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Abstract

We present a within-host model for tuberculosis (TB) infections, which directly models the
bacterial load over the course of the infection. This allows for a future multi-scale model which
can make use of the link between pathogen load and transmission potential of an infected
host. By modelling the interactions between the host immune system, the invading bacteria
and granulomas which are characteristic of TB, we were able to reproduce some of the major
traits of the disease. The model recreates the distribution of latent and active infections and
maintains an accurate dose dependence.

1 Introduction

Mycobacterium tuberculosis (Mtb) is the causative agent
of Tuberculosis (TB), which affects one third of the
population worldwide and is a leading cause of death.
In 2014 there were 9.6 million new cases and 1.5 million
deaths as a result of TB infection [1]. TB predominantly
affects developing countries as shown in figure 1, but can
also affect the homeless community [2] or lower income
areas of developed countries [3].

Antibiotic treatments such as isoniazid and rifampicin
are available, however the regimens are usually long
and have unpleasant side effects. This leads to non-
compliance from patients, which in turn leads to the
emergence of drug resistant strains of Mtb [5]. Multi-
drug-resistant tuberculosis (MDR-TB) is the name given
to any strain that is resistant to both isoniazid and
rifampicin. An estimated 5% of TB cases are MDR-TB
which has a 50% survival rate, even with treatment [6].

Humans and Mtb have co-evolved for millennia; the
oldest confirmed case comes from a 17,000 year old Bison
in Wyoming and skeletal remains of Egyptian mummies
dating back to 3000 BC have shown evidence of tuber-
cular decay [7]. As a result the Mtb bacteria are well
adapted to survival within a human host. A hallmark of
the TB infection is the occurrence of granulomas in the
lungs. Mtb has the ability to survive within these granu-

Fig 1. Prevalence of TB worldwide in 2009, number of
cases per 100,000 [4].

lomas for many year before spreading further [8]. This
has lead to TB infections being defined by two states;
active and latent. Only 10% of infected individuals will
develop active TB however if left untreated, active TB
has about a 70% mortality rate [9].

Upon infection, Mtb predominantly attacks the lungs,
although can be spread elsewhere in the body. The classic
symptoms of TB are a chronic cough, fever, night sweats
and weight loss [10]. Due to the pulmonary effects of TB,
bacteria are easily disseminated when infected individu-
als cough, sneeze, speak or spit [1]. In the later stages of
a TB infection, granulomas in the lungs grow and can
spread to other areas of the body causing further com-
plications. These advancements of TB are collectively
referred to as extrapulmonary TB and occur in about
20% of active cases [11].

There are many challenges in studying the within
host dynamics of a TB infection. First and foremost is
the fact that the dynamics all occur within the lungs
and are therefore unobservable without killing the host
to extract the levels of bacteria in the granulomas and
surrounding lung tissue. Non-human primates such as
macaques, however, can be used to study TB and provide
very coarse time series data on granulomas and bacteria
due to their similar reaction to Mtb [12,13].

1.1 Host response to Mtb

The first immune cell Mtb encounters upon entering
the lungs of the host is the alveolar macrophage. The
macrophage recognises the bacteria as a foreign cell and
attempts to phagocytose the bacterium whilst releas-
ing various cytokines (messaging proteins). Since the
macrophage is only part of the innate immune system, the
bacterium is able to survive phagocytosis and infect the
macrophage by interfering with the phagosome-lysosome
fusion [14]. The now infected macrophage continues to ex-
pel cytokines, which recruit the active immune response
to the site of infection, in the form of other macrophages
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as well as various lymphocytes and dendritic cells [15].
The immune cells contain the infection by encapsulating
the infected macrophages in a spherical structure: the
granuloma. Granulomas are made up of macrophages,
that have either fused to form multinucleated giant cells
or differentiated into lipid-rich foamy cells, and T and B
lymphocytes (T and B cells) [16].

The purpose of these granulomas is to provide a micro-
environment in which the immune system can take care
of the infection, however Mtb has evolved to be able
to survive for extended periods of time in these such
an environment. In the early 20th century Corper et
al. [8] sealed several hundred strains of both human and
bovine cultures of Mtb and placed them in an incubator
at 37°C for 12 years between 1920 and 1932. As a result,
24 out of 56 bottles yielded culturable organisms. The
survivability of Mtb in these sealed conditions for such
a long time provides an analogy for the survivability of
Mtb in granulomas within humans.

In an effort to slow bacteria reproduction, the body
reduces iron content in the plasma by drawing it into
macrophages [17]. However, since Mtb is able to survive
within the macrophage, this extra iron facilitates growth
inside the immune cell [18]. Once the pathogen has
infected the macrophage, it is sheltered from the immune
system and able to safely replicate.

While drug resistance has a role in the prevalence
of TB within humans, it also has an interesting inter-
action with granulomas. Vandiviere et al. were able to
culture bacilli from 9 out of 22 closed granulomas in
treated patients, and 7 out of these 9 were fully drug
sensitive [19]. Although the patients were treated, the
bacteria within the granulomas had no interaction with
the antibiotics and thus neither died, nor developed drug
resistance. A postulated theory to explain this is that
the reduced oxygen levels and other bacteriostatic agents
reduce the metabolic rates of the bacteria which renders
them refractory to drugs [20].

1.2 Previous work

By modelling sites in the lungs and lymph nodes as
healthy and unhealthy, Gong et al. [21] provide a model
of the dynamics of granulomas in these two organs. Their
model sheds light on the heterogeneity of TB infections
and suggests that latency comes about as a spectrum of
various states of TB that are progressing towards active
TB. Through sensitivity analysis the model suggests that
inducing low level tissue damage early on to kill off the
granulomas could help to avoid a more serious infection
later on. One problem with this model, is that there is
no way to correlate counts of granulomas with infection
status and disease progression [22]. Another issue is that
very few TB infections result in extrapulmonary infection
in the lymph nodes. Extrapulmonary TB only occurs
in 15-20% of active TB cases and of those, only 20%

result in infection in the lymph nodes [23,24]. Gong et
al. include the lymph nodes because they are the site at
which adaptive immune responses are initiated, however
the model results in high levels of infection in the lymph
nodes.

Wigginton and Kirschner [15] model the cellular and
cytokine control network in an effort to identify the reg-
ulatory elements in the host response. The 11 ordinary
differential equation (ODE) model predicts that even if
latency is achieved, an unregulated immune response may
result in tissue damage. Since the model has such high
dimensionality, it is difficult to understand the effects
of any individual terms. By understanding the effects
of parameters on the system, it is possible to develop
policies or drugs that specifically effect the more impor-
tant parameters thus diseases can be more efficiently
controlled.

Pedruzzi et al. [25] include the effect of other chemi-
cals such as iron lipids and nitric oxide on the dynamics
within macrophages in order to determine the fate of
intracellular bacteria. By modelling the early phase of
macrophage infection, it was found that the pathogen
interferes with mechanisms within the host cell to reach
a non-zero equilibrium. However if this equilibrium is
perturbed the system produces oscillatory dynamics for
disease progression.

Hao et al. [26] develop a very high dimensional set
of partial differential equations describing interactions
between multiple types of macrophages, bacteria and
cytokines within a granuloma. This leads to a complex
system of equations which focuses on the evolution of
the granuloma once it has already formed. The effects of
drugs that inhibit specific cytokines (IL-10 and IL13) are
also evaluated. It is shown that a more rapid recruitment
of T cells and macrophages to the granuloma results
in a lower switching time (the time at which infected
macrophages outnumber healthy macrophages).

2 Methods

In this work we will develop a within host model for
TB. In particular we would like to specifically model the
bacterial load within the host. With this type of model
it would be possible to predict infection dynamics, such
as time of activation or length of infection. Furthermore,
there is evidence to suggest bacterial load affects onward
transmission [27], hence having a model that explicitly
gives the bacterial load will make it much easier to extend
to multiple scales of within-hosts and between-hosts.

How the host immune system interacts with the
pathogen will determine the within-host dynamics, and
ultimately the infection status of the host. These in-
teractions, however, are pathogen specific, so a good
understanding of the key mechanisms of the immune
system and pathogen dynamics is required to construct
a biologically realistic and mathematically reasonable
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model.

2.1 Macrophages

Once a pathogen bypasses the physical barriers such as
the skin and chemical barriers such as gastric acid, the
innate immune response will try to clear the infection.
Pathogens are removed through a process called phagocy-
tosis. This mechanism is carried out by a class of immune
cells called phagocytes, which includes macrophages. The
phagocytes engulf the pathogen, trapping it in an intra-
cellular vesicle, where it is digested by enzymes.

The innate immune response is also responsible for
activating the pathogen specific response of the adaptive
immune response. The adaptive immune response is
predominantly composed of two cells: T cells and B
cells. On the surface of the pathogen there are molecules
called antigens, which allow the immune cells to identify
the pathogen as foreign. When a phagocyte digests a
pathogen it presents the antigen of the pathogen on its
cell surface. It is this antigen presentation that activates
the T and B cells. The activated T and B cells are then
more efficient at killing the pathogen and removing it
from the host.

In the interest of simplicity of the model we will use
the term ‘Macrophage’ to encompass all immune cells
and we will treat the immune system as a system of
cells of a single homogeneous type. Macrophages are
produced in the lymph nodes and migrate to the lungs
at some rate r0. They also have a lifespan and die at
some fixed rate δM . This gives a basic dynamic for the
number of macrophages M

dM

dt
= r0 − δMM. (1)

The steady state of this system is M? = r0/δM , but the
number of macrophages in disease free equilibrium sits
at around 109 [28,29]. This implies that r0 needs to be
9 orders of magnitude larger than δM . The literature,
however, yields r0 = 1.34 and δM = 0.02 [26], hence an
extra mechanic is needed for a realistic equilibrium value
of M .

Macrophages are able to reproduce and grow at some
rate r1 [30] which gives

dM

dt
= r0 + r1M − δMM. (2)

This leads to an equilibrium of M? = r0/δM−r1. Given
the above values of r0 and δM , r1 would need to satisfy
|r1 − δM | ≈ 10−9. Not only does this disagree with the
literature, but it also makes the model very unstable.
Reformulating the growth of macrophages as logistic
with some carrying capacity yields the required order of
equilibrium

dM

dt
= r0 + r1M

(
1− M

KM

)
− δMM. (3)

A carrying capacity of KM = 109 [28,29] and a growth
rate of r1 = 0.03 [30] results in M? ≈ 108.

2.2 Extracellular bacteria

When a macrophage phagocytoses an extracellular bacte-
ria, the two combine to become an infected macrophage

dM

dt
= r0 + r1M

(
1− M

KM

)
− γMB − δMM, (4)

where B is the number of extracellular bacteria. Extra-
cellular bacteria also have a reproduction rate [15, 31].
For similar reasons to macrophages, the bacteria grow
logistically

dB

dt
= αB

(
1− B

KB

)
− γMB. (5)

In early time, when M � 1 and B � KB, dB/dt ≈
(α− γM)B � 0 hence B rapidly goes to zero. This
corresponds to the all of the initial bacteria being phago-
cytosed. In order for the infection to persist, the infected
macrophages require a mechanism by which granulomas
are produced.

2.3 Granulomas

When bacteria are phagocytosed three events can occur.
The bacteria can be successfully killed, in which case both
bacteria and macrophage are removed from the system.
Alternatively, the bacteria can survive the phagocytosis
and initiate the formation of a granuloma. In order to
capture active and latent TB, we make the assumption
that granulomas are in one of two states: active or
dormant. Furthermore, the ODEs will not give a count
of granulomas but rather a level of affected area in the
lungs and will therefore be referred to as levels of lesion.

Infected macrophages can develop into either dormant
or active lesions or heal and be removed from the system.
Thus LD and LA will grow proportionally to γMB

dLD,A
dt

= ΘD,AγMB, (6)

where ΘD,A is the probability that a dormant (or active)
lesion forms.

The bacteria within the dormant lesions will be in a
dormant state and thus not replicating or moving, how-
ever dormant lesions can reactivate and become active
lesions. Furthermore since the bacteria within active
lesions are reproducing and active, there will be some
dissemination of bacteria back into the lung space [21]

dLD
dt

= ΘDγMB − aLD (7)

dLA
dt

= ΘAγMB + aLD (8)

dB

dt
= αB

(
1− B

KB

)
+ βLA − γMB. (9)
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Whilst the lesions are damaging the lung tissue, the
immune system is also attempting to heal the lungs and
removing lesions from the system [21]

dLD
dt

= ΘDγMB − aLD − δDLD (10)

dLA
dt

= ΘAγMB + aLD − δALA. (11)

2.4 Adaptive immune response

The number of different cytokines and immune cells
makes modelling the immune system very complicated.
Instead of modelling each individually we will make an
analogy of the immune response as a whole. Since the
adaptive immune response is triggered by antigen pre-
sentation upon successful phagocytation from the innate
immune response, the adaptive response should grow as
bacteria are destroyed

dR

dt
= gR (1−ΘD −ΘA) γMB, (12)

where gR is the constant of proportionality for the growth
of R. The immune response also has memory, thus R
should have some degradation term [32]

dR

dt
= gR (1−ΘD −ΘA) γMB − δRR. (13)

The last part of the model is how the adaptive im-
mune response changes the dynamics. Biologically, as
the disease progresses, immune cells differentiate and
specialise to become better at killing the specific bacte-
ria that is infecting the host. To incorporate this into
the current mechanics of the model, we assume that as
R increases the probabilities ΘD and ΘA decrease.

2.5 Final model

Since the macrophages, extracellular bacteria and lesions
are all growing within the lung space, the logistic growth
rates of the macrophages and bacteria have been modified
to take space into account

dM

dt
= r0 + r1M

(
1− C

KM

)
− γBM − δMM

(14)

dB

dt
= αB

(
1− C

KB

)
+ βLA − γBM

(15)

dLD
dt

= ΘDe
−ρRγBM − aLD − δDLD (16)

dLA
dt

= ΘAe
−ρRγBM + aLD − δALA (17)

dR

dt
= gR

(
1− (ΘD + ΘA) e−ρR

)
γBM

− δRR
(18)

where
C = M +B + LD + LA.

The probability that either type of granuloma is formed
is now dependent of the current level of R: ΘD,A(R) =
ΘD,Ae

−ρR. A schematic of the model can be found in
appendix A.

The final model now satisfies the basic requirements
set out: disease free equilibrium and carrying capacities
within the lungs. Due to the very non-linear nature of
the model brought about by the response term R a full
steady state analysis is very complicated and unlikely to
shed any light on the model. However, it is clear that for
a steady state with non-zero values of dormant lesions,
we require a non-zero level of extracellular bacteria. If
B? 6= 0 and dM/dt = 0 then noting that 1− C/KM < 1 it
is required that

B? <
r0 + (r1 − δM )M?

γM?
. (19)

B and M are both countable values, and thus it is safe
to assume that B? should be greater than or equal to 1,
however, this is only possible if M? is less than 5 and is
bounded itself by 5 when M? = 1. It is then possible to
bound the other equilibrium values resulting in

M? < 5, B? < 5, L?D < 4334

L?A < 34, R? < 3.3× 10−7.

Biologically, this equilibrium does not make much sense,
and in fact the large number of dormant lesions will
develop into active lesions which in turn will produce
more bacteria, so this equilibrium must be an unstable
equilibrium. Hence the only remaining equilibriums are
when either B? = 0 or when M? = 0, that is, in disease
free or in active TB.

Latent TB may come about from a quasi steady state
within the system. If the dynamics slow down for long
enough, the individual could be classed as latent, before
the disease becomes activated, which agrees with the
results of Gong et al. [21].

2.6 Parameters

When developing mathematical and computational mod-
els of biological systems there is often a level of uncer-
tainty in the choice of parameter values. Time series
data on bacterial load and levels of granulomas in the
lungs over the course of an infection is very limited so
parameter values have to be estimated. They are es-
timated to be biologically reasonable by observing the
trends in the model and checking they are within the
range observed in biological experiments and in keeping
with the literature.

A future consideration to reduce the uncertainty in
the parameters would be to use Latin hypercube sam-
pling [33] and partial rank correlation coefficients [34].
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(b) Fragment of (a) showing the switch from latent to
active TB.

Fig 2. Numerical solution of the deterministic model with B0 = 10. The host develops active TB after roughly 10
years.

However in order to perform these techniques more work
is required to improve the efficiency of running the model.

Table 2 in appendix B gives the values of the param-
eters of the model. Out of the 16 parameters 12 had a
basis in the literature on which to form a value. The
remaining 4 pertain to the value of R which relates to
multiple real-world elements, so parameters that are as-
sociated with R are difficult to measure or define within
the host. As such, the assigned values were based purely
on the output of the model and knowledge of the disease
such as incubation period, counts of granulomas and the
infectious dose.

3 Results and discussion

3.1 Recovered, latent and active

In reality, inhaling Mtb can result in one of 3 outcomes.
Either the individual will recover or they will develop
latent or active TB. In a deterministic model, heterogene-
ity comes from varying initial conditions and parameters,
whilst a stochastic model will produce heterogeneity from
the inherent stochasticity of the model. Definitions of
the various infection statuses are as follows:

Recovered An individual is labelled as recovered if
the infection does not fully take hold. There may still be
bacteria within the host for a couple of years, but their
immune system is able to clear the infection by itself.

Active In within-host modelling there is the idea of a
switching time [28] which is the time at which the num-
ber of infected macrophages outnumber the number of
healthy macrophages. With this in mind, it is reasonable
to label an individual as having active TB if the bacteria

(since infected macrophages are not explicitly modelled)
outnumber the immune cells.

Latent If after 25 years, the individual has neither
recovered nor developed active TB they are labelled as
latent.

3.2 Deterministic model

Figure 2a shows the numerical solution to the ODEs with
an initial dose of B0 = 10. The infected host remains in
the latent stage of the disease for about 10 years before
developing active TB, however this switch occurs almost
instantaneously, as shown in figure 2b. Figure 3 shows
the contribution to extracellular bacteria from active
lesions over time, found by integrating βLA over the
duration of the infection. At the time of the switch there
is a large spike in the number of bacteria being produced
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Fig 3. Contribution to extracellular bacteria from
active lesions during the switch.
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Fig 4. A single run of the stochastic model with B0 = 10. Similarly to the deterministic case the host develops
active TB after roughly 10 years.

by active lesions. This spike allows the

αB

(
1− M +B + LD + LA

KB

)
term to move away from zero and the bacteria rapidly
gain traction and explode in population. Since there is
now a large number of bacteria, macrophages begin to
deplete allowing further replication of bacteria.

A further artefact of the deterministic model is that
the number of bacteria is never actually zero. After
the initial uptake of bacteria, the level of bacteria has
order 10−9, but since the order of macrophages is 108

this gives a significant rate at which bacteria are being
phagocytosed, even though there should be no bacteria
present. The result of this is the production of phantom
lesions which in turn produce more bacteria.

In addition to looking at the dynamics of the immune
cells and bacteria within a granuloma, Hao et al. mod-
elled the growth rate of the granuloma as a whole [26].
Their model predicted that over 50 days the radius of a
granuloma grows from 0.01 cm to 0.014 cm. By naively
assuming linear growth, and that a granuloma begins as
a single infected macrophage, the volume of a granuloma
over time (days) can be written as

V (t) = 4.99× 10−9 + 1.46× 10−7t. (20)

Assuming that macrophages and bacteria have a similar
size, dividing equation 20 by the volume of a single
macrophage [35] gives an estimation for the number of
cells in granulomas at any time

N(t) = 1 + 29.3t. (21)

Lastly computing LD(t)+LA(t)/N(t) gives 102 for the order
of lesions, which and agrees with the estimates of lung
capacity given by Gong et al [21].

3.3 Stochastic model

To overcome the issues of the deterministic model, we
convert the model to a stochastic version with transi-
tion rates as defined by the deterministic model. The
standard method for this would be to use the Gillespie
algorithm [36], however due to the large number (∼ 109)
of macrophages during the early time of the model, there
are far too many events to make this simulation feasible.
A common compromise to this problem is to use the τ -
leap method [37] with a variable step size τ that depends
on the rates. The large differences in rates attributed to
the macrophages and the other particles in the system
again make this an infeasible solution. In order for the
simulations to run in a reasonable amount of time, a
fixed step size of τ = 0.01 was used.

For terms M , B, LD and LA the rates at which they
increase and the sizes of increase can be easily obtained
by analogy with the deterministic model. R should
grow every time there is a successful phagocytation of
a bacteria. In the deterministic model, this growth is
partially controlled by the constant of proportionality
gR. Thus, every time a bacteria is killed, R should grow
by gR.

Figure 4a shows a single run of the stochastic model.
In this case, the individual developed active TB at about
10 years, which is similar to that of the deterministic
model. The spike in bacteria level, however, is much
less pronounced and the rapid growth, although along
the same time-scale, seems much more reasonable. An
expanded view of the switch from latent to active TB is
shown in figure 4b.

A noticeable difference between the stochastic model
and the deterministic model, is the level of B in the
early stage of the model. This comes about from the
fact that only integer values of B are allowed in the
stochastic model. Initially B = LA = 0 and LD is very
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low. Eventually some of the dormant lesions become
active and can start producing bacteria. At first the
bacteria only facilitate the growth of LD and LA, but
this has a knock on effect for the extracellular population
of bacteria to be able to grow on their own.

The time to activation in both models, as shown in
figures 2 and 4, is roughly 10 years. In fact, running
the stochastic model 45 times with B0 = 10, resulted
in an average activation time of 3794 days (10.4 years)
with a standard deviation of 512 days (1.4 years). The
similarity to the deterministic model and the lack of
deviation suggests that large number of events within
the stochastic model average out and end up closely
approximating the deterministic version.

3.4 Epidemiology

It has already been discussed that one third of the pop-
ulation is infected with TB and that of that 33% that
develop an infection only 10% will develop active TB.
After running the stochastic model 100 times with an
initial dose of B0 = 10, it yielded 25 latent infections, 2
active infections and 73 recoveries.

Infection status Epidemiology [1] Model
Recovered 67% 73%

Active 3% 2%
Latent 30% 25%

Table 1. Epidemiological results of the stochastic
model

As shown in table 1 the model closely represents
this simple epidemiological data for TB. As a result, it
could be used in a multi-scale model along with a model
for transmission based on bacterial load. Using social
interaction data this could lead to a deeper understanding
of the transmission of TB through communities.

3.5 50% infectious dose

A common figure to find when modelling a dose depen-
dent within host model of disease is the dose required to
infect 50% of people. Running the stochastic simulation
for 20 iterations each over a range of doses gives an es-
timation of the probability that a given dose will infect
an individual, shown in figure 5. As in Ref. [38], it can
be assumed that the bacteria each have an independent
chance to cause infection, that is

P [infection|dose d] = 1− (1− θ)d (22)

where θ is the probability that any individual bacteria
causes infection. At the start of the model, the response
term R is zero, and so the probability that a bacteria
survives phagocytosis is 1−ΘD−ΘA. A single surviving
bacteria however does not guarantee infection so we
would expect θ to be slightly less than this. By fitting

equation 22 to the results from the model we get that
θ = 0.0657, which is actually slightly larger than 1 −
ΘD − ΘA = 0.0460. This will be due to error as a
result of the stochastic simulation. Solving equation 22
for 0.5 = 1 − (1− θ)d gives that the required dose to
infect 50% of people is approximately 10 bacteria. This
agrees with the low infectious dose of TB given in the
literature [39].

4 Conclusions and further work

A within-host model for TB has been developed which
exhibits some of the characteristic traits observed in
TB infections. The model has a dose dependence and
will account for both latent and active infection states.
Further work on the model would be to look at how
it interacts with other infections, in particular diseases
with an immunosupression effect such as HIV.

Individuals with active TB have a very high mortality
rate without medical intervention. It would be interesting
to investigate the processes involved in drug uptake and
vaccination and see how they interact with the above
model.

Additionally the model has only 2 equilibrium states;
either disease free or active TB. The latent infection
status comes about from individuals whose infection has
either not yet activated or not yet recovered, but their
bacterial load is still following an arc as in figure 4. This
means that had the model been allowed to run longer,
people would begin to recover by themselves without
medical intervention. This disagrees with the recovery
rate of TB without medical intervention and thus shows
a flaw in the model.

Furthermore, the addition of a compartmental aspect
of the model to introduce the possibility of extrapul-
monary TB could allow further investigation into how TB
affects other parts of the body. By incorporating some

1 2 3 4 5 10 20 30 40 50

dose

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 o

f i
nf

ec
tio

n

simulation result
fit
d

50
 =10.1917

Fig 5. The dose that infects 50% of people is
approximately 10.
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more detailed biological dynamics, predictions could be
made on whether extrapulmonary symptoms will develop
based on current symptoms.

In conclusion, the model presented in this work will
provide a good base to build upon in the future. The fact
that the model produces biologically reasonable results
and that they are along the expected time-scales means
that model should be robust enough to take in additional
mechanics without losing its current worth.
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Appendices

A Schematic of the final model
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Fig 6. According to the model macrophages phagocytose bacteria. This can either be successful resulting in an
increase in the immune response, or it can fail resulting in either dormant or active lesions forming. Dormant
lesions can transition into active lesions, which in turn produce more bacteria.

B Parameters

Symbol Description Value Unit Source
B Extracellular bacteria count
M Macrophages count
LD Level of dormant lesions scalar
LA Level of active lesions scalar
R Level of immune response scalar

r0 Recruitment rate of macrophages 1.34 cell day−1 [26]

r1 Growth rate of macrophages 0.03 day−1 [30], estimated
KM Carrying capacity of macrophages 109 scalar [28,29]

γ Rate of phagocytosis 0.28 day−1 [26]

δM Death rate of macrophages 0.02 day−1 [26]

α Growth rate of extracellular bacteria 0.2 day−1 [15]
KB Carrying capacity of bacteria 109 scalar [31]

β Rate of release of bacteria from active lesions 1.2 day−1 [21]

ΘD
Probability that phagocytosis results

in a dormant lesions
0.52 scalar estimated

ΘA
Probability that phagocytosis

results in an active lesion
0.434 scalar estimated

δD Resolution rate of dormant lesions 0.005 day−1 [21]

δA Resolution rate of active lesions 0.65 day−1 [21]

a Rate of activation of dormant lesions 0.0025 day−1 [21]
ρ Strength of the immune response 0.27 scalar estimated
gR Growth rate of the immune response 10−8 scalar estimated
δR Rate of immunological decay 0.01 scalar [32], estimated

Table 2. The values of parameters used in the model. Most parameters have been taken from literature. Those
that have been estimated were given values that seem biologically reasonable as in section 2.6.
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