



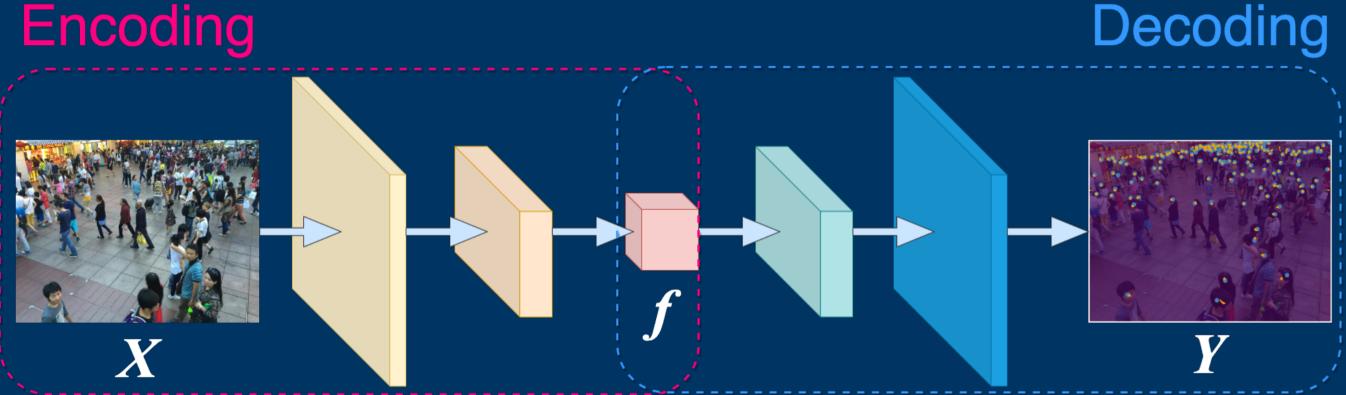
# Introduction

• Crowd counting aims to automatically estimate the number of individuals present in a scene from an image or video.



An example from Shanghai lech A [1].

• State-of-the-art methods follow an encoderdecoder approach.



An example of encoder-decoder structures in crowd counting. Given an image X, the encoder extracts the feature map f, from which the decoder generates the predicted density map  $m{Y}$ 

#### • The feature maps f should be multiscale to cover different sizes of people depicted in the image.



People of similar scales (from [1])



People of disparate scales (from [1]).

- The latest algorithms [2, 3] exploit multiscale modules after encoding to further process the embeddings f.
  - In these approaches, filters of different sizes are leveraged, and the outputs are fused adaptively:
  - $f' = W_1 f_1 + \dots + W_n f_n.$ • Using these modules to introduce multiscale information can lead to extra computation.

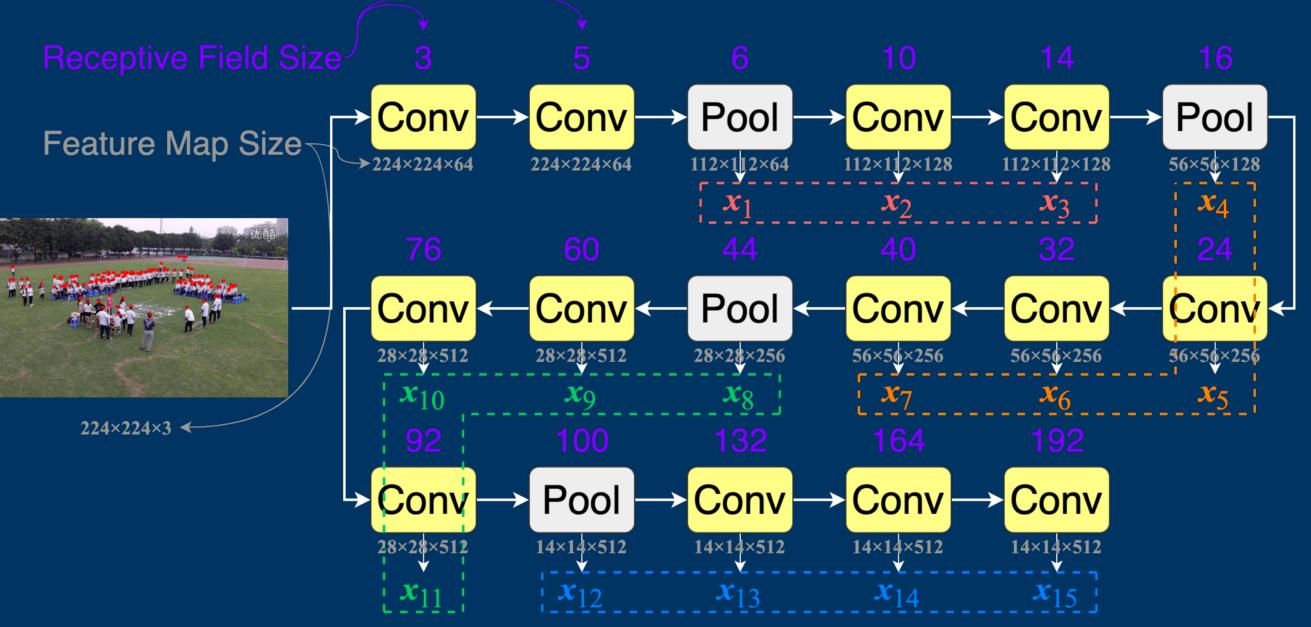
## **FusionCount: Crowd Counting via Multiscale Feature Fusion** Yiming Ma<sup>+</sup>, Victor Sanchez<sup>+</sup>, Tanaya Guha<sup>§</sup> †: University of Warwick §: University of Glasgow



# Our Model: FusionCount

Features extracted by different encoding layers already have different receptive field sizes. Encoding

Following previous work [2, 3], we leverage VGG-16 [4] as the encoder.

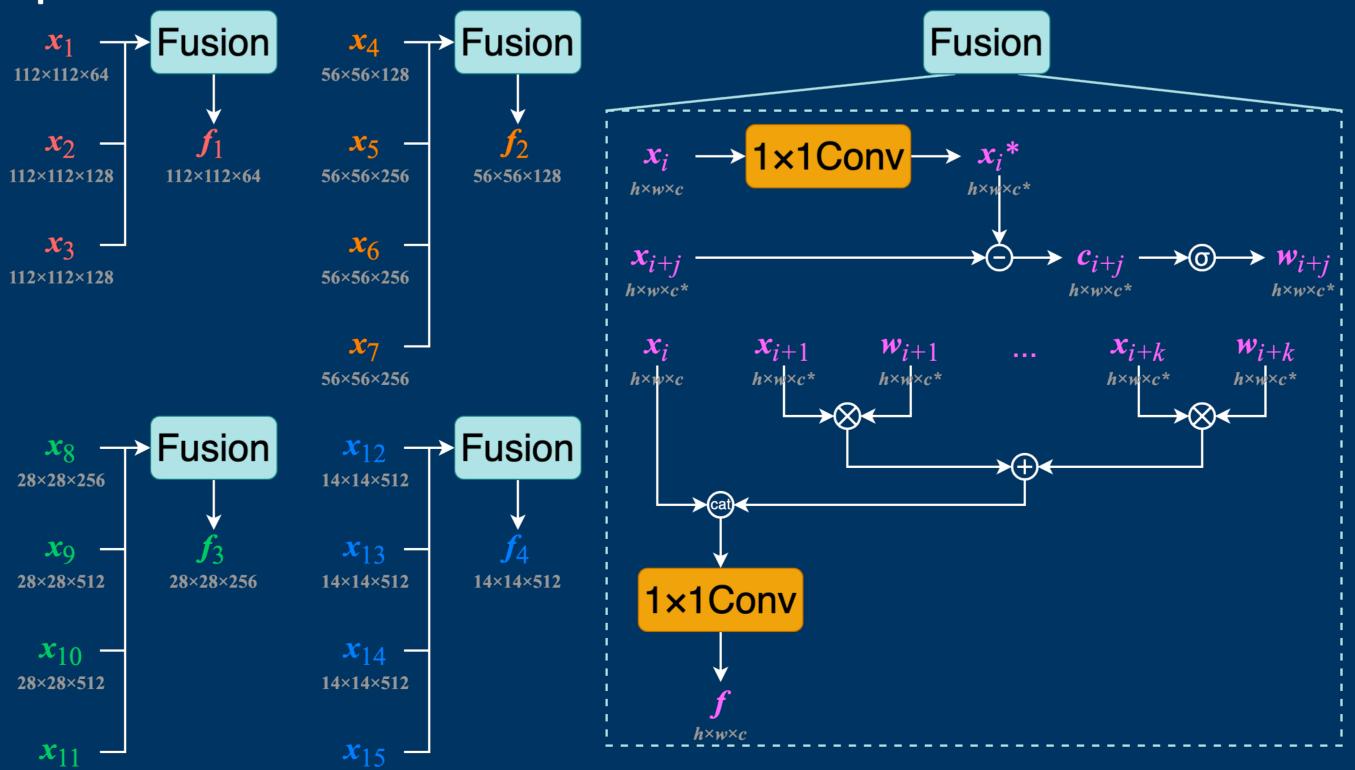


The encoder of our proposed model FusionCount: Only the first 17 layers of the original VGG-16 are leveraged, and feature maps are collected starting from the third layer. Numbers in purple are features' receptive field sizes and those in grey ( $h \times w \times c$ ) indicate their sizes, assuming the input image has the size of  $224 \times 224 \times 3$ Features with the same spatial resolution are grouped together for the first-phase fusion.

## **Feature Fusion**

14×14×512

#### We exploit the conception of contrast features proposed in [2] to fuse features with the same spatial size.



The feature fusion modules of FusionCount: In each group, weights are computed from contrast features  $c_{i+i}$ Then features from convolutional layers are averaged by using these weights and subsequently concatenated with the feature map from the pooling layer.

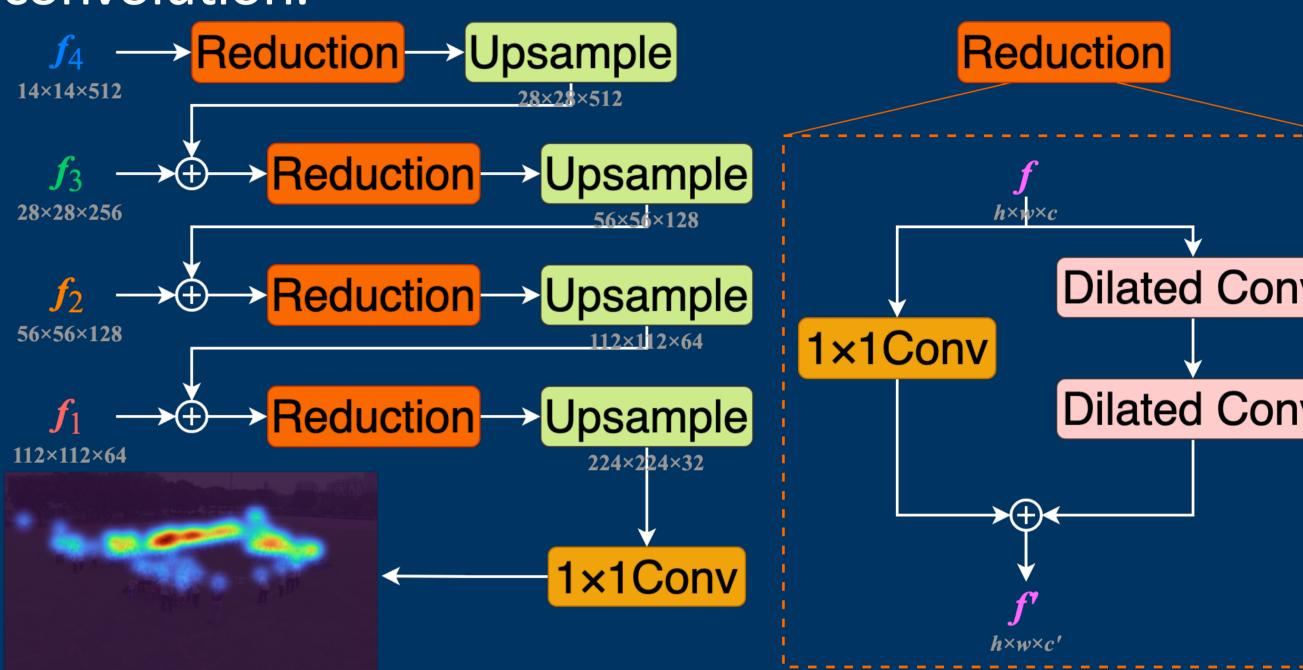
Zhang, Yingying, et al. "Single-image crowd counting via multi-column convolutional neural network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. Liu, Weizhe, Mathieu Salzmann, and Pascal Fua. "Context-aware crowd counting." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Thanasutives, Pongpisit, et al. "Encoder-decoder based convolutional neural networks with multi-scale-aware modules for crowd counting." 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021

28×28×512

### Decoding

We propose a novel channel reduction module by combining point-wise convolution with dilated convolution.

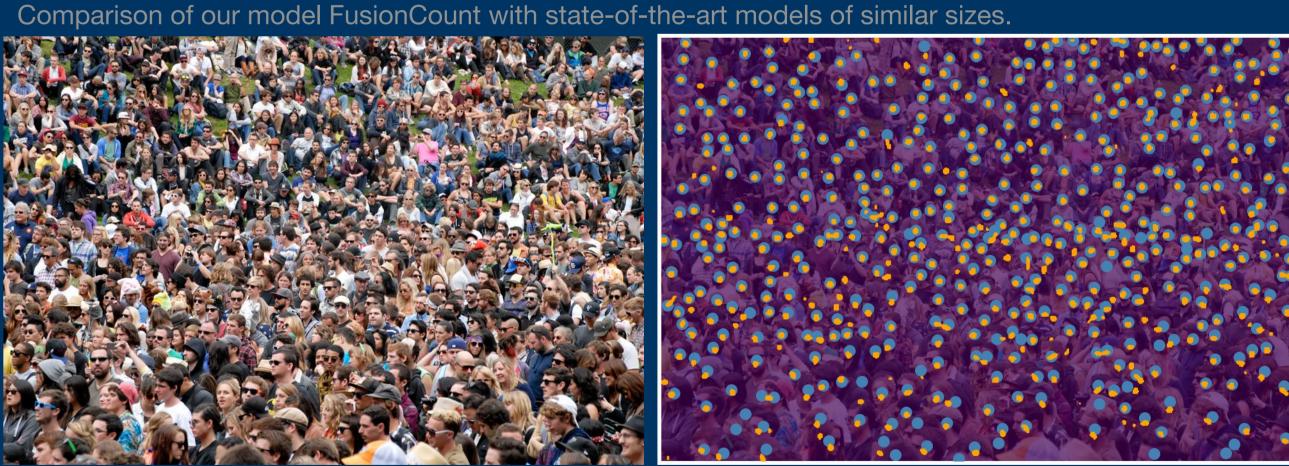


224×224×1

The decoding process of FusionCount: Starting from  $f_4$ , the proposed channel reduction module first decreas its number of channels. The result is then upsampled and fused with another first-phase multiscale feature  $f_3$ 

## Experiments

| Model              | Mult-Adds      | ShanghaiTech A |              | ShanghaiTech B |             |
|--------------------|----------------|----------------|--------------|----------------|-------------|
|                    |                | MAE            | RMSE         | MAE            | RMSE        |
| CSRNet [5]         | 859.99G        | 68.2           | 115.0        | 10.6           | 16.0        |
| CAN [2]            | 908.05G        | 62.3           | <u>100.0</u> | 7.8            | <u>12.2</u> |
| BL [6]             | <u>853.70G</u> | 62.8           | 101.8        | 7.7            | 12.7        |
| DM-Count [7]       | <u>853.70G</u> | 59.7           | 95.7         | <u>7.4</u>     | 11.8        |
| FusionCount (ours) | 815.00G        | <u>62.2</u>    | 101.2        | 6.9            | 11.8        |



Ground Truth: 521



Ground Truth: 176

Prediction: 525.97; Relative Error: 0.95%



Prediction: 176.08; Relative Error: 0.05%

[5] Li, Yuhong, Xiaofan Zhang, and Deming Chen. "CSRnet: Dilated convolutional neural networks for understanding the highly congested scenes." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.