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Introduction

A simulation model of a call-centre, knowing:
Calls Arrival Rate: Poisson process at a fixed rate A.

A: Not known, but uncertainty is well modelled given observed

data.
Service time: exponentially distributed known mean p =t

Costs: Salaries (S), and penalty costs (PC) per minute that
customers wait on hold.

Objective:

Minimise: Total.,st = Totals + Totalpc
Decision Variable:

Staffing Level



4/23

Introduction

Question:

Should we run additional simulations to learn about the "total cost”
given staff allocation and current uncertainty for A?

OR

Should we collect more data to reduce the input uncertainty?
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Introduction

Output of simulation: ©(x, a), given X [Designs| and A [Input].
True perfomance of x: F;(x) = ©(x, a*) given true input a*
Expected performance of x: ‘ given the
data D.
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Introduction
Approximating the simulation runs, ©(x, a), with u(x, a).

Sample {(x,a)} Collect data
Update 1(x, a) Update /4 )

Pl4/D]
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Motivation

Goal: Minimise the difference between the maximum of the
expected and true performance

Constraint:
Fixed budget N.

Standard Approach:
Decide how to split N, then first collect more input distribution data,
spend remaining budget on simulations.

Proposed Approach:

Sequentially allocate budget to either input data collection and update
, or run more simulations and update ;(x, a), depending on

what seems to have largest benefit
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Gaussian Process Approximation

Consider the possible designs x € X, an unknown input value a € A,
and a function 8: X x A — R.

f(x,a) =0(x,a) + ¢

where € ~ N(0, 0?)

Modelled by the mean n"(x, a) and covariance k"((x,a); (x’,a’)) of a
Gaussian process.



9/23

Problem Formulation: Expected Performance

|dentify the design x that maximises the expected performance:

F(x) = Erpomlu(x,a)] = [ 1°(x.2)7 (210" da
Data collection from simulation runs:

R = Tz, e, )i = 1, ceo, D)

D™ = {(j,d)'|i = 1,...,m}; d is an observation from the input
jed{l,.., 1}



Problem Formulation: Quality of Sampling

The Opportunity Cost (OC): Difference in true performance between
the design with the highest predicted value and the true best design

OC = max F(x) — F(x)

where F(x) = 0(x, a*) and x, = arg maxy F(x)

0 20 A0 60 80 100
X [Design]
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Algorithm: Knowledge Gradient for Input Uncertainty
[Pearce and Branke, (2017)]

From current maxxex{f”(x)}
Given a sample (x,a)"*!

PLA/D]

Update posterior 11"(x, a)

Update to maxyex {F™1(x)}

10
X 60
[ -DGS fgﬂ.gj 80

1nn 100

F(x) = [, 1n"(x, a)P[a|D]da
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Algorithm: Knowledge Gradient for Input Uncertainty

[Pearce and Branke, (2017)]
Given a discretised set X, evaluate sample (x,a)’"”L1 such maximises,

KGr(x,a) = Blmax{F(x")}(x,a)™] — max{F"(x')}
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Algorithm: Input Uncertainty Reduction

Collect data
Update | A [
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Algorithm: Input Uncertainty Reduction

Given a sample (j, d)™ ! from an input source,
Loss' (D™1) = Epyg, ,|om) [Beps ooy [max u(x, a)—a(x,(D™ L), )]
Finally, the expected difference reduction is as follows:

KG{ = Loss™(D™) — Loss/(D™T1)
= Ep(g), 1| 0m] [Ep[spmiy) [1(x (D), @) — pu(x(D™), a)]]
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Algorithm: Decision Rule (DR)

The measure that gives greater improvement, either KGg or KG{
for any of the inputs j € {1,..., n}, will state whether if we sample

(x,a)™L or (j,d)™ 1.

Sample {(x, a)} Sample |

Pl4/D]
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Numerical Experiments: Test Problem

Test Function (1 Design, 1 Input):
Gaussian process with a squared exponential kernel.
Hyperparameters: Ixa = 10, 08 =}l af — (0},
Design x € X = [0,100], and an input a € A = [0, 100].
Input parameter:
Data d/ ~ N(af,07) for j =1

We use a Normal Likelihood and Uniform prior for inference
P[A|D™]
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Numerical Experiments: Test Problem

Test Function (1 Design, 2 Inputs):
Gaussian process with a squared exponential kernel.
Hyperparameters: Ixa = 10, 08 =}l af — (0},
Design x € X = [0,100], and an input al,a?> € A= [0, 100].
Input parameter:
Data d/ ~ N(af,07) for j = 1,2

We use a Normal Likelihood and Uniform prior for inference
P[A|D™]
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Numerical Experiments: Benchmark Method

Given a total budget of N and ratio p from total budget.

Stage 1: Sample Np and update the input distribution
Plaj|D™]. Samples are uniformly distributed for multiple
inputs.

Stage 2: Update u"(x, a) with N(1 — p) samples allocated
using KGg(x, a).
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Numerical Experiments: Results

1 Input 2 Inputs
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Conclusions

The algorithm is capable of balancing between running
additional simulations and reducing the input uncertainty.

Including KG{ to allocate samples presents a similar
performance respect of choosing an "adequate” fixed
proportion in a 2-stage sampling.

The developed metric does not depend of parameters set by
the user.
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