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Abstract

We present a multi-scale model for intracellular bacterial infections that links the behaviour of
within-host and between-host dynamics. While traditional models of infection consider the state
of individuals as binary, infected or not infected, our deterministic within-host model defines
the infection state by the current pathogen load. We then define a stochastic mapping from the
pathogen load to the transmission potential, which we use to simulate the early spread of infection
on ego networks taken from contact survey data. We observe that dose dependence can translate
across scales: the average number of secondary cases increases with the initial dose received.

1 Introduction

In population-level models of disease, the infectious-
ness of an individual is binary: individuals are either
infected or not. Instantaneous switching occurs be-
tween the two states at times dependant on fixed rates
describing processes such as infection and recovery.
However, there are examples of cases where this over-
simplification breaks down, such as the heightened
infectiousness of an HIV positive individual immedi-
ately following infection [1] or the well-documented
phenomenon of highly infectious super-spreaders, who
generate the majority of secondary infections [2]. The
effect of the latter is usually attributed as a significant
factor in the 2003 SARS outbreak [3].

For both naturally emerging infections and bioter-
rorism threats, it is critical to have methods in place
to enable prompt assessment of the potential public
health impact. Understanding the factors that influ-
ence the time-scale of infections, and the impact this
can have on transmission potential, is vital for planning
and executing outbreak countermeasures, such as vacci-
nation, quarantine and travel restrictions. For example,
epidemiological modelling is an important component
of the management of future Foot and Mouth Disease
outbreaks in Great Britain [4]. Incorporating the ef-
fects of dose heterogeneity would allow for increased
understanding of individual response and transmission
profiles, which would provide greater certainty when
planning control and response programs. Whilst recent
theoretical studies have considered infectiousness as a

function of time since infection [5], there has been little
investigation into the effect of initial received dose on
this relationship. A mathematical model describing
growth of bacteria prior to activation of the adaptive
immune system has been developed for Francisella tu-
larensis 6], but there is a need for further development
to enable insight into the individual biological dynamics
across the entire course of infection.

Numerous experimental studies provide evidence of
dose dependent infection dynamics. An experiment by
Meynell et al. [7] investigates the relationship between
initial dose of Salmonella typhimurium and time to mor-
tality in a sample of 150 mice. The study shows strong
negative correlation between size of initial dose and
time to mortality (correlation coefficient » = —0.9713;
p-value p < 0.0001). An experiment on the effect of
initial dose on symptom severity for Vibrio cholerae
infection in humans demonstrates strong positive cor-
relation [8]. The results of an experiment on the effec-
tiveness of different vaccines for Pasteurella tularensis
infections in humans provides data on the incubation
period for a range of initial doses [9]. Initial dose and
incubation period are strongly negatively correlated
(r = —0.7133, p = 0.0019). As a result, it may be pos-
sible to infer an estimate of initial dose from observed
incubation period.

Using a dose-dependent within-host model, such as
the model described herein, it would be possible to
predict infection dynamics, such as length of infection
and timing of infectious peak. For highly infectious
diseases, such as cholera and tuberculosis [10], this
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would improve estimations for quarantine times [11].
During the early stages of an epidemic or the release
of a bioterrorist agent it would also be important to
identify the source of infection: accurate estimation
of initial dose would provide more information when
mapping secondary cases back to any source cases |11].

1.1 Within-host models

The interactions between the pathogen and the host
immune system determine the within-host dynamics
of infection. How exactly the pathogen and immune
system interact will be highly pathogen-dependent; as
a result, within-host models are pathogen-specific or
specific to a type of pathogen, such as viruses, bacteria
or parasites. For example, due to the unique pathogen-
esis of HIV, realistic models of HIV dynamics cannot
be applied to other viral diseases [12]. Constructing
realistic and useful within-host models therefore re-
quires an understanding of the key mechanisms of the
immune system and the growth and elimination of the
pathogen.

The immune system is a complex system of struc-
tures and processes that work to protect the body
against disease. It can be split into two subsystems:
the innate immune system and the adaptive immune
system. The former is an immediate but non-specific
response, whilst the latter is a highly specialised but
delayed response. At the most basic level, the innate
immune response provides physical, mechanical and
chemical barriers that prevent pathogens entering the
body. For example, the skin is a physical barrier against
pathogens; coughing and sneezing are mechanisms that
remove pathogens from the respiratory tract; and gas-
tric acid in the stomach is a chemical barrier against
ingested pathogens. Once a pathogen has bypassed
these barriers, the detection of the pathogen stimulates
a cascading chemical response that in turn promotes
the cellular response of the innate immune system.
The cellular response includes marking pathogens for
destruction, the removal of pathogens and the recruit-
ment of additional immunological cells to the site of
infection.

The mechanisms by which the pathogen is cleared
from the body are of particular interest for a within-
host model of infection. As part of the innate im-
mune response, pathogens are removed from the body
through a mechanism called phagocytosis. Phagocyto-
sis is carried out by a family of specialised white blood
cells, called phagocytes, that includes macrophages.
Phagocytes engulf, or phagocytose, the pathogen and
trap it inside an intracellular vesicle called a phago-
some. The pathogen is destroyed when the phagosome
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fuses with the lysosome, another vesicle that contains
enzymes and acids that digest the pathogen.

A further function of the innate immune system is to
activate the pathogen-specific response of the adaptive
immune system. The two main cells of the adaptive
immune system are T cells and B cells. Once activated,
T cells and B cells eliminate pathogens from the bodys;
the method by which these cells are activated is called
antigen presentation. Antigens are molecules found on
the surface of the pathogen that identify the pathogen
to the body as non-self. After a pathogen has been
digested by a macrophage, the macrophage displays
the pathogen’s antigens on its surface. Antigen presen-
tation stimulates immature T cells to differentiate to
become either cytotoxic T cells or T helper cells; the
former kill infected cells by releasing cytotoxins that
induce apoptosis (programmed cell death). T helper
cells aid the activity of other immune cells by releasing
cytokines, a cell-signalling molecule: for example, they
aid the growth of cytotoxic T cells and recruitment of
macrophages to the infection site. Immature B cells
are activated when they encounter both their matching
antigen and matching T helper cell; the B cell repli-
cates and matures into an antibody-producing plasma
cell. Antibodies bind to antigens on the surface of
the pathogen; this either neutralises the pathogen or
promotes phagocytosis.

One of the major difficulties in constructing within-
host models is in attaining a balance between biolog-
ical realism and mathematical tractability. Current
within-host models either present simplified ecologi-
cal analogies [6,[13H16] or attempt to fully described
the interactions between the pathogen various cellu-
lar and chemical components of the immune system,
comprising of several ordinary differential equations
(ODEs) [17H19]. A limitation of many models is the
lack of experimental data to which to fit parameters.
This limitation is exacerbated by models with many
parameters. In such cases, parameters are determined
through a combination of experimental data and, where
no data is available, mathematical estimation [18|. Ex-
perimental studies may be in vivo or in vitro and in
humans, non-human primates, mice or other mammals.
It should be noted that there may be differences in the
exact values of parameters taken from human versus
non-human experimental studies [20].

A simplification of many models is to treat the
host as a single system. Compartmental models can
include yet further detail by dividing the body into
compartments each with different and interacting infec-
tion dynamics. This is particularly relevant for diseases
that develop to affect multiple organs, or where specific
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organs play an important role in the immune response.
For example, tularemia infections caused by tick bites
or ingestion of contaminated food or water primarily
affect the lymphatic system but can spread to the lungs
via the blood if left untreated |21]. In tuberculosis infec-
tions, the lymphatic system plays an important role in
the recruitment of macrophages as part of the immune
response; compartmental models of tuberculosis treat
the lungs and lymph node separately [18}22].

In the majority of the literature, heterogeneity in
the dynamics comes solely from difference in initial
dose. When scaling this up to a population level model,
homogeneity in the response across all individuals is
unrealistic and undesirable. Heterogeneity can be in-
troduced into deterministic ODE models through the
inclusion of stochastic elements, such as by varying
the threshold beyond which the adaptive immune sys-
tem takes effect; this can be done by assuming that
the threshold follows a log-normal distribution [23] or
a Weibull distribution [24], for example. The single
hit model assumes host homogeneity post-infection,
but allows the possibility that some infections do not
take hold at all [6,|25]. Heppell et al. [13] model the
probability that an inhaled pathogen is deposited in
the lungs as a beta distribution, introducing variation
in the initial dose. Wood et al. [6] use a stochastic
birth-death process to model infections of intracellular
bacteria.

In the same way that the immune system has devel-
oped complex defences against pathogens, so pathogens
have evolved strategies to evade the immune system or
resist destruction by phagocytes [26]. Certain bacteria
are not only able to resist destruction by phagocytes,
but use them as their primary host for growth and
reproduction: such bacteria are called intracellular
bacteria. By inhabiting the host’s own cells, intracel-
lular bacteria are shielded from antibodies and can
only be eliminated by the cellular immune response.
Such bacteria possess highly specialised mechanisms
that allow them to resist destruction and proliferate
inside phagocytes. For example, Mycobacterium tuber-
culosis, the bacterium that causes tuberculosis, avoids
destruction by interfering with phagosome-lysosome
fusion [|27]. Francisella tularensis, the bacterium that
causes tularemia, is able to escape from the phagosome
before it fuses with the lysosome [28]. Coziella bur-
netii, the bacterium that causes Q-fever, does not avoid
phagosome-lysosome fusion, but is highly resistant to
environmental stresses and is able to replicate even in
the presence of the enzymes and acids contained in
the host cell’s lysosome [29]. After avoiding destruc-
tion, intracellular bacteria are then able to replicate
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inside the host cell; the resulting intracellular bacte-
rial population are subsequently released when the
macrophage ruptures due to internal pressure. This
mechanism is included in models for Mycobacterium
tuberculosis infections [18}22], Francisella tularensis
infections [6}(15]/24,30,[31] and Coziella burnetii in-
fections [13|32,[33]. Since phagocytosis alone is an
ineffective mechanism to clear intracellular bacteria
from the body, the role of the adaptive immune re-
sponse becomes much more important; the most realis-
tic within-host models for intracellular bacteria should
therefore include the mechanics of both the innate and
adaptive immune system.

1.2 Between-host models

Whilst within-host modelling describes the infection
dynamics within an individual, between-host modelling
describes the transmission between individuals and so
informs on spread of disease across a population. The
transmission of respiratory diseases occurs when an
infectious individual expels microscopic water droplets
carrying the pathogen; this occurs during coughing,
sneezing, or simply breathing, resulting in continual
bacterial output throughout the day. Models of trans-
mission therefore need to account for variation in both
the pathogen count on each water droplet and the
number of droplets that a susceptible contact inhales
in a given time period. Although there is believed to
be significant variation in the number of viruses on
each droplet [34], bacteria are significantly larger than
viruses and thus it is unlikely to find more than one
bacterium per droplet [35}/36].

There has been considerable research on both
within-host infection dynamics for a given dose and
between-host population models for given transmission
rates, such as the family of deterministic compartmen-
tal models that includes the widely-researched SIR
model. Yet there is little research that incorporates
both scales [16}|37},[38], despite evidence that infec-
tion dynamics are dose dependent [31] and individual
pathogen load affects onwards transmission. However,
the relationship between pathogen load and transmis-
sion potential is complicated: it is possible to become
infected from interaction with a single virion [39] and it
is unclear how to map pathogen load of an individual
to a transmission fitness. Indeed, this formulation of
the problem may be too simplistic and thus uninfor-
mative [40].

Handel and Rohani [40] argues that it is a combi-
nation of the pathogen load, the level of the immune
response and the symptoms of the individual that af-
fect host infectiousness. For example, symptoms of
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respiratory diseases, such as coughing or sneezing, can
increase transmission and even vomiting and diarrhoea
can be shown to cause an effect |43]/44]. Using data
from studies on viral shedding |45,/46] the problem can
be simplified to expressing symptoms as a function of
pathogen load by considering the relationship between
the shedding and the load [40], but it is not clear how
to exactly quantify the relationship. Analyses of fer-
ret infections by influenza exemplifies the problem by
demonstrating that influenza strains that cause similar
viral loads are able to cause contrasting transmission
potential, likely caused by factors related to the symp-
toms, such as the frequency of sneezing [47].

An additional complication to the pathogen-load-
transmission-potential relationship is that the factors of
pathogen load, immune response and symptoms also af-
fect the host behaviour, potentially causing a reduction
in the level of interaction with other individuals, which
will further impact transmission potential. A survey of
behaviour on infection with influenza showed that sick
individuals had approximately a quarter of the daily
contacts compared to healthy individuals [48}/49).

Despite the complex interacting factors surround-
ing transmission potential, in our model we will focus
on how the pathogen load affects transmission poten-
tial. We acknowledge that while symptoms and host
behaviour are important factors, in the interest of de-
veloping a tractable model they will be ignored. This
assumption has been used in several transmission stud-
ies, where the effect of the area under the pathogen
load curve is considered on the transmission [50%/51].
Different studies relate transmission to load with a
linear [52,/53] or logarithmic scale [53]. Our analysis
considers logarithmic scaling only and, using this area
under the curve, we link between the within-host and
between-host models.

2 Model

2.1 Within-host
2.1.1 ODE model

The proposed within-host model is a system of three
ODEs characterising the number of extracellular bacte-
ria B, the number of bacteria-containing phagocytes P
and the level of the adaptive immune response R. We
assume this is the first infection by this bacteria and
thus both P and R are zero at the beginning of the
infection. The initial number of extracellular bacteria
is given by the initial dose D.

This proposed model is an extension of the model
of [6,/13], in which phagocytes engulf bacteria at rate -,
and phagocytosed bacteria are successfully destroyed
with probability 1 — ©. However, with probability O,
phagocytosed bacteria are able to resist destruction;
the exact mechanism depends on the bacteria. In this
case, the bacterium replicates within the phagocyte;
bacteria-containing phagocytes rupture at rate A and
subsequently release the resulting intracellular bacte-
rial population into the extracellular environment. We
assume that the number of bacteria released G is con-
stant. It is also assumed that the number of phagocytes
are far greater than the number of bacteria, so that
bacterial growth is not limited by the availability of
phagocytes. This construction captures the key mecha-
nisms of intracellular bacteria and the innate immune
response and gives the system of ODEs:

dB

= —\GP - ~B

7 AGP — B,

dP

o = ©1B AP, (1)

Table 1. Variables and parameters that characterise the model for within-host dynamics described by equations
and . See Appendix |§| for further discussion of parameter estimation.

Symbol  Description Value Source

B Extracellular bacteria - -

P Bacteria-containing phagocytes - -

R Adaptive immune response - -

A Rupture rate of bacteria-containing phagocytes 0.4 [41]

G Number of bacteria released upon rupturing 50 [41]

5y Rate of phagocytosis 0.4 [41]
G Baseline probability of bacteria surviving phagocytosis 0.3 [42]

p Decay parameter for probability of unsuccessful bacteria kill 0.8 estimated
B Growth rate of response 0.025  estimated
) Rate of immunological decay 0.01  estimated
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with initial conditions

B(0) = D,
0. (2)

We adapt the model of Heppell et al. [13] with the
addition of a third equation for the adaptive immune
response, R. In the same way that the innate immune
response is simplified into a single term, P, we also
condense the effect of the adaptive immune response
into one term that captures the key mechanisms of the
adaptive immune system that affect the within-host
bacterial population. The two key mechanisms that
we wish to include are the activation of the adaptive
immune response by antigen-presenting phagocytes af-
ter successful phagocytosis and the positive correlation
between the adaptive immune response and the number
of bacteria successfully destroyed. Including the effects
of the adaptive immune system makes the model more
realistic; it is a particularly important mechanism to
include for models of intracellular bacteria, since it
explains the mechanism that clears the bacteria from
the body.

Since the adaptive immune response is triggered by
antigen presenting phagocytes during the innate im-
mune response, the response should increase as bacteria
are destroyed. We assume that the rate of increase
in the response is proportional to the magnitude of
the number of bacteria successfully phagocytosed. The
adaptive immune system increases the proportion of
bacteria that are destroyed, either through the action
of cytotoxic T cells or antibodies. To reflect this, we
take the probability that a bacterium is successfully de-
stroyed during phagocytosis, 1 — 0, to be an increasing
function of R. We choose © = Ope~?%. Finally, the
response decays at a constant rate J; this represents

1010

pathogen load
— — — bacteria-containing phagocytes
adaptive immune repsonse

count
N
5]

IS

T

0 2‘0 4‘0 G;J 8‘0 l(;O 120
time (days)
Fig 1. The number of extracellular bacteria, B(t),
bacteria-containing phagocytes, P(t) and level of
adaptive immune response, R(t), over time for an
initial dose D = 1.
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the loss of immunological memory over time [54]. This
construction gives the systems of ODEs:

dB

— = AGP —-+B

7 GP —B,

% = Ope "'yB — AP, (3)

d

d—]f = flog [(1 — @oe*pR) ’yB] —0R,

with initial conditions

B(0) =D,
P(0) =0, (4)
R(0)=0.

2.1.2 Parametrisation

Finally, we parametrise the model given by equations
and . The values of the seven parameters, along
with a brief summary of their meaning, is given in
Table [

Values for the parameters A\, G, v and O are taken
from two studies modelling Mycobacterium tuberculosis
infection in the lungs [41,/42]. The remaining three
parameters have been estimated based on biological
principles; further discussion of our parameter estima-
tion can be found in Appendix [A]

2.1.3 Results

Figure [1] shows the number of extracellular bacteria
(pathogen load) B(t), number of bacteria-containing
phagocytes P(t) and level of adaptive immune response
R(t), as described by equation , for initial dose

8xloB
D=10
ran i — — -D=50
P D =100
e D =500
61 | ~ — - D=1000 |
o 5T )
©
o
gef 1
j=2)
o
=
gaf 1
s |
1 |
o . . S . .
0 40 60 80 100 120

time (days)
Fig 2. The number of extracellular bacteria, B(t), for
a range of initial doses D; this shows that our
within-host model is indeed dose dependent. Peak
height increases with dose.
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Fig 3. The size of the initial dose D affects various statistics of the pathogen load curve, such as time to peak
pathogen load, size of the peak pathogen load and total length of infection.

D = 1. During the early stages of the infection, the
effect of the adaptive immune response is negligible and
so the pathogen load increases exponentially. The high
pathogen load stimulates an increase in the level of the
adaptive immune response, which causes a reduction
in the growth rate of B(¢), resulting in a turning point.
Since the decay rate of the adaptive immune response
is small, the rate of decay of B(t) is also exponential.

We are most interested in how the pathogen load
is affected by the size of the initial dose D. Figure
and Figure [3] shows how the overall shape of the
pathogen load varies with the size of the initial dose D.
As D increases, we observe a higher and earlier peak,
followed by an earlier recovery time.

2.2 Transmission

We have seen that the dose an individual receives de-
termines the infection dynamics described by equations
and (). We now describe a model that uses the
pathogen load Bj(t) of an infected (I) individual to
determine the transmission to a susceptible (S) indi-
vidual. Individual I is infected with dose D at time
t = 0; at time t = ¢, they begin continuously transmit-
ting bacteria to individual S at a rate proportional to
log B;(t). The logarithmic scale is widely used in liter-
ature to map from pathogen load to transmission [53].
We assume that the number of bacteria lost in trans-
mission by individual I is negligible and does not have
any effect on their infection dynamics. Contact ceases
at time t = t9. This is described by the following

equations:
dBj
7 I—7YDr
dP,
ditl =vOpe P Br — APy (5)
dR -
U 1o [(1— @0™) 151] - 3Ry
dB
—7 = AGPs —7Bs + T log(Br)Liefs, 1z
dP,
7: = 7@0€_pRsBS — APs (6)
dR -
s _ g (1 ooty 5] .

Figure [4] shows the pathogen load curves for individual
I and individual S based on this model. The effect of
the initial dose for individual S is accelerated by the
interaction term, resulting in a higher initial growth
rate.

The pathogen load of individual I at the time of
interaction with individual S affects the subsequent
pathogen load of this secondary infection. By consid-
ering the total area under the pathogen load curve of
individual S after interaction with individual I for dif-
ferent intervals [t1,t2], we show that the area increases
with both the length of the interval [t1,t2] and the
pathogen load of individual [ in the interval. These re-
sults are shown in Figure [5| Therefore, we can assume
that the transmission potential is highly dependent on

/ ’ log(B(t))dt. (7)

ty
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pathogen load

| N
. . . . .

0 20 40 60 80 100 120
time (days)

Fig 4. The pathogen load curves of an initially
infected individual (I) and initially susceptible (S)
individual over time, described by equations and
(6) respectively, with I' = 1. Individual I is infected
with a dose of D = 10 at time ¢t = 0 and has
continuous contact with individual S for ¢ € [20, 21].

%10°
60

55
50
45
40
35
30
25
20
15
10

01 02 03 04 05 06 07 08 09 1
length of interaction (days)

Fig 5. The area under the pathogen load curve of the
secondary individual increases when the interaction
occurs closer to the pathogen load peak of the initial
infected individual and also increases when the time
interval [t1, o] is larger. Plot shows D = 10.

Whilst this model of transmission is useful in deter-
mining the relationships between pathogen load and
transmission, it also results in individual S becoming
infected even for very short contact times. This is
unrealistic, as disease is not transmitted during every
susceptible-infected interaction. To prevent this we
redefine transmission to be stochastic.

Let X € Z, be daily bacterial output of an infec-
tious individual. The relationship between pathogen
load and bacterial output has been shown experimen-
tally to have a sigmoidal shape [55,[56], where the
period of significant increase in output corresponds to
the onset of symptoms. Therefore, we let ux = E[X]
have this sigmoid shape:

Amax; log B(t)
t+1 ’
1+ exp [— ( | log B(s)ds — b)}
t

The parameter b is chosen such that high values for px

wx = (8)

W

[ standard deviation
mean
— — — pathogen load (not to scale)

1200

1000

800

600 -

bacteria output

400 -

200

0

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 70 8‘0 9‘0 100
time (days)

Fig 6. The mean and standard deviation of the daily

bacterial output is dependent on the pathogen load.

Plot shows D = 20

occur around the peak of the infection; we take b = 15.
The parameter A is chosen such that the range for
px covers a range of realistic doses; moreover, we
choose A large enough such that infection is possible
even for very short contact times. We take A = 40.
We then let X ~ NegBin(rx,px), where rx =5 and
px = pux/(rx + px). We have chosen to use the nega-
tive binomial distribution since it has two parameters,
which allows us to control the variance of the distribu-
tion through our choice of rx; the variance decreases as
rx increases. This allows for the possibility of a large
range of bacterial outputs. The mean and variation
in the daily bacterial output over the course of the
infection is shown in Figure [6]

We then let Y € Z, be the number of bacteria
inhaled by a susceptible individual who spends ¢ hours
with an infectious individual on a given day. We assume
that the average number of bacteria inhaled by this
individual is proportional to the length of time spent
with the infectious contact and their bacterial output:
o iy = 57 X. We thenlet Y ~ NegBin(ry, py ), where
ry = 0.1 and py = py /(ry + py). Our choice of ry
reflects the significant variation that will occur in the
number of bacteria inhaled; in this way it is possible
for an individual to inhale a large number of bacteria,
even for small duration of contact c.

Finally, we let D € Z; be the number of inhaled
bacteria that are deposited in the lungs. Many bacteria
will be cleared from the respiratory tract before they
reach the lungs by the action of cilia in the trachea or
by the mechanisms of coughing or sneezing [13]. We
make the assumption that bacteria act independently,
so D ~ Bin(Y, pp), where the probability of deposition
is pp = 0.124 as given in . It is still possible that
the infection does not take off if all bacteria are suc-
cessfully phagocytosed. The probability that a single
bacterium survives phagocytosis at the point of infec-
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tion is ©¢p = 0.3, and thus the probability that the
infection takes off is given by the probability that at
least one bacteria survives phagocytosis:

Plinfection] = 1 — (1 — ©0)" . ©))

Through these stages we can calculate the deposited
dose D received by a susceptible individual spend-
ing ¢ hours on day ¢ with an infected individual with
pathogen load curve described by B(t).

2.3 Curve approximations

The final stage of the model considers the effect of the
dose-dependent within-host model on the population
level dynamics of an epidemic. Our method of trans-
mission requires knowledge of an individuals pathogen
load over the entire course of the infection and the
exact solution of the system of ODEs is dependent on
the initial dose D. Numerically solving the ODEs for
each new infection is computationally expensive and
storing the solution over the full range of possible ini-
tial conditions is memory expensive. For a population
of thousands of individuals both approaches become
infeasible. This is the motivation for approximating the
pathogen load curve by a function whose parameters
are some function of the known initial dose; in this
way we are able to generate the pathogen load of an
individual from D alone and thus efficiently simulate
epidemics even for large populations.

Due to the qualitative shape of the pathogen load
curve, we initially looked at comparing the model out-
put to the probability density functions of the beta
and log-normal distributions. This required two scaling
parameters, infection end time and total area under
the curve, plus two parameters for each distribution;
the scaling parameters were taken directly from the
model results, whilst the distribution parameters were
fitted using the mean and variance of the model re-
sults. Whilst the log-normal distribution exhibits a
marginally better fit than the beta distribution when
compared using a log-likelihood ratio test, the approx-
imation still drastically underestimates the pathogen
load during early infection. Detailed fitting methods
and outcomes are described in Appendix [B]

2.3.1 Sigmoidal approximation

The inaccurate fit of both the beta and log-normal
approximations motivate the construction of our third
and final approximation, which captures the non-zero
initial conditions, exponential growth and decay in the
tails and the correct height of the peak that we observe
in plots of the pathogen load.

x10°8

numerical gradient of log(B(t))

0 26 46 66 86 160 120

time (days)
Fig 7. Gradient of the log of the pathogen load with
initial dose of 15

We plot f(t) = 4 log(B(t)) and observe that the
shape is approximately sigmoidal: f(t) starts at a posi-
tive constant and slowly switches to a second, negative
constant. These three stages correspond to exponential
growth at the beginning of the infection, the peak, and
exponential decay in the tail of the infection. Figure [7]
shows a plot of f(t) for the pathogen load curve B(t)
with D = 15.

We construct an approximation f(t) for f(t); our
approximation of B(t) is then defined by:

Lloa(B(1) = (1) <= B(r)= 4", (10)
where F(t) = [ f(t)dt is an anti-derivative of f(t).

Our approximation f(t) should be constant in the
limit as ¢ — £oo and slowly transition between these
constants for some specified range of ¢ at some specified
rate. Each of these properties will require parametrisa-
tion. In a similar fashion to the construction of the beta
and log-normal approximations, we use statistics of the
pathogen load curves to estimate these parameters for
f(t). The following section describes the structure and
parametrisation of f(t).

We define
~ o — /3
0= eem

where «, 3, and t,, are parameters to be fitted. Note
that f(t) has the property that lim; , o f(t) =« and
lims s 4 o0 f(t) = f3; so o and 3 represent the exponen-
tial growth and decay respectively. The parameters ~y
and t, characterise the curvature and time of the peak
of B(t) respectively. We find values for o and 8 by
numerically solving for f(t) through the points where
the gradient is constant; v and ¢, are then found by
minimising the absolute difference in the given load
curve, and the approximated load curve.

+5, (11)
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Finally we define the constant A; we do this in
terms of the peak pathogen load M = max; B(t). We
define T, as the time at which the pathogen load
is maximal and so M = B(Ty). If B(t) is to be a
good approximation to B(t) then we must also have

M = max; B(t) = B(Th). So A can be written in the
following form:

W

2.4.1 Contact survey data and ego networks

The contact survey data is collected from a large-scale
postal and online survey of social encounters conducted
in 2009 [57]. In total the survey had 5,388 respon-
dents. Participants were asked to record individuals
with whom they had physical or face-to-face conversa-
tional contact with over the course of a single day. In

M = max B(t) = B(TM) — AF(Tv) s A — Me—F(Taorder to minimise restrictions on the total number of
t

) (12)
Therefore we can write B(t) as follows:

B(t) = MeF(O=F(Tn), (13)

In addition, we can find an expression for T by solving

f(T]\/j) = 0:

~ a_ﬁ

f(Ty)=0 <— 71+67(wa—tp)+ﬁ:0

1 -«

— Ty tp—f—rylog( 3 )
The sigmoidal approximation to B(t) is characterised
by five parameters: «, 8,7,t, and M. In the final step
of constructing an approximation to B(t), we charac-
terise the relationship between the initial dose D and
each of the five parameters. Cubic curves provide a
good fit to the model results in all cases; this is shown
in Figure[I8)in Appendix[C] Thus, given only the initial
dose D, we can fully define a sigmoidal approximation
to the pathogen load curve B(t).

2.4 Population level model

Homogeneous mixing of the population is one of the
most unrealistic assumptions of epidemic models, since
in reality individuals only meet a subset of the popula-
tion; moreover, the number of contacts and frequency
and duration of contact varies significantly from one
individual to the next. The usual solution to this is to
place individuals on the nodes of a network, with edges
between pairs of individuals who are contacts. However,
quantifying and constructing a realistic social contact
network is a significant challenge beyond the scope and
time-scale of this project. Instead, the population level
model is split into two parts: in the first part, we use
the results of a large-scale survey of social encounters
in order to construct contact networks for single indi-
viduals and calculate an estimate for Ry, the average
number of secondary cases generated by an average
infected individual in an totally susceptible population.
In the second part, we simulate the epidemic on three
different network types in order to investigate the effect
of initial dose on the final size of the epidemic.

contacts that can be reported, individuals were able
to report groups of contacts who they met in a similar
way and for a similar length of time: for example, a
shop worker can report the 50 individuals that they
meet each for one minute in one group, rather than
list each one separately. For each contact or group of
contacts, participants are asked to report information
about the duration, frequency and location of contact
and whether physical contact was made; respondents
can also indicate whether they think each pair of con-
tacts have met in the last week, to give information on
clustering in the network.

For each respondent we are able to construct a sim-
plified so-called ego network: this network represents
an individual’s (the ego’s) contacts, including the infor-
mation about the frequency and duration of contact;
however edges between contacts are not included. In
the survey, participants can report a range of frequency
of contacts from every day to first time; we make a
further simplification and classify contacts as either
frequent or first time. The ego network data is used for
two functions: in order to visualise the ego networks
and as a way to investigate the effect of initial dose on
Ry.

First, we simply use the data to visualise the net-
works; such an example is given in Figure |8} The ego is
represented by a star at the centre of the network with
their contacts spread around it. Contacts that are met
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Fig 8. An example visualisation of a single ego
network.
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Fig 9. An infected individual generates multiple
secondary cases over the course of their infection.
Crosses indicate the time and size of each secondary
case generated, split into frequent and first time
contacts; the size of the cross is proportional to the
duration of contact. The pathogen load of the ego is
included for reference.

every day are represented by green nodes with a solid
edge to the ego; first time contacts are represented by
red nodes with a dashed edge to the ego. Individual
contacts are represented by circles; groups of contacts
are represented by squares, with a number to indicate
the group size. Weights on the edges give the duration
of contact, given as the number of hours spent with
that contact, or each individual in the group, per day.
For visual clarity, the thickness of the edge between
the ego and the contact is proportional to the duration
of contact.

Secondly, we run a simulation to calculate an es-
timate of Ry for a range of initial doses; this is one
method to determine whether there is dose-dependent
behaviour at the population level. The ego in each ego
network is infected with the same initial dose D; all
their contacts are initially susceptible. At each time
step, the ego meets their frequent and first time con-
tacts. The ego meets a new set of first time contacts
at each time step and thus all first time contacts begin
the day as susceptible; so an ego reporting one first
time contact for 5 minutes will meet 100 such contacts
over the course of a 100 day infection. On the other
hand, frequent contacts can be either susceptible or
infected due to a previous encounter; since there is
little variation in the duration of infection, we assume
that such contacts do not recover over the course of the
ego’s infection and thus cannot become reinfected. At
each time step, doses are generated for each susceptible
contact and infection occurs according to the model for
transmission described in Section 2.2l Over the course
of the ego’s infection, we count the number of

X model
fit

BT R
X

136 . . . . . . .
10 120°% 10 120'% 102 1025 10 1035 10*
dose

Fig 10. The relationship between log D and Ry is
quadratic, that is Ry o [log D]z. For D > 10, larger
doses result in a larger Ry. The estimates for Ry are
calculated as the average of twenty-five simulations of
the model across all the 5276 ego networks with at
least one contact, for a range of initial doses.

their contacts that become infected. We repeat this
method 25 times for each of the ego networks and take
the mean number of secondary cases generated over
the 25 repetitions; we calculate an estimate for Ry by
taking the mean over all the ego networks.

For each individual, the number of secondary cases
generated over the course of the infection depends on
the number of contacts they have and the frequency
and duration of contact. Figure[d]is a single realisation
of the secondary cases generated by an individual over
the course of their infection. In general, frequent con-
tacts are infected earlier than first time contacts, since
the duration of contact is longer for the former, and
larger doses are received by individuals with a longer
duration of contact. However, due to the stochasticity
of the model, it is possible for frequent contacts to be
infected later in the infection, or for individuals with a
short duration of contact to receive a larger dose.

We use the results of the simulation to calculate an
estimate for Ry for a range of doses; results are given
in Figure [I0] The relationship between log D and R,
is quadratic, that is:

Ry o [log D] (14)

The value of Ry is minimal for D = 10; this dose coin-
cides with the minimum peak pathogen load (see Figure
Bb]). The increase in the value for Ry with increased
dose demonstrates that the model is dose-dependent
even on the population scale.

2.4.2 Full network simulation

Another important quantity to calculate in epidemic
modelling is the final size distribution, the total num-
ber of people infected over the course of the epidemic.

Univeristy of Warwick
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By running our model on three different network struc-
tures, lattice, scale-free and small-world, we can look at
the effect of the initial dose for the first infected individ-
ual on the final size of the epidemic. Whilst none of the
networks that we use fully capture the structure social
contact network, each demonstrates at least one observ-
able property of real-world networks; where possible,
we generate a network with the property matching the
contact survey data.

Lattice graphs are a good approximation for so-
cial contact networks where contact is determined by
social proximity. An n x m lattice graph has as its
nodes the points in the plane with integer coordinates
(z,9),1 <z <n,1 <y < m; nodes are connected to
their nearest four or nearest eight neighbours.

The second type of network that we consider is a
scale-free network; a scale-free network is a network
whose degree distribution follows a power law, that is
the probability px that a randomly chosen node has
degree k is

P x kT 2<a<3.

Power law distributions have been used to describe
human contact networks in both virtual settings, such
as the sizes of email address books amongst computer
users at a large university [58], and in physical settings,
such as the number of sexual contacts across a twelve
month period [59]. Whilst the degree distribution of the
contact survey data is not fully described by a power
law, it is at least a good approximation for the tail
of the distribution. We use the Barabasi-Albert algo-
rithm to generate a scale-free network whose power-law
degree distribution has the same exponent as the tail of
the contact survey data degree distribution. For each
network generated, we begin with a complete network
on mg = 40 nodes; each new node added is connected
to m = 13 existing nodes by preferential attachment.
These values of mg and m are chosen such that the
average degree is 26, the average number of contacts
given by the contact survey data.

The final type of network that we consider is a
small-world network. Small-world networks possess
both a high degree of clustering and short average
path lengths; graphs that have both of these proper-
ties are said to have the small-world property. We
use the Watts-Strogatz algorithm to generate small-
world networks: we begin with a 26-regular ring lattice
and independently rewire each edge with probability
p = 0.05; this value of p generates a network with short
average path length and a high degree of clustering.
The resulting network has mean degree 26, the same
as the average degree given in the contact survey data.

For each network type, we generate a social contact

W

network for 500 individuals and with each edge (3, j)
we associate a weight that corresponds to proportion of
a day that individual 7 and j spend together. Individ-
uals can be in one of three states: susceptible, infected
or recovered. At the beginning of the simulation, we
randomly choose a single individual to be infected with
dose D < 50000; all other individuals are susceptible.
At each time step and for each currently infected in-
dividual we generate the deposited doses for each of
their susceptible neighbours, as described in Section
Susceptible individuals are able to accumulate dose
from multiple infected neighbours. When transmission
is complete, the states of individuals are updated. Sus-
ceptible individuals with total deposited dose d become
infected with probability 1 — (1 — 0.3)¢; infected indi-
viduals recover when their bacterial load at the end of
the time step is less than one and the simulation ends
when there are no more infected individuals. The final
size of the epidemic is the total number of individuals
infected over the simulation; for each network structure
and each initial dose D we average the results over 50
simulations.

Table 2. Correlation coefficients for initial dose and
final size of the epidemic by network structure.
Network type ‘ Correlation coefficient

Lattice, 4 neighbours —0.1280
Lattice, 8 neighbours 0.0383
Scale-free —0.2455
Small-world 0.3873

For each network, we calculate the correlation co-
efficient of dose and average final epidemic size; the
results are given in Table 2]

For both the 4- and 8-neighbour lattices there is
little to no correlation between initial dose and final
epidemic size. Although the scale-free network exhibits
moderate negative correlation, the final size of the
epidemic varies very little: for all doses, we find that
the average final epidemic size is at least 499. In this
way, the size of the initial dose gives no additional
information about the final size of the epidemic. This
result is due to the fact that scale-free networks are
well connected and thus the infection can easily spread
across the entire population. A similar result holds for
small-world networks. Whilst there is no correlation
between initial dose and final epidemic size for the
lattice, we find that the initial dose and the time to
the first secondary infection are negatively correlated;
this result is shown in Figure

Our network level epidemic model assumes that
individuals have a fixed number of contact who they
see for the same amount of time every day; this is in
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Fig 11. Initial dose against time to first secondary
infection on an 8-neighbour lattice.

contrast to the contact survey data, where individuals
report meeting different contacts at different frequen-
cies. As a result, an individual likely infects their
contacts before they reach the peak of their infection,
with smaller doses on average than if they were to be
infected at the peak. As a result, the initial dose and
the average dose received by the secondary cases is
uncorrelated; see Figure

3 Discussion

In this project we have presented a multi-scale model
for dose-dependent infection dynamics. By assuming
an individual’s bacterial output, and consequently the
number of bacteria they transmit to their contacts, de-
pends on their pathogen load [51], we explore the effect
of initial dose at the population level. Much current re-
search aims to improve the link between pathogen load
and transmission, although methods are still not cur-
rently well-developed for bacteria [60]. We contribute
to the existing literature by focusing on this link for
intracellular bacterial infections.

Results from our within-host model use a set of
deterministic ODEs to describe the infection dynamics,
which show a clear dependence on the dose, with an
increased dose resulting in a higher and earlier peak
pathogen load for doses greater than ten (Figure .
We use a deterministic model over a stochastic model
to give the average pathogen load profile for an indi-
vidual. We note that this does have the disadvantage
of individuals having identical infection dynamics for a
specified dose, whereas in fact there will be a complex
heterogeneity between the different individuals [61].
However, we can accurately capture the expected effect
of dose-dependence without the results being obscured
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Fig 12. We find no correlation between the initial
dose and the average dose received by secondary cases.

by stochastic noise.

We additionally simplify our within-host model to
a single count of pathogen load in the entire body of
the individual and do not consider migration of the
disease around the body. This formulation reduces the
number of parameters required to simulate the model,
but future work would hope to incorporate a compart-
mental model. The pathogen load in the lungs and
other organs would be modelled separately, since it
will be the pathogen load in the lungs that will have
the greatest effect on the transmission; the effects of
the infection dynamics in other organs will vary [62].
In future analysis, examining the effects of medical
countermeasures on the pathogen load could also prove
insightful to how they change the course of the infec-
tion when administered at different times and hence
how this would impact the onward transmission. This
would also be of a greater real-world importance in
improving the effect and timing of medical intervention
and hence public health.

Further considerations would include the effect of
interacting infections, where a second infection is su-
perimposed on an earlier one, which has already caused
an immune response. This is known as a superinfection.
For example, in the case of HIV infections, an increase
in the pathogen load can accelerate the progression to-
wards AIDS [63]. It would be interesting to investigate
how reinfection with an intracellular bacterial disease,
such as tuberculosis, affects the immune response, as
well as reactivation of the latent disease [64]. We also
could consider pathogen fitness and evolutionary pro-
cesses |16].

A major difficulty in the development of multi-scale
models is that simulations in full mechanistic detail
can quickly become computationally intractable when
the size of the model becomes large |[60]. We incorpo-
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rate our two scales in the model construction by using
curve approximations for the pathogen load curve, as
opposed to numerically solving ODEs at every step,
since this is our most computationally expensive stage.
In other models, realism is compromised in favour of
tractability through simplification of the within-host
model or using smaller scales [65].

Parameters for our model have been taken predom-
inantly from literature of Mycobacterium tuberculosis
infections and through mathematical estimation to give
biologically relevant results. The lack of experimental
parametrisation is particularly notable for the transmis-
sion of the infection. This is in part due to the fact that
transmission potential is difficult to quantify due to the
considerable heterogeneity in the transmission poten-
tial between infected hosts [66], but also because there
have been few experiments to measure transmission.
Handel and Rohani [40] present a potential experimen-
tal set-up, whereby an infected animal would on a daily
basis be presented with new animals, which would be
removed at the end of the day. If measurements were
taken for the pathogen load, symptoms, immune re-
sponse and the behaviour of the host, this data could
then be used to define a quantitative function between
infection dynamics and infectiousness. However, until
such an experiment is carried out theoretical advances
in the field will likely be speculative.

In scaling the model up to the population level, we
consider the explicit ego networks from participants of
a contact survey [57]. Using the data available from
the survey provides a realistic contact experience from
which we calculate the number of secondary cases from
one individual. However, the data does not accurately
capture the contact experiences between the other con-
tacts of the ego. Ideally, we would be able to include
network statistics such as node degree and clustering
coefficient and use this to implement a complete and
realistic network for contacts. The exact method by
which this would be implemented is an open prob-
lem [67], but we have produced some distributions for
relevant features such a network should contain; see
Appendix

The results of calculating values for Ry with differ-
ent doses concur that a higher dose induces infection
dynamics that initiate higher transmission. However,
the range of values is relatively small, with a range
of less than one, for doses as different as 1 and 10000.
This is perhaps not surprising however, as while dose

W

has a clear effect on infection dynamics for diseases
spread by direct transmission, we would expect little
feedback from the infection dynamics on to the infec-
tion dynamics of new cases. A disease that is spread
by environmental spores, for example, would have far
greater reciprocal feedback between the levels of organ-
isation. This is because the infection dynamics will
directly affect the number of infective spores in the
environment, which will aggregate and thus directly
affect dose size [68]. Hence, since we are modelling an
intracellular bacterial infection, we do not have such
a direct feedback in our model and so we should not
expect a strong secondary case dependence on dose. A
similar result applies to the full network model.

Finally, we note that our model is effective at allow-
ing frequent contacts not to be infected immediately
and indeed sometimes not infected at all, due to the
stochastic transmission. Our model can also display
cases where very minimal one-time contacts result in
infection, while there are much higher probabilities of
secondary individuals becoming infected if they meet
an infected individual for longer or when their infection
is at its peak pathogen load (Figure E[)

4 Conclusion

The modelling process undertaken here has served to
demonstrate the challenges associated with developing
practical multi-scale models of disease, whilst also pro-
viding an some insights into the implications of within-
host dynamics for outbreaks of highly dose-dependent
infections. We have shown that the positive relation-
ship between initial dose and peak size, particularly
when combined with varying contact weights, can re-
sult in highly heterogeneous transmission. Simulated
epidemics where the source cases receive different in-
fecting doses also display differing characteristics, such
as higher values of Ry for larger doses. Although these
effects are small relative to changes in dose size, they
could still have important ramifications for the design
of public health strategy and response; even a small
change in Ry could result in a shift in the number of
vaccinations or treatments required for disease control.
In providing a general model of intracellular bacte-
rial infections we have highlighted the need for further
disease-specific work on this topic, including experi-
mental studies for better parametrisation, to quantify
these effects for targeted public health objectives.
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Appendices

A ODE parameter estimation

Using parameter values in Table [I] Figures [I3] [[4] and [I5] show how 3, § and p affect the area under the pathogen
load curve and the time to reach the pathogen load peak. We expect the area under the pathogen load curve and
the time to pathogen load peak to be approximately 10'° extracellular bacteria and 30 days respectively and so
we choose our parameter values accordingly.

area under pathogen load curve area under pathogen load curve
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B Beta and log-normal approximations

The linear plot of the pathogen load, given in Figure [2] is reminiscent of the density function of a probability
distribution; our first approximations to the pathogen load curves use appropriately scaled beta and log-normal
density functions.

Our approximations use four statistics of the pathogen load curves: the mean, variance, time to end of infection
and area under the curve over the whole infection. These can be calculated directly from the pathogen load
curves. The mean and variance are used to determine the parameters the distribution whilst the time to end of
infection and area under the curve are used to scale the distribution. The result of the approximation will be four
functions from the initial dose D to each of the two parameters of the distribution, the time to end of infection
and the area under the curve. We now describe our method for the beta approximation.

The beta distribution has support on the unit interval and is parametrised by two positive shape parameters
a and B. The mean and variance of the beta distribution can be written in closed form in terms of o and j3; if
X ~ Beta(a, ) then:

@
Ex] = (15)
ap
(a+B)(a+p+1)

Var(X) (16)

The pathogen load curve must be scaled to have support on the unit interval; to do this we scale the x-axis (time)
by the time to the end of infection. We also must scale the curve to have an integral of 1 over the support; to do
this we scale the y-axis (pathogen load) by the area. We calculate the mean and variance of the scaled pathogen
load, Bp and s%, and use these as approximations for the true mean and variance of the beta distribution. We
then solve the following simultaneous equations for o and 5:

_ @
B =
p a+p
s2, = o
b (a+B)2(a+B+1)
to derive the following values for o and (8
o — Bp(Po0=Bp)
sh
_ Bp(1-B
g = (1_BD)(D(2D)_1)_
D

Figure [16| shows, on a log-log scale, the relationship between the initial dose D and each of «, 3, time to end of
infection and area. Cubic curves are good fit to the points. Thus, given only the initial dose D, we are able to
fully define a beta distribution approximation to the pathogen load curve.

We use an almost identical method to fit the log-normal distribution, but with no scaling on the z-axis since
the log-normal has support on the positive real line. The mean and variance of the log-normal distribution can
also be written in closed form in terms of the two parameters yu and o: for Y ~ In N (u,0?), E[Y] = et o%/2 and
Var(Y) = (7" — 1)e2to’,

Qualitatively, the beta and log-normal approximations capture the overall shape of the pathogen load; see
Figure However, neither approximation accurately accurately represent the time or size of the peak pathogen
load or the tails of the infection; this can be seen from Figure The beta approximation underestimates the
pathogen load over the majority of the infection; in particular, the pathogen load is slightly underestimated at
the peak and more significantly underestimated in the tail of the infection. As a result, the beta approximation
severely underestimates the length of the infection by approximately 20 days.

The log-normal approximation is a marginally better fit, at least qualitatively, but underestimates the pathogen
load early in the infection and then overestimates both the peak and tail of the infection. As a result, the
log-normal approximation overestimates the length of the infection by approximately 20 days.
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Fig 16. The relationship between the initial dose D and each of «, [, time to end of infection and area for the
beta approximation.

The inaccurate fit of both the beta and log-normal approximations motivate the construction of our third and
final approximation, which captures the non-zero initial conditions, exponential growth and decay in the tails and
the correct height of the peak.
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Fig 17. A qualitative comparison of the different approximation function
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C Sigmoidal approximation parameters
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D Contact survey

Danon et al. [57] fit a double Pareto log-normal (dPIN) distribution to the degree distribution of the contact
survey data and quantify the clustering in ego networks. Two additional statistics that may be useful for the
construction of a social contact network based on the contact survey data are the proportion of an individual’s
contacts that are frequent versus first time contacts, and the distribution of contact times for both frequent
and first time contacts. We calculate that on average, the proportion of contacts that are frequent contacts is
p = 0.7852, and the proportion that are first time contacts is 1 — p = 0.2148.

The duration of contact for frequent contacts is well described by a power law with exponent o = —1.1416; see
Figure R-square goodness of fit statistic for this is R = 0.9872; this means that over 98% of the variation in
the data is explained by the power law fit.

10t i
X data
power law
00 \\
\
2
g 101 \
3 TR
1072 \‘%‘N
10 -3 1 L
10° 10t

time (hours)
Fig 19. A power law with exponent o = —1.1416 is a good fit to the distribution of contact times for frequent
contacts.

We fit three distributions to the first time contact duration: a power law with exponent o = —1.1054, a single
exponential model (expl), described by the equation y = Ae** with A = 0.1151 and a = —17.36, and a double
exponential model (exp2), described by the equation y = Beb® 4 Ce® with B = 0.1287,C' = 0.02416,b = —37.51
and ¢ = —4.25. The R-square statistics, adjusted for the number of parameters in each fit, are R = 0.9118,
R =0.9416 and R = 0.9888. Therefore, according to the R-square statistic, the double exponential model provides
the best fit to the data, even when adjusted for the number of parameters.

10°
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Fig 20. A power law distribution, a single exponential model (expl) and a double exponential model (exp2) are
fit to the distribution of contact times for first time contacts. According to the R-square goodness of fit statistic,

the double exponential model is the best fit to this data.
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