Bayesian Optimisation with Input Uncertainty Reduction

Juan Ungredda Michael Pearce Supervisor: Juergen Branke

University of Warwick

25 April 2019

Outline

Introduction & Motivation

Problem Formulation

Algorithm for Input Uncertainty Reduction

Numerical Experiments

Conclusions

A simulation model of a call-centre, knowing:

- Calls Arrival Rate: Poisson process at a fixed rate Λ.
- Λ: Not known, but uncertainty is well modelled given observed data.
- **Service time:** exponentially distributed known mean μ^{-1}
- **Costs**: Salaries (S), and penalty costs (PC) per minute that customers wait on hold.

Objective:

ightharpoonup Minimise: $Total_{cost} = Total_S + Total_{PC}$

Decision Variable:

Staffing Level

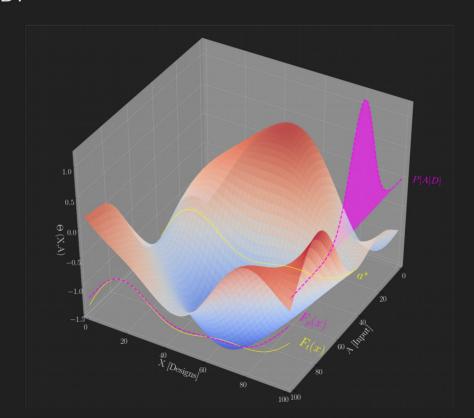
Question:

Should we run additional simulations to learn about the "total cost" given staff allocation and current uncertainty for Λ ?

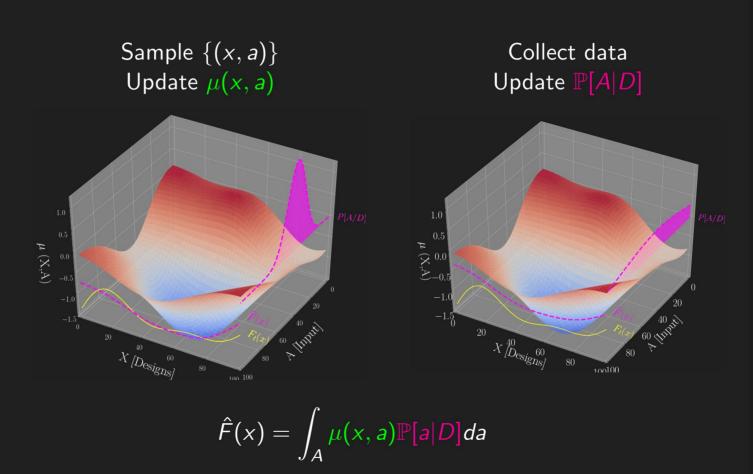
OR

Should we collect more data to reduce the input uncertainty?

- ightharpoonup Output of simulation: $\Theta(x,a)$, given X [Designs] and A [Input].
- True performance of x: $F_t(x) = \Theta(x, a^*)$ given true input a^*
- Expected performance of x: $F_p(x) = \int_A \Theta(x, a) \mathbb{P}[a|D] da$ given the data D.



Approximating the simulation runs, $\Theta(x, a)$, with $\mu(x, a)$.



Motivation

► Goal: Minimise the difference between the maximum of the expected and true performance

Constraint:

Fixed budget N.

Standard Approach:

Decide how to split N, then first collect more input distribution data, spend remaining budget on simulations.

Proposed Approach:

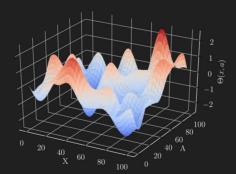
Sequentially allocate budget to either input data collection and update $\mathbb{P}[a|D]$, or run more simulations and update $\mu(x,a)$, depending on what seems to have largest benefit

Gaussian Process Approximation

Consider the possible designs $x \in X$, an unknown input value $a \in A$, and a function θ : $X \times A \to \mathbb{R}$.

$$f(x,a) = \theta(x,a) + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$



Modelled by the mean $\mu^n(x, a)$ and covariance $k^n((\mathbf{x}, \mathbf{a}); (\mathbf{x}', \mathbf{a}'))$ of a Gaussian process.

Problem Formulation: Expected Performance

Identify the design **x** that maximises the expected performance:

$$\hat{F}(x) = \mathbb{E}_{\mathbb{P}[a|D^m]}[\mu(\mathbf{x}, \mathbf{a})] = \int_A \mu^n(x, a) \mathbb{P}[a|D^m] da$$

Data collection from simulation runs:

$$R^n = \{(x, a, y)^i | i = 1, ..., n\}$$

Data collection from input sources

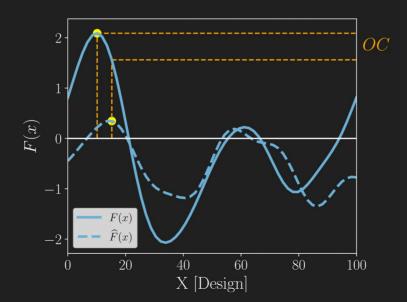
$$D^m = \{(j,d)^i | i = 1,...,m\}; d \text{ is an observation from the input } j \in \{1,...,I\}$$

Problem Formulation: Quality of Sampling

The Opportunity Cost (OC): Difference in true performance between the design with the highest predicted value and the true best design

$$OC = \max_{x} F(x) - F(x_r)$$

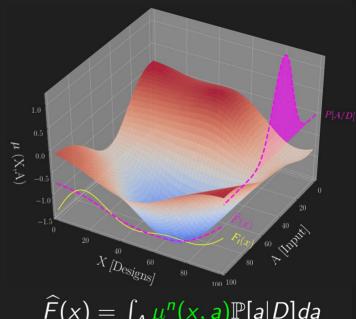
where $F(x) = heta(x, a^*)$ and $\mathbf{x}_r = rg \max_{\mathbf{x}} \hat{F}(\mathbf{x})$



Algorithm: Knowledge Gradient for Input Uncertainty

[Pearce and Branke, (2017)]

- From current $\max_{\mathbf{x} \in X} \{ \widehat{F}^n(\mathbf{x}) \}$
- Given a sample $(\mathbf{x}, \mathbf{a})^{n+1}$
- Update posterior $\mu^n(x, a)$
- Update to $\max_{\mathbf{x} \in X} \{ \hat{F}^{n+1}(\mathbf{x}) \}$



$$\widehat{F}(x) = \int_{\mathcal{A}} \mu^n(x, \mathbf{a}) \mathbb{P}[\mathbf{a}|D] d\mathbf{a}$$

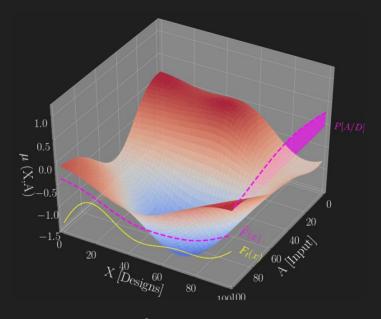
Algorithm: Knowledge Gradient for Input Uncertainty

[Pearce and Branke, (2017)] Given a discretised set X, evaluate sample $(\mathbf{x}, \mathbf{a})^{n+1}$ such maximises,

$$\mathcal{KG}_{R}(\mathbf{x}, \mathbf{a}) = \mathbb{E}[\max_{\mathbf{x}'' \in X} \{\hat{F}^{n+1}(\mathbf{x}'')\} | (\mathbf{x}, \mathbf{a})^{n+1}] - \max_{\mathbf{x}' \in X} \{\hat{F}^{n}(\mathbf{x}')\}$$

Algorithm: Input Uncertainty Reduction

Collect data Update $\mathbb{P}[A|D]$



$$\hat{F}(x) = \int_A \mu^n(x, a) \mathbb{P}[a|D] da$$

Algorithm: Input Uncertainty Reduction

Given a sample $(j, d)^{m+1}$ from an input source,

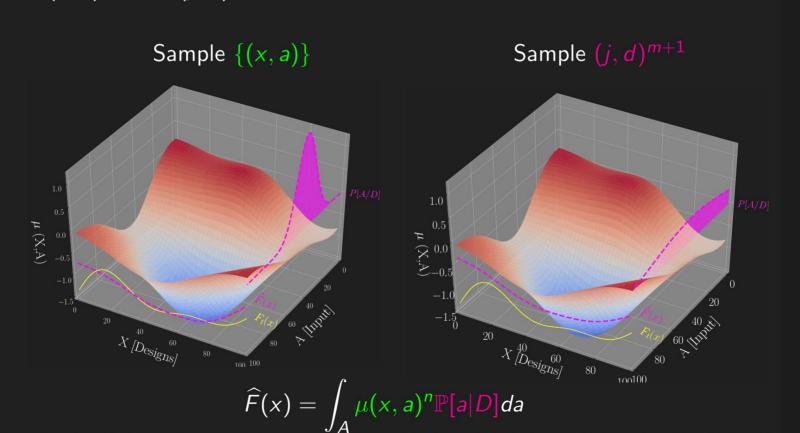
$$Loss^{j}(D^{m+1}) = \mathbb{E}_{\mathbb{P}[d_{m+1}|D^{m}]}[\mathbb{E}_{\mathbb{P}[a|D^{m+1}]}[\max_{\mathbf{x}}\mu(\mathbf{x},a)-\mu(\mathbf{x}_{r}(D^{m+1}),a)]]$$

Finally, the expected difference reduction is as follows:

$$egin{aligned} \mathcal{K}G_{l}^{j} &= \mathit{Loss}^{m}(D^{m}) - \mathit{Loss}^{j}(D^{m+1}) \ &= \mathbb{E}_{\mathbb{P}[d_{m+1}|D^{m}]}[\mathbb{E}_{\mathbb{P}[a|D^{m+1}]}[\mu(\mathbf{x}_{r}(D^{m+1}),a) - \mu(\mathbf{x}_{r}(D^{m}),a)]] \end{aligned}$$

Algorithm: Decision Rule (DR)

The measure that gives greater improvement, either KG_R or KG_I^J for any of the inputs $j \in \{1, ..., n\}$, will state whether if we sample $(x, a)^{n+1}$, or $(j, d)^{m+1}$.



Numerical Experiments: Test Problem

Test Function (1 Design, 1 Input):

- Gaussian process with a squared exponential kernel.
- Hyperparameters: $I_{XA} = 10$, $\sigma_0^2 = 1$ $\sigma_{\epsilon}^2 = 0.1$
- ▶ Design $x \in X = [0, 100]$, and an input $a \in A = [0, 100]$.

Input parameter:

- lacksquare Data $d^j \sim N(a_i^*, \sigma_i^2)$ for j=1
- We use a Normal Likelihood and Uniform prior for inference $\mathbb{P}[A|D^m]$

Numerical Experiments: Test Problem

Test Function (1 Design, 2 Inputs):

- Gaussian process with a squared exponential kernel.
- Hyperparameters: $I_{XA} = 10$, $\sigma_0^2 = 1$ $\sigma_{\epsilon}^2 = 0.1$
- ▶ Design $x \in X = [0, 100]$, and an input $a^1, a^2 \in A = [0, 100]$.

Input parameter:

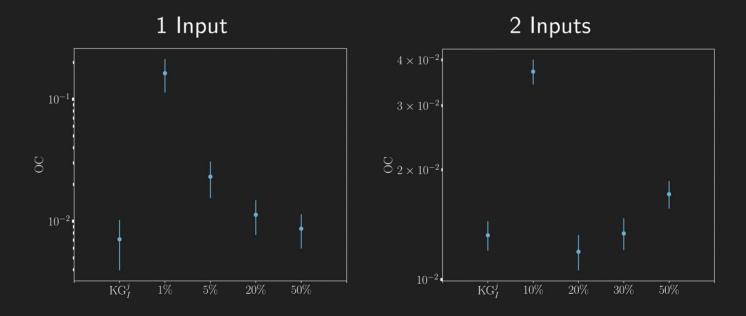
- lacksquare Data $d^j \sim \mathcal{N}(a_j^*, \sigma_j^2)$ for j=1,2
- We use a Normal Likelihood and Uniform prior for inference $\mathbb{P}[A|D^m]$

Numerical Experiments: Benchmark Method

Given a total budget of N and ratio p from total budget.

- Stage 1: Sample Np and update the input distribution $P[a_j|D^m]$. Samples are uniformly distributed for multiple inputs.
- Stage 2: Update $\mu^n(x, a)$ with N(1 p) samples allocated using $KG_R(x, a)$.

Numerical Experiments: Results



Conclusions

- ► The algorithm is capable of balancing between running additional simulations and reducing the input uncertainty.
- Including KG_l^j to allocate samples presents a similar performance respect of choosing an "adequate" fixed proportion in a 2-stage sampling.
- ► The developed metric does not depend of parameters set by the user.