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FusionCount: Crowd Counting via Multiscale Feature Fusion
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Introduction

® Crowd counting aims to automatically estimate the
number of individuals present in a scene from an
image or video.
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An example from ShanghaiTech A [1].

e State-of-the-art methods follow an encoder-
decoder approach.
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An example of encoder-decoder structures in crowd counting. Given an image X, the encoder extracts the

feature map f, from which the decoder generates the predicted density map Y.

e The feature maps f should be multiscale to cover
dlfferent S|zesofpeople deplcted in the image.

People of similar scales (from [1]).

People of disparate scales (from [1]).

® The latest algorithms [2, 3] exploit multiscale

modules after encoding to further process the

embeddings f.
In these approaches, filters of different sizes are
leveraged, and the outputs are fused adaptively:

J=WfhHh+-+W/],

® Using these modules to introduce multiscale

information can lead to extra computation.
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Our Model: FusionCount

Features extracted by different encoding layers
already have different receptive field sizes.

Encoding

Following previous work [2, 3], we leverage VGG-16
[4] as the encoder.
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The encoder of our proposed model FusionCount: Only the first 17 layers of the original VGG-16 are leveraged,
and feature maps are collected starting from the third layer. Numbers in are features’ receptive field sizes

and those in grey (I X w X c¢) indicate their sizes, assuming the input image has the size of 224 X 224 X 3.
Features with the same spatial resolution are grouped together for the first-phase fusion.

Feature Fusion

We exploit the conception of contrast features
proposed in [2] to fuse features with the same
spatial size.
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The feature fusion modules of FusionCount: In each group, weights are computed from contrast features Ciyje

Then features from convolutional layers are averaged by using these weights and subsequently concatenated
with the feature map from the pooling layer.
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Decoding

We propose a novel channel reduction module by
combining point-wise convolution with dilated

convolution.
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The decoding process of FusionCount: Starting fromf4, the proposed channel reduction module first decreas
its number of channels. The result is then upsampled and fused with another first-phase multiscale featuref3.

Experiments
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Comparlson of our model FusmnCount W|th state of- the art models of S|m|Iar sizes.

Ground Truth: 521

Ground Truth: 176

Prediction: 176.08; Relative Error: 0.05%
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