cases do not provide any similarity between
isolates (the closest distance was 300 loci approx.).
In addition to the outbreaks overview, the parameters βk and
γl of the Poisson GLM were obtained. Based on these quan-
tities, the rates λkl can be computed according to equation
(1). Moreover, the expected number of cases in the region
Sk are calculated, quantifying the risk of acquiring Campy-
lobacteriosis in each area, as shown in Figure 6. Analogously,
Figure 7 represents the expected number of incidents γl for
every interval of time. These quantities are useful for improv-
ing the understanding of the underlying epidemiological risk
associated to each particular location and period of time.

4.2 Robust GLM approach
In this section, a RGLM procedure is applied to the epidemio-
logical data. As opposed to the PGLM approach, the RGLM
algorithm was aim to ignore outliers in the calculation of the
parameters βk and γl . For performing this test, the function
glmrob of the package robust in R was applied. In this
algorithm, some predefined robust estimators are computed
iteratively, as described in [1]. However, the algorithm did
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Outbreak
No.

Number of
cases

% of total
population

Period p-value % pairs signif.
related

1 37 21.74% 02 Oct - 26 Oct 0.001 0.0%
2 12 21.23% 02 Jul - 04 Jul 0.014 6.6%

Table 1. Detected outbreaks applying the DPM. The minimum genetic distance between the cases is
calculated to validate if they are possible clusters.

Outbreak
No.

Number of
cases

% of total
population

Period Probability
pkl

% pairs signif.
related

1 8 7.64% 26 Apr - 23 May 0.010 0.0%
2 12 9.45% 08 Nov - 05 Dec 0.020 0.0%

Table 2. Detected outbreaks applying the PGLM. The minimum genetic distance between the cases is
calculated to validate if they are possible clusters.
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Figure 6. Expected number of reported Campylobacter cases
in each postcode district in an interval of 4 weeks, obtained
with the PGLM approach.

not converge for the epidemiological data, even if the sectors
partition or the district were applied to the area of Oxfordshire.
That result could indicate that no outliers were found by the
algorithm. To support this statement, a quasi Poisson GLM
was fitted to the data, since this model is able to quantify
whether a Poisson distributed data has overdispersion. The
result obtained showed no dispersion, suggesting that the num-
ber of cases per cell could not have spatio-temporal significant
clusters. That would explain the small and differing number
of results obtained by previous methods.

4.3 Genomic analysis
The AHC algorithm was applied to the genomic data to con-
struct a tree with possible clusters. The resulting dendrogram
is shown in Figure 8, where the top of the tree corresponds
to a unique cluster containing all points (when the maximum
distance for being a cluster is equal to 1643 alleles), while
the bottom represents the set of clusters of size 1 (maximum
distance equal to 0 alleles). Then, a dynamical cutting is per-
formed as proposed in Algorithm 1. The detected outbreaks
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Figure 7. Expected number of reported Campylobacter cases
in Oxfordshire, obtained with the PGLM approach.

are described in Table 3, where the number of cases and the
period of time is included. Moreover, the percentage of signif-
icantly related isolates is calculated with the aim of testing the
cutting performance. Nine possible outbreaks were detected,
six of which were genetically close between them.
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Figure 8. Dendrogram obtained when a Hierarchical
Clustering is applied to the matrix of distances between
reported Campylobacter cases.

Previous reports suggested that Campylobacters are geneti-
cally stable for short-term epidemiological investigations [8].
Therefore, the genetic proximity between isolates found in
this study is conclusive to determine their connection, even if
there is no other mechanism to validate the results. Neverthe-
less, an outbreak could be composed of two or more unrelated
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Campylobacters. Then, the results in Table 3 could be a subset
of a larger epidemic.

Outbreak
No.

Number
of cases

Period % pairs sign.
related

1 3 22 Apr - 07 May 100.0%
2 3 30 Apr - 17 May 100.0%
3 3 31 Oct - 09 Nov 100.0%
4 3 05 Jan - 12 Jan 100.0%
5 4 16 Jan - 03 Mar 100.0%
6 4 07 Jun - 24 Jun 66.6%
7 3 10 Jun - 08 Jul 0.0%
8 3 14 Aug - 04 Sep 0.0%
9 3 01 Sep - 20 Oct 0.0%
Table 3. Detected outbreaks applying the genomic
analysis.

It is important to realise that none of the spatio-temporal algo-
rithms proposed in Section 3.1 was able to detect the clusters
in 3. The spatial distance between the points composing the
outbreak is a possible explanation for this affirmation. How-
ever, a exhaustive analysis showed that cases in outbreak No.
2 in Table 3 were relatively closed in space, as shown in Fig-
ure 9. The DPM could fail in the detection of these cases
since any circular region including these locations would also
include areas with small number of incidents. In that case, the
cluster would be not significant. In a similar way, the PGLM
approach was limited only to neighbouring district regions,
including those with small number of Campylobacter reports.
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Figure 9. Location of cases of the outbreak No. 2 in Table 3
(black points). Colors indicate the number of cases in the
period of time the cluster occurred (30 Apr - 17 May).

5. Discussion
Three spatio-temporal approaches were proposed to face the
problem of outbreak detection. First, the DPM was consid-
ered, with the aim of measuring spatio-temporal regions with

significantly more risk when compared with the others. The
method found two outbreaks occupying large areas (covering
20% of population each one). Proposed by Kulldorff [4] and
commonly used for cluster detection, this approach is use-
ful for comparing any new procedure with previous works.
Second, the PGLM calculated the parameters of a GLM and
computed the risk associated to each cell of a spatio-temporal
partition. Although it found two possible clusters, the prob-
ability of observing them was not considerably low (it was
greater than 0.01). The Figures 7 and 6 of expected cases per
time and region respectively, are useful tools for understand-
ing the epidemiological risk associated to each area. However,
the similarities between the observed and expected cases con-
firm that possibly there were no noteworthy outbreaks. Finally,
the RGLM attempted to calculate the parameters of the GLM
ignoring potential outliers. However, the method did not
converge, supporting the presumption that no significantly
outbreaks occurred in the interval considered in this study.
The results achieved by the spatio-temporal methods were
substantially different. Whereas no comparison test was speci-
fied, the genetic data was crucial in assessing the effectiveness
of each approach. Then, the distance between pairs was cal-
culated per each outbreak. Nonetheless, the large differences
among them indicated that the testing could not be conclusive.
Moreover, no all the isolates were available; then some miss-
ing information could correspond to related cases. Therefore,
there are no strategies to compare or to test the efficacy of
the methods proposed. Also, this project did not have ac-
cess to estimated outbreaks defined by Food Standard Agency
or other governmental instances. A simulation of sporadic
and outbreak cases would compare the performance of these
methods. Finally, although the DPM is commonly used for
outbreak detection, the small size of Oxfordshire compared
with usual studied regions is a limitation.
In contrast to the performance of the spatio-temporal analy-
sis, an inspection of the genetic data detected five genetically
related clusters, as shown in Table 3. The Algorithm 1 effec-
tively identified similar isolates, showing that the mixture of
epidemiological with genome sequences is substantial for the
identification of potential outbreaks. However, as noted pre-
viously, real clusters could contain bacteria with non-related
genomes. Therefore, further investigation by experts should
be considered to determine other possible individuals affected
by the epidemic.
In literature, most of the algorithms used for gene sequence
clustering are based in the hierarchical clustering model [2].
However, a model combining spatio-temporal and genetic in-
formation has never been suggested. The AHC together with
the cutting procedure successfully incorporates both sources
of data. In addition, some improvements are suggested. The
function used for performing the cutting is based in the vari-
ance of the temporal distribution of cases. However, a more
sophisticated criteria could be developed, including spatial or
demographic variables. Also, a test should be included to de-
termine the performance of the cutting. For instance, it could
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help to estimate the impact of the chosen linkage function (in
this study only the average linkage was taken into account).
Some limitations of the approaches of this study are consid-
ered. Not all Campylobacteriosis cases are reached notifi-
cation. In fact, Food Standards Agency estimates that there
are 280000 cases per year in UK (approximately 3000 in a
region of the size of Oxfordshire). However, the database
used in this analysis had only 743 reports. Moreover, not all
cases had sequencing data or they are incomplete (restricting
the reliability of genetic comparisons). On the other hand,
the PGLM and RLGM are sensible to the spatio-temporal
partitions. Large regions could include more sporadic than
outbreak cases, whilst small ones could no register any inci-
dent. Additionally, small size outbreaks are not easily detected
by any of the spatio-temporal methods.

6. Conclusions and Further work
In this study four methods were applied to detect Campy-
lobacter outbreaks: a discrete Poisson model, a Poisson GLM
approach and a Robust Poisson GLM approach. The first three
were based on the spatio-temporal distribution of cases and
were tested using the genetic distances between the samples.
Although some potential outbreaks were detected by the first
two methods, the test was not conclusive for determining the
validity of these approaches. The last model, based on an ag-
glomerative hierarchical clustering, performed an algorithm
to find genetically related cases while testing temporal prox-
imity. Further modifications to this approach are suggested
for improving performance.
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