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It has long been known that the domesticated bitch comes into sea-
son approximately once every 7 months. Whilst previous research
has looked at which features of a bitch might cause variation from
this mean, results have often be inconclusive or contradictory. This
study uses several machine learning techniques to produce predic-
tive models which estimate the time between each bitch’s oestrus
periods, based on her unique features. Additionally, the paper com-
ments upon which features influence this interval time the most,
based on automated relevance detection methods. All data provided
for this study comes from the Guide Dogs UK breeding programme
with the interest of improving colony management and helping their
production of assistance dogs. The data analysed consisted of 4693
observations of oestrus, between 877 unique bitches, over the years
2002 to 2019. Features analysed included age, breed, diet and 19
more. The best interval prediction model managed to limit the error
to a mean of 26.45 days. This was a significant improvement over the
mean 41.52 error produced by the current method. The best perform-
ing models were random forest regression, linear regression and a
neural network built for this problem, with the random forest regres-
sion scoring the smallest mean error. On feature importance, the
automated models found that the average of a bitch’s previous sea-
sons, whether a bitch had attempted mating or been pregnant last
season and the bitch’s breed all had the most significant impact on
the length of her interval. Despite previous studies support for the
concept, we did not find any evidence of seasonality in the oestrus
intervals of these bitches.
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1. Introduction

G uide Dogs UK currently has around 1300 puppies soon to
go into training and help disabled people’s lives through-
out the UK. To ensure guide dogs are available to all those
who need them, it has become important for Guide Dogs UK
to keep producing a consistent number of new puppies, ready
to be trained for future work. It is heuristically known that the
bitches come into season every 7 months on average. Whilst
previous biological work (1) has confirmed this average, they
have also found a large amount of variation and been having a
long running debate about which features of a bitch affect this
interval time. Guide Dogs UK contacted the authors with the
demand of a mathematically/statistically sophisticated model
to predict these interval times. The objective of this project
is to determine whether a prediction model can be built using
historical breeding and population data that is more accurate
than the current constant prediction and to validate this model
for use by planners in the breeding programme. A secondary
goal has also emerged, to analyse feature importance and re-
port which features of a bitch seem to impact their oestrus
interval.

A. Background.

A.1. Biological. Biological studies looking at the oestrus inter-
val times of domesticated dog breeds have been as numerous
as they are contradictory. Previous studies have mostly fo-
cused on some single feature of a bitch and its relation to the
oestrus interval. Seasonality in bitches has been the most
regular source of debate, seeming to stem from the observed
seasonality in the dog’s wild relatives (2). Whilst studies have
supported this in both free-roaming and laboratory bitches
(3-5), other studies found no link between the oestrus cycles
of domesticated dogs and the season of the year (6, 7) . This
includes our partners’ study (1) that looked at exactly the
same population, over the years 2005-2014 (Note: this paper
has an extensive literature review on this one feature). The
biological cause for this seems to be linked to day length, and
is therefore, also dependant upon how controlled the bitch’s
environment is. Although our partners’ previous study found
no significant link, we will still be looking at seasonality in
our models, with the hope of confirming their findings. The
underlying concepts of day length, environment and even coun-
try will be less applicable to this study, as it solely looks at
a controlled UK population. Pregnancy is one of the only
agreed upon factors that affect a bitch’s oestrus interval, with
pregnancy always seeming to cause an increase on interval
length, of 40-50 days (6). Breed has also been widely ac-
cepted as an important feature in predicting interval length.
Linde-Forsberg and Wallen’s paper (6) found that this link
was more complex, where the effect that pregnancy had on a
bitch’s season, was determined by its breed. These findings
imply that any model capable of predicting any bitch’s inter-
val, must have some level of complexity that can deal with
these type of interactions. Split seasons are an additional
biological concept that add complexity to this problem (8).
Split seasons occur when a bitch shows signs of oestrus but is
not actually able to breed. Following this, the bitch enters a

Significance Statement

For large breeding centres, such as Guide Dogs UK'’s breeding
centre, colony management becomes an important thing to
consider. This work is building a system that can create accu-
rate interval estimates based off each bitch’s individual profile,
increasing colony management efficiency, saving manpower
and improving life planning for the assistance dogs produced.
This work also contributes to the long-standing question of
what features of a bitch and her environment effect interval
times. The project has taken a mathematical/data-driven ap-
proach where others have been more based in the biology. The
hope is to answer these questions, or at least contribute to the
discussion with a fresh angle.
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“true” season after roughly 3-4 weeks. In the data supplied to
us, this resulted in 2 data entries for each split, a 1st and 2nd
half.

A.2. Data Science. The core of this project is based upon the
Data Science for Social Good (DSSG) pipeline.(9) The con-
struction of a pipeline allows for easy automation of the process
and makes finding and resolving problems within the code a
lot simpler.

The pipeline of this project is shown in Fig.1.
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Fig 1. Pipeline of this project

Firstly, raw data was inputted. Then intermediate data was
created to ensure the raw data was not accidentally changed
or deleted over the course of this study. In pre-processing,
the main problem was filling in missing values, methods used
here included one-hot encoding of categorical data and feature
selection. Following pre-processing, models were selected and
trained before being evaluated and compared.

Most of the mathematical/data science problems faced in
this project were solved imperially, by repeated computation
(e.g. optimal models and hyper-parameters). A few of the more
complex parts of building a predictive program are discussed
here. Model updating after production of the model could
self-produce bias to the future data we collect and predict.

Numbe

Detailed in the paper by Liley et al. (10) is a mathematical
proof that updating an already-published model can result in
a feedback loop, where future data points have been affected
by the model’s influence on the real world. Although some
strategies are suggested in this paper, it seems the problem is
unlikely to have serious impact on a biological model, such as
the one in this paper. Conditional confidence intervals
are a highly complex problem, that seems to have no universal
solution (11). The problem becomes even more complex within
the scope of this paper, looking at real-world data with an
unknown distribution and many dimensions.

B. Data Description and Initial Analysis. The data analysed in
this paper originated as one main file and two supplementary
files. All of them were excel sheets collected by Guide Dogs
UK staff, the initial purpose of which was to track the dogs,
not to analyse. The data was recorded between January 2002
and February 2019. There are 4693 data points in total, with
target variable Time_from_previous_season and many other
variables. Note that the raw data contains some missing values
and N/A. Fig.2 shows an example data point.

First to be analysed was Time_from_previous_season.
Fig.3 shows the box plot for Time_from_previous_season
and Table 1 summarises the important points.
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Fig 3. Box plot for Time_from_previous_season_days

Size 4064

Mean 216.68
Median(Q2) 215
Third quartile(Q3) 245
First quartile(Q1) 184
Outliers™ 259

Table 1. Box plot description

The mean of the data is 216.68 days, which matches the
currently accepted 7 months between oestrus periods. The
median is 215 days, which coincides with the mean. Also, the

* Above than Q3 + 1.5 *(Q3 - Q1) or below than Q1 - 1.5 * (Q3 - Q1)
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Fig 2. Example data point
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difference between the third quantile and median coincides
with that between the first quantile and median, approximately
a month. Last but not least, there are 259 outliers in this data.
Given the limited size of data, this is not trivial.

Further analysis is done in Fig.4 and Table 2. Normal dis-
tribution and log-normal distribution were taken as examples,
and fitted to the histogram.

To no surprise, both distributions gave p values 0.00 by x?2
test.
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Fig 4. Histogram for Time_from_previous_season_days

Distribution X2 p value
Normal 8.77 x 101! 0.00
Log-Normal | 2.73 x 1012 0.00

Table 2. Fitting description

As well as the analysis of the target variable, analysis was
performed on the rest of the data. Several of these results
acted as “sanity checks” for future model development. Here
are the main takeaways:

e Unique values:
— 877 bitches
— 191 Sires (Male parents)
— 461 Dams (Female parents)
e At 2744 data points, pure Labradors take up a majority

of the data.
o Conditional means:

— Cesarean_last_season: False -

214.5.

— Breed: Lowest is German Shepherds - 173, Highest
is Golden Retrievers - 246.

— Pregnant_last_season: True - 215, False - 217. Af-
ter pre-processing and outlier removal, this changed
significantly to: True - 241.2, False - 202.2.

e "1st on breeding programme" entered for 628 data
points. Since this refers to the fist time a bitch has entered
oestrus, these data points provided no useful information
for model training.

True - 225.8 ,

o Data points per season: spring - 1208, summer - 1135,
autumn - 1088 and winter - 1262.

These results support the validity and necessity of pursing
a sophisticated, many dimensional, model.
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2. Methodology

A. Pre-Processing.

A.1. Data Cleaning. The original data set was delivered in a
messy state: there were numerous missing values and nonnu-
merical entries, so the first stage was data cleaning. Several
techniques were used to cleanse the raw data, such as one-hot
encoding categorical features T. Further details are shown in
Appendix A.

A.2. Feature Extraction. Some features in the original data
set are about current oestrus seasons, such as Season_
start_date, but to enable the model to predict future
Time_from_previous_season_days, it had to be trained based
on data from the past. Hence, it is necessary to add new
features like Last_season_start_date, Age_at_last_season,
Mating _last_season and Maiden_last_season. Whilst the
first 4 should be self-explanatory, it is necessary to clarify that
Maiden_last_season is a binary feature that is true iff the
bitch had never had sex directly following her last season.

Taking genetics into consideration, lengths of oestrus cy-
cles of dams may influence those of their daughters, so
the mean oestrus interval length of the dam of each dog
was also extracted (if they were in the same data set),
which is named as Dam_season_interval_mean. Also, as
discussed in Wigham et al. (1), seasonality (spring, sum-
mer, autumn and winter) may have an impact on dogs’
oestrus cycles, so this data was extracted as (Season) from
the feature Last_season_start_date. Another new fea-
ture acquired is the mean of oestrus intervals of each dog
(Mean_previous_intervals), with the assumption that in-
terval lengths might oscillate around their means. Last
but not least, the difference from the optimum weight may
be more useful than the optimum weight itself, and as a
result, it was also extracted, Diff_from_opt_weight from
Weight_when_entered_season and Optimum_weight.

Table 3 summarises the features that have been obtained
so far.

A.3. Data Splitting. It was decided that 60% of the data would
make up the training set, 20% for validation and the other
20% for testing. Since the feature Mean_previous_intervals
calculates the arithmetic average of previous oestrus interval
lengths, the data had to be split in a temporal way to avoid
data leakage ¥, which means the test set was composed of the
newest 20% data, the validation set consisted of the next 20%,
and the training set contained the oldest 60%.

On the training set, each models’ parameters were tuned
so that the training error is minimised. On the validation set,
the hyper-parameters were tuned using exhaustive grid search
§. As for the test set, this was used to estimate the generalised
error of each model.

T One-hot encoding transforms a categorical variable into a group of bits (a vector), among which
only a single bit is high (0) and the others are low (0). For example, suppose the feature Colour
takes 3 values "brown", "golden" and "white". A valid one-hot transformation may encode
"brown" as [1, 0, 0], "golden" as [0, 1, 0] and "white" as [0, 0, 1].

Hifa training set contains information of the test set, machine learning models can exploit this and
“cheat” during evaluation on the test set. As a result, the estimated generalisation error will become
inaccurate.

§Given a model of a certain type (e.g. the random forest) and a set of values of hyper-parameters,
exhaustive grid search trains all models with different combinations of hyper-parameter values first,
and then it evaluates their performances on the validation set and returns the model (or values of
its corresponding hyper-parameters) with the lowest validation error.
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Feature Name Feature Type | Missing

Data_ID int
Dog_ID int
Dog_Name int
Date_of_Birth int

Sire_Breed np.ndarray

Dam_Breed np.ndarray

Colour np.ndarray
Sex int
Number_of _previous_pregnancies int
Pregnant_last_season int
Caesarean_last_season int
Sire_Pedigree_Name int
Dam_Pedigree_Name int
Health_Code int
Season_start_date int
Last_season_start_date int
Age_at_season float
Age_at_last_season float
Time_from_previous_season_days int
Mating int
Mating_last_season int
Maiden int
Maiden_last_season int

Diet_when_entered_season np.ndarray

BCS_when_entered_season float
Weight_when_entered_season float
Optimum_weight float
Diff_from_opt_weight float
Dam_season_interval_mean float
Mean_previous_intervals float

AVRNENER AANRNENENANANRNENE (R (R SRR IR NN R VRS R

Season

Table 3. Summary of features after data cleaning and feature extrac-
tion.

np.ndarray

A.4. Feature Selection: Stage 1. Some features, such as Data_ID
are related to IDs of data. Other features like Sex are con-
stant variables, which do not provide us with any informa-
tion. As a result, they were excluded from the models. Since
the co-existence of new features and those which have been
used to extract them may lead to multicollinearity, which can
bring about problems like over-fitting and non-convergence,
these original features were removed manually. Features like
BCS_when_entered_season have more than 50% data missing,
so even it were possible to impute these missing values, the es-
timation would still be very inaccurate. Thus, these variables
were also dropped

On the other hand, vector features were broken into scalars
so that one datum of all input features can be transformed
into a long vector. For example, Season, which has been
one-hot encoded into a 4 bits, was decomposed into Season_1,
Season_2, Season_3 and Season_4, and each of them were
scalars.

In summary, Time_from_previous_season_days is the out-
put variable, which the machine learning models predicted,
and the following features were manually selected as input
variables.

A.5. Missing Value Imputation. KNNImputer (12, 13) was used
with n_neighbors = 5 to impute missing values.

e Sire_Breed_1 - Sire_Breed_8;

e Dam_Breed_1 - Sire_Breed_8;

e Colour_1 - Colour_11;

e Number_of_previous_pregnancies;

e Pregnant_last_season;

e (Caesarean_last_season_1 - Caesarean_last_season_3;
e Mating last_season;

e Maiden_last_season;

e Diet_when_entered_season_1 - Diet_when_entered_season_13;
e Weight_when_entered_season;

e Diff_from_opt_weight;

e Age_at_last_season;

e Dam_season_interval_mean;

e Mean_previous_intervals;

e Season_1 - Season_4.

List 1. Features left after manual selection

A.6. Outlier Detection. Since some algorithms are sensitive to
outliers, the removal of outliers should lead to better pre-
dictions (14, 15). Note that “outlier” in this context refers
to the explanatory variables sense, not the target variable
Time_from_previous_season_days. So they were declared
outliers based on their input variables, not their output.

Outlier detection algorithms are usually unsupervised learn-
ing, because the number of outliers is much smaller than that
of the normal data-points (16).

Here, four types of outlier detection algorithms were
adopted, and if three of them judged a data point as an
outlier, it was then considered as an outlier and was deleted
from the training data-set.

The four algorithms were:

o EllipticEnvelope (12, 17): assuming that the underly-
ing distribution is Gaussian;

o GaussianMixture (12): assuming that the underlying
distribution is Gaussian mixture.;

o IsolationForest (12,18, 19): “isolating” observations by
selecting a feature randomly and also a split value between
the maximum and minimum values of the selected feature
randomly as well;

e OneClassSVM (12): unsupervised outlier detection based
on Support Vector Machine (SVM).

A.7. Feature Selection: Stage 2. All features were standardised
to have zero mean and unit standard error. This technique is
known to accelerate convergence.

B. Oestrus Interval Prediction. All implementations for these
models, excluding the Neural Network (which was built by
(20) and tuned by (21)), are provided by SciKit (12).

Let  be the vector of input variables after feature se-
lection and y be the output variable Time_from_previous_

llkiw et al.



e Sire_Breed_1 - Sire_Breed_8;

e Dam_Breed_1 - Sire_Breed_8;

e Colour_1 - Colour_11;

o Number_of_previous_pregnancies;

e Pregnant_last_season;

e Caesarean_last_season_1 - Caesarean_last_season_3;
e Mating last_season;

e Maiden_last_season;

e Diet_when_entered_season_1 - Diet_when_entered_season_13;
e Weight_when_entered_season;

o Diff_ from_opt_weight;

e Age_at_last_season;

e Dam_season_interval_mean;

e Mean_previous_intervals;

e Season_1 - Season_4.

List 2. Features left after variance selection and random-forest selection

season_days. Denote the training set as (X¢rain, Ytrain), the
validation set as (Xval, Yva1) and the test set as (Xsest, Ytest)
Y. The aim of each machine learning model is to fit a function
f(X; Wy, Wy), where W, and Wy, represents the parame-
ters and hyper-parameters of the model, such that the error
measured under a certain metric || Yval —f(Xvai; Wp, Wh)||
is minimised.

On the training set (Xtrain, Ytrain), models were evalu-
ated by the mean squared error, since it contributes to con-
vergence by allowing optimisation algorithms to utilise the
gradient. This means for a given combination of values of
hyper-parameters Wy, € €2y, the equation to be solved is:

i MSE Yrin, Xrin;W,W .
WTgsllp (Yirain, f(Xira py Wh))

1]
After solving Eq. (1) and denoting its solution as W7}, models
were evaluated by the mean absolute error | on the valida-
tion set (Xval, Yval) to find the best combination of hyper-
parameters. Thus, in this step, the equation to solve is:

min MAE

. 2
hE€QL

(YvaI, f(Xval; W:)? Wh)) )
where W7, is dependent on Wy, and can be solved from Eq. (1).
As for the test set (Xtest, Ytest), it is used to estimate gener-
alisation errors.

B.1. Baseline. The baseline model uses the arithmetic average of
y to make predictions. Since there are no hyper-parameters in
this model, the training set (Xirain, Ytrain) and the validation
set (Xval, Yval) can be concatenated to form a large test set
(Xtrain_val; Yerain_val). For any input vector x, the baseline
predicts
f(ﬂ?) = Ytrainival- [3]
Ysince the shallow layers in a deep neural network will perform feature selection themselves, there
was no need for any other feature selection techniques for it. Thus, the training, validation and test

sets without feature selection of the second stage were used for this model.
I Models evaluated under the mean absolute error are more robust against outliers (22).

llkiw et al.

B.2. Linear Regression. In addition to the standard linear regres-
sion (creates a linear equation of all features with a weight w;
then minimises the squared difference of its estimations to the
true values), a regularisation term is added to prevent over-
fitting. (23) This type of regression is called “ridge regression”.
(24)

For any input vector «, linear regression predicts

f@) =w'w,
where
w = arg min(|| Yerain —w” Xerain |[3 + af|w|[3)
and « is a hyper-parameter estimated by validation data-set.

B.3. SVR. Using kernel functions, SVR transforms the data to
be almost linearly separable. It then uses decision boundaries
to make predictions. For any input vector &, SVR predicts

n

f@) = (e~ G)K(@,@:) +b

k=1

where a;, d;, and kernel function K are hyper-parameters
estimated by validation data-set.

B.4. Gaussian Process Regression. Assume {y; x} is a Gaussian
process with x parameterizing the mean function and the
variance function, then it is known that [Yirain, Yiest] follows
a normal distribution. The training set is used to estimate a
prior distribution f(Ytrain; Xtrain), from which the posterior
distribution f(Ytest; Xtest | Ytrain; Xtrain) can be derived by
using the Bayes’ theorem or the result from (25): suppose a
random vector y = [y], y3|7 follows the multivariate Gaus-
sian distribution with the mean [u], pJ]" and the co-variance

matrix

Y11 X2

o1 Yoo
then the conditional distribution y: | y2 = a also follows the
Gaussian distribution with the mean

p=p+ 21235, (a — p2)
and the co-variance
=3 - 21222}1221.

After obtaining the posterior distribution, its mean, u, was
used to make point estimation.

B.5. Bagging K -Nearest Neighbour Regression. Given a feature
vector x, the k-nearest neighbours algorithm (26) finds the &
nearest data points in Xyrain first and then averages their cor-
responding target values, either uniformly or weighted by the
distances **. To be specific, let £, .-, *) be the k near-
est neighbours of x in the training set, and let y®, --. | y®
be their corresponding labels. If "uniform" is the selected
strategy, then the prediction is given by:

k
(k).
;y

**Not having an explicit training phase is an interesting property of the k-NN algorithm.

| =

flz; k) =
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As for the "distance" strategy, the prediction is weighted by
inverses of [» distances:

k y®)
flz; k) = Zl (o

To reduce the variance of a single k-NN estimator, randomness
can be introduced by selecting m random subsets from the
original training set first and then building m k-NN models
on them independently. Then predictions are made on x by
averaging the outputs from them:

Flas my 1) = 37 fy s ),
j=1

where f;(x; k) is the k&-NN model trained on the j-th subsets.

B.6. Random Forest Regression. Firstly, decision tree regression
is a supervised machine learning method that make a predic-
tion based on simple decision rules learnt through the training
data-set.

Random forest regression consists of a certain number of
decision trees and makes predicts as an average of these trees’
predictions. This type of learning method is called ensemble
learning. (27)

Hyper-parameters include the number of maximum tree
depth, the number of minimum sample split size, the number
of minimum sample leaf size, and the number of estimators.

B.7. Adaptive Boosting Regression. Suppose there is a weak re-
gressor defined already, such as linear regression and decision
tree regression model. An AdaBoost (28, 29) model fits the
the regressor on (Xirain, Ytrain) several times and adjusts the
weight of each sample during each training. This empowers
later regressors to handle difficult cases better.

Initially, the weak learner fo(-; Wp, Wh) is trained on
the (Xt¢rain, Ytrain), with the loss from each example (az(i), y®
being equally weighted. Then a new learner is initialised
f1(:; Wp, Wy,) of the same structure and trained on the same
data set, with the loss from each example re-weighted by the
loss of the previous model on this example. For example,
if |y — fo(x9; W,, Wy)| is very large, then the model
increases the weight of fi’s loss on this example (w“), y(i)) in
its cost function. Suppose this process is repeated for K times,
so at the end, K regressors of the same type are obtained. To
make a prediction on the unseen data, the AdaBoost model
outputs a weighted average of the predictions of those weak
learners.

B.8. Gradient Tree Boosting Regression. Just like AdaBoost men-
tioned above, gradient tree boosting (30, 31) also ensembles
several weak learners (which are decision trees in this case) to
form a much more powerful model.

Following Cheng’s notation in (32), suppose successive
iterations are performed K times. At stage k, let Fi be the
current imperfect model. The goal is to improve this by adding
an amendment tree fi such that,

y = Fi(z) + fu(z).

Which means fi(x) is used to fit the residual y — Fx(x). fi(x)
is selected to be the decision tree that minimises the mean
squared error || Yerain —Fk(Xtrain) H%, and in the next iteration,
let Fr41 = Fi + fi. After these K iterations, F is used to
generate predictions.

B.9. Neural Network. A neural network is also an iterative pro-
cess. Suppose there is an L-layer neural network. For each
layer [, it takes the output a" " from the previous layer [ — 1
as input, linearly transforms it by

21 = wllgl=1 4 gt

and then feeds it to a nonlinear activation function f M %o
generate the output of the current layer, which means

all = £y,

Although deeper neural network models can usually be
used to fit more complex functions, except potential over-
fitting, they also suffer from some optimisation problems, such
as exploding or vanishing gradients (33). Thus, the number
of hidden layers in this problem is set to be 6, and layers
maximum sizes were also within certain limitations so that
the network can generalise well. Unlike the other models,
this neural network was built by Keras (20) and its hyper-
parameters were tuned by random search in Keras Tuner
(21).

C. Feature Importance. This paper looked at 2 separate meth-
ods of feature importance detection offered by the SciKit-
learn python package (12). The supervised learning methods
used were random forest feature importance detection and
ARD(Automatic Relevance Determination). It is important
to note that, due to the different techniques each method uses,
the importance values produced are not directly comparable.

C.1. Random Forest. Random forest regression provides an im-
portance measurement which based on Gini Impurity. Gini
Impurity is defined as follows:

For a node 7 in decision tree t, assume that there are ¢
classes in this node. Let p(i | t) be the probability that sample
belongs to class 1.

Then, Gini Impurity Ig(t) is

Io(t)=1-Y pi|t)*.

Random forest algorithm measures feature importance
through how much does dividing a feature contribute to reduce
Gini Impurity. (34)

C.2. ARD. ARD regression is a Bayesian method. Beginning
with an elliptical Gaussian distribution for the weights of every
feature, it updates to maximise the log-likelihood of the data
points observed. With the additional costs associated with
higher weights, this leads to a sparse model with many weights
near zero.

3. Results

A. Interval Prediction. The performance of each model on the
test set was evaluated by 6 different metrics, and corresponding
errors have been summarised in Table 4. As it shows, the
best three models under the metric of the mean absolute
deviation were random forest regression, neural network, and
linear regression, with errors of 26.45, 26.54 and 27.67 days,
respectively.

Fig.5 illustrates the comparison of true values and the
prediction of these three models.

llkiw et al.



Models Metrics Mean AE Median AE Max AE RMSE R? Score | Explained Variance Score
Baseline 41.517590 | 29.400500 | 350.400500 | 59.602455 | -0.012004 0.000000
Linear Regression 27.666271 18.391864 | 304.292438 | 43.263306 | 0.466796 0.468531
Support Vector Regression 30.706676 | 20.025322 | 345.603623 | 48.107523 | 0.340705 0.374717
Gaussian Process Regression 27.939698 | 17.446348 | 311.712937 | 44.641516 0.432283 0.436579
Bagging K-NN Regression 32.828029 | 21.709373 | 332.046778 | 50.697218 | 0.267813 0.277047
Random Forest Regression 26.452921 | 17.948695 | 282.529606 | 40.515314 | 0.532381 0.536497
AdaBoost + Linear Regression 35.831447 | 28.038653 | 290.827322 | 49.533579 | 0.301038 0.320889
AdaBoost + Decision Tree Regression 28.560564 | 19.391304 | 289.521739 | 43.195489 | 0.468466 0.469669
Gradient Boosting Regression 28.001512 | 20.156420 | 295.187005 | 41.264630 | 0.514924 0.517879
Neural Network 26.541662 | 17.421860 | 290.635681 | 41.589225 | 0.507262 0.507433

Table 4. Model comparison

Random Forest
Neural Network

Linear Regression *

Predictions [Days]

150 ;

100

300 500
True Values [Days]

Fig 5. Comparison of true values and predictions of the best three models

B. Feature Importance. Results on feature importance come
both from the feature importance models, and the coefficients
of the linear regression prediction model.

The random forest feature importance model gives
the results seen in the bar chart 6. The full re-
sults of the model can be found in Appendix C. Ac-
cording to this model, the most important features
were Mean_previous_intervals, Age_at_last_season,
Dam_season_interval_mean, Mating_last_season and
Pregnant_last_season, with respective weights 0.3769,
0.1259, 0.1009, 0.06886 and 0.05361.

The ARD results can be seen plotted in Fig.7, and
the full table of results is in Appendix B. The model
has found the most important features to be, in or-
der, Mean_previous_intervals, Pregnant_last_season,
Maiden_last_season, Mating_last_season and
Dam_Breed_2, with coefficients 29.46, 29.02, -15.98, 14.83
and -11.36, respectively. Where Dam_Breed_2 refers to the
binary option of whether the bitch’s dam was a German
Shepherd. Mean_previous_intervals, Maiden_last_season
and Mating_last_season are all defined in A.2 of Section
2, whilst Pregnant_last_season is defined in Appendix A.
Note that for ARD, importance is decided by the absolute
value of its coefficients. Note: The weights between the 2
models are not directly comparable.

As well as the models directly looking at importance, the
prediction models can also carry information about feature
importance. The coefficients for linear regression are in
Appendix D. The highest absolute coefficients are given
for Pregnant_last_season, Mean_previous_intervals,
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Caesarean_last_season_1, Mating_last_season and
Dam_Breed_2 with respective coefficients 24.33, 24.32, 18.69,
15.02 and -13.64. Where Caesarean_last_season_1 means
the bitch had a caesarean last season.

4. Discussion

A. Interval Prediction. The first observation that can be made
from these error results, is the large reduction in error.
In the category of mean absolute error, the baseline model
scored 41.5 days. Compare this to the random forest and
neural network models which both scored around 26.5 days,
and there is a difference of 15 days, showing how inadequate
the current model is performing. There is still a large amount
of error in all models. A lot of this error will simply be the
result of working with limited real-world data for a biological
problem. Specifically, the maximum absolute error is over
280 days in all models. Whilst this does show inaccuracy in the
models, this is not a major disadvantage in terms of real-world
estimation, since any interval this unusual would probably be
caused by specific medical issues within the bitch. Since the
end users of this will be professionals in dog breeding, they
understand when to spot these anomalies.

Out of all available models, the best results were given
by: linear regression, random forest regression, and the neu-
ral network. Linear regression performed far better than
expected, as it is the simplest model excluding the baseline.
Whilst it did not perform the best by any metric, it is worth
noting that through the use of the linear regression coefficients
in Appendix D, any reader could calculate a prediction for
a bitch’s oestrus interval time, and come away with a fairly
accurate answer. The random forest and neural network
compete at very similar levels. When all error metrics are
taken into account, random forest is giving the smallest error.

A.1. Error Analysis. The box plots of absolute errors of the best
three models, as well as the baseline, are shown in Fig.8. As it
shows, for the top performing models, medians of errors were
close to 17 days, much smaller than that of the baseline, which
is approximately 29. Combined with the fact that the inter-
quartile ranges of the best models were also narrower than that
of the baseline, it demonstrates that significant improvement
has been made in reducing prediction error. Additionally
Fig.8 shows some large errors for all four models, implying the
original data set was extremely noisy, in a way no model may
ever be able to compensate for.
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In section 3, all of the three feature importance models
indicate that the most important feature is Mean_season_
intervals, so a 2-D scatter plot is included to show distribu-
tions of predictions and ground truths against it. Fig.9 shows
that most data points lie within the 2nd percentile (125.16)
and 98th percentile (385.36) of the target variable, predictions
of the best three models are much more accurate predictions
1. As for data whose Time_from_ previous_season_days are
beyond this range, which might be classified as outliers, the
better models can have larger prediction errors. These 4%

data need to be examined further, due to their irregularly

2 4
Mean_season_intervals (Standardised)

Fig 9. Distributions of predictions and ground truths

small or large values.

1 This can be seen much more clearly in Fig.10.
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A.2. Interval Estimation Using Quantile Regression. Quantile re-
gression is an extension of linear regression which predicts
the quantile instead of the mean. It is known that quantile
regression is robust to outliers (35).

Given that linear regression performs unexpectedly well,
the possible solution to improve the prediction precision of
outliers is interval estimate using quantile regression.

Firstly, 95% and 5% quantile regression were carried out.
The result is shown in Fig.11.
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Fig 11. Quantile regression for 0.05 and 0.95 quantile
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Fig 12. Quantile regression for 0.25 and 0.75 quantile

It appears that 81.6% of the data points are within this
interval. Which is fairly impressive. However, the average
confidence interval length is 100.87 days, which is too long for
practical purpose considering that oestrus intervals are more
or less 210 days.

Next, a 75% and 25% quantile regression were tested. The
result is shown in Fig.12.

In this case, the average confidence interval is 33.3 days,
which is not very bad as before. However, this confidence
interval contains 42.1% of data and is not great.

To be summarised, as of now quantile regression is not an
insightful method, although it is potentially an interesting
direction.

A.3. Outlier Detection. Another alternative solution for outliers
is applying outlier detection algorithms for the testing data
sets. Namely, they try to detect the abnormality in the target
value Time_from_previous_season_days though the explana-
tory variables. If it is possible, then it may advantageous to
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build other special models for the data points judged automat-
ically as outliers.

Here, 4 algorithms were tried, all of which have been ex-
plained earlier in A.6 of Section 2. Fig.13 - 15 show how many
times each data point was detected as a outlier.
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Fig 15. Outliers detection for the target variable in linear regression

These graphs help to show that outliers detected by outlier
detection methods are not particularly abnormal in the target
variable in any method. Hence, outlier detection algorithms
are not very helpful here.
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B. Feature Importance. The results for feature importance
vary significantly between the 3 models developed for
this project. This is explained by the wildly differ-
ent implementations of the 3 models. In all 3 evalua-
tions, 3 features were positioned in the top 5 most impor-
tant: Mean_previous_intervals, Mating _last_season and
Pregnant_last_season. Mean_previous_intervals is a fea-
ture created for this project based off the mean values of any
intervals from the same bitch already in the data. With this
being one of the top performing features, it gives evidence to
each bitch having a level of internal consistency. This seems
to go slightly against the findings of Bouchard et al. 1991 (36)
that found inter-bitch correlation with interval times, was very
low when compared to intra-bitch correlation. Although this
paper finds mean previous intervals are inaccurate predictors,
which this study’s findings would agree with, these findings
show that it can contribute well to an estimation when used
in the presence of other features. Pregnant_last_season is
a binary feature that is True if and only if the bitch in ques-
tion was pregnant last season. A large, positive, importance
was always expected for this feature from a biological sense,
as the time spent pregnant normally adds time to a bitch’s
entire breeding cycle. Our initial analysis, showed conditional
averages of 215 for bitches with Pregnant_last_season being
True and 217 for those without. This significantly changed
after pre-processing was performed and outliers were omitted,
giving an average of 241.2 with pregnancy and 202.2 without.
This implies that a significant number of outliers were pulling
down the average for those bitches that had been pregnant
and pulling up the average for those that were not. For the set
of pregnant bitches, this can be most likely explained by the
“split season” data that was removed for model fitting. Several
of the data points which held the 2nd part of a split would
still be referred to as Pregnant_last_season, giving some in-
credibly short interval times (less than 100 days). These were
removed in the outlier detection stage. Mating_last_season
also appears to have significant importance. Considering this
from a biological angle, this is almost definitely due to its
correlation with Pregnant_last_season which had a greater
importance in all models except for random forest. There
could, however, be other effects caused by mating, even if a
bitch was not successfully bred, but this is beyond the authors’
dog breeding knowledge.

With regard to breed, 2 breeds dominated the importance
results. These are breeds 2 (German Shepherd) and 3 (Golden
Retriever). In ARD, Dam_Breed_2 and Dam_Breed_3 took
positions 5 and 6, respectively, whilst Sire_Breed_3 took
8th place. In the linear regression model, Dam_Breed_2 and
Sire_Breed_3 are in 5th and 6th, and dam breed 3 took 8th
place. The random forest importance did not rank breed
very highly, but when it does appear, Sire_Breed_3 and
Dam_Breed_3 are the first amongst them. The most noticeable
oddity of these results is the fact Sire_Breed_2 is never given
much importance by these models, implying that the effect
being a German Shepherd has on oestrus may be inherited
from the dam. These results on breed line up incredibly well
with the initial analysis. Where it was discovered German
Shepherd bitches have an average interval time of 173 days
(the lowest of all breed averages) and Golden Retrievers have
an average interval time of 246 (the highest). LR and ARD
also provided a direction of impact these features had and,

10 |

once again, it lines up with our analysis. Dam_Breed_2 has a
large negative coefficient in both models, but Dam_Breed_3 and
Sire_Breed_3 have large positive coefficients in both models.
Where a negative coefficient would imply a smaller season,
and the opposite is true of a positive one. Note that the
Sire_Breed_2 coefficient is always positive, but since it is
significantly smaller, it will have a lesser affect.

Seasonality in bitches was looked at for feature importance,
but to mixed results. Whilst the random forest model rated
the seasons quite highly in terms of importance, other models
seem to give varying results. They have little impact, but
Season_2 (autumn) had the most, with a negative coefficient
of roughly 5 days in LR and ARD. Compared with other
features, this paper concludes that season does not seem to
significantly impact oestrus interval time of the bitches in this
study, confirming the results of Wigham et al. (1).

5. Conclusion

The initial analysis of this paper confirmed the currently ac-
cepted 7 month average for oestrus intervals in domesticated
bitches. It also found that any model capable of capturing
the full scope of variation from this average would need to
be complex, and many-dimensional, in order to give accurate
predictions for future interval times. Over the course of this
study, machine learning models were successfully built to pre-
dict bitches’ oestrus intervals. Techniques such as missing
value imputation, outlier detection and standardisation were
applied in pre-processing. All point estimation models devel-
oped were shown capable of reducing error significantly from
the baseline, in spite of the existence of large internal noises
in the data. Out of tested models, the random forest and
the neural network developed for this project reduced mean
absolute error the most (from a mean of 41.5 days to a mean of
26.5 days) , whilst linear regression was shown to be a suitable
method for those looking for a simpler implementation (mean
error of 27.7 days). Additionally, data-driven evidence showed
that the mean of a bitch’s previous seasons, their state of
pregnancy last season and their breed, can have significant
impact on her oestrus interval times. It found little evidence
that seasonality, weight or diet have a noticeable effect on
oestrus intervals.

6. Future Work

As was mentioned in Section 4, these models do not perform
well when Time_from_previous_season_days takes extreme
values. This probably means the original data set was greatly
affected by noises. These data points need to be looker at
further from both a data analysis and biological point of
view. Once outliers are dealt with, this could either lead to
a universal, improved, model or several additional "outlier
models" that deal with specific cases, e.g. split seasons and
illness. Additionally, this noise made the production of a
good confidence interval model very difficult. So, in finally
dealing with outliers better, a new pathway may be opened,
allowing the creation of accurate confidence interval models.
The Gaussian process regression model was ideal, because it
can return the posterior distribution. However, due to the
very existence of noises, the interval-estimate model shown in
this paper was not useful in practice — either ¢ is appropriately
small but with the ground truth unfortunately falling beyond
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the 99.7% confidence interval [p — 30, u + 30] (as shown in
Fig.16), or o is too large to make interval estimation reliable
# (as shown in Fig.17).

On the other hand, several features were not included in
the data received, due to various constraints. One feature
discussed in Linde 1992 (6) is that of litter size. This was a
feature unavailable in the data, that could have had a serious
effect on its results.
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7. Appendices

A. Data Cleaning. At this stage, the data was cleansed by converting
nonnumerical values into numbers or arrays of numbers. Since
feature extraction was added later, missing value imputation was
performed after this.

A.1. Data Type Conversion. Features whose representations need to
be changed are shown below.

e Dog_Name: The value type of this feature is str, so one way to
deal with it is hashing.

e Date_of_Birth: After loading the spreadsheet, Python au-
tomatically convert strings like 2016/1/24 into datetime in-
stances like Timestamp(’2002-01-24 00:00:00°). Thus, what
we need to do here is extracting information about the year
(2002), month (1) and day (24), and then return an integer
20020124.

e Breed_Name: The data type of this feature is str, and this
variable is categorical and takes 13 different values, such
as "Curly Coated Retriever" 88 and "Golden Retriever x

$5This means both the sire and the dam are curly coated retrievers.
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Flat Coated Retriever" Y. Each name is going to be di-
vided into two parts: Sire_Breed and Dam_Breed. Then we
use one-hot encoding to process these two generated features.

e Colour: The data type of this categorical variable is also str,
so we one-hot encode it.

e Sex: This feature takes only one value, which is "Bitch", so
just use 1 to replace this string.

e Number_of_previous_pregnancies: This variable takes 7 val-
ues 0, 1, ... , 6. Although the range is really small, we still
consider it as a continuous feature, because there is a cumula-
tive effect in its value.

e Pregnant_last_season: This variable has 3 different values,
which are 0, 1 and "unknown". We substitute "unknown" with
np.nan first, and then the data entries of this type will be
removed in cleaning Time_from_previous_season_days ***.

e Caesarean_last_season: This feature takes 4 values: 0, 1,
"N/A" TTT and "unknown". Similar to the previous case, the
data entries of with Caesarean_last_season being "unknown"
will be dropped.

e Sire_Pedigree_Name & Dam_Pedigree_Name: The data of this
variable is inconsistent: some have the format of "BRETT
(44182) Guidewell Beau 515392 (Dog)", and some will be
loaded as np.nan by pandas (their original value is the empty
string ""). However, the only valuable information from this
feature is the ID 44182 of the dog, so we just extract the ID
number and abandon other information.

e Health_Code: This feature takes only one value, which is
"Season Start", so we use 1 (which is chosen arbitrarily) to
replace it.

e Season_start_date: Do the same as what we have done in
cleaning Date_of_Birth.

e Age_at_season: The data type of this variable is float, so we
do not have to transform the data. Although there are some
missing values, they can be inferred from Season_start_date
and Date_of_Birth.

e Time_from_previous_season_days: There are two types of the
data of this feature: strings and numbers. Strings are either
"unknown" or "1st on breeding programme", both of which
stands for missing values. Thus, we replace them with np.nan,
and we will drop such items later.

e HR_Notes: We divide it into 3 parts. The first part split takes
three values: [1, 0, 0] which means the season was the first
split, [0, 1, 0] which means the season was the second split,
and [0, 0, 1] which means the season was not split. The
second part mating indicates whether the dog mated (1) or
not (0) during the last season. The third part maiden shows
whether the dog was maiden (1) or not (0) during the last
season.

e Diet_when_entered_season: This categorical variable has a lot
of missing values, so we use the data from diet 01 01 2006 to
24 08 2020.x1sx to fit them first, and then we one-hot encode
this feature. To be specific, in missing value imputation, we
find the data of the same dog first, and then use the value of
the closest recorded date to replace the missing value in the
original data set.

e BCS_when_entered_season: Replace all missing values with
np.nan.

e Weight_when_entered_season: Missing values are replaced
with np.nan, and we can use the data from bodyweight.x1lsx
to fit them.

e Optimum_weight: Similar to what we have done in the previous
case.

99 This means the sire is a golden retriever and the dam is a flat coated retriever.
This is because the only data entry taking this value also has value of the output variable being
missing.

Tt "N/A" means not applicable, which is for those dogs which were not pregnant during their last

seasons.
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A.2. Removal of Data with Missing Intervals and of the First Split.
Since items whose Time_from_previous_season_days are missing
are not usable in supervised learning, we have to drop them.
Also, some dogs may have split seasons, but during their first
splits, they do not ovulate. Thus, there is no biological signif-
icance to predict such split, and we simply remove the data of
the first splits (i.e. those whose split = [1, 0, 0]), and add
Time_from_previous_season_days of the two splits together to
make a whole season interval.

After data cleaning and this removal, features still having missing
values are

e Sire_Pedigree_Name;

e Dam_Pedigree_Name;

e Diet_when_entered_season;

e BCS_when_entered_season;

e Weight_when_entered_season;

e Optimum_weight.
B. Full ARD Results. The full results of ARD are shown in Table 5.

C. Full Random forest Results. The full results of Random Forest
are shown in Table 6.

D. Full LR importance Results. The full results of LR importance
are shown in Table 7.

llkiw et al.



features importances
Mean_previous_intervals 29.461497
Pregnant_last_season 29.020527
Maiden_last_season -15.977564
Mating_last_season 14.831783
Dam_Breed_2 -11.355464
Dam_Breed_3 9.842916
Colour_4 8.962232
Sire_Breed_3 8.727026
Diet_when_entered_season_10 7.801767
Number_of _previous_pregnancies -6.31461
Dam_Breed_7 -5.480089
Sire_Breed_7 -5.480089
Season_0 5.41143
Dam_Breed_4 4.423515
Season_2 -4.325435
Diet_when_entered_season_9 3.374292
Diet_when_entered_season_0 -3.280859
Diet_when_entered_season_8 -1.7692
Age_at_last_season -1.165488
Colour_10 1.008385
Caesarean_last_season_1 0.827747
Dam_season_interval_mean 0.601252
Colour_8 -0.011213
Caesarean_last_season_0 -0.002931
Sire_Breed_2 -0.002619
Dam_Breed_1 0.002442
Dam_Breed_6 -0.002094
Colour_9 0.001991
Colour_2 -0.001442
Dam_Breed_5 -0.001256
Diet_when_entered_season_3 -0.001188
Diet_when_entered_season_6 -0.001029
Diet_when_entered_season_2 0.000817
Diet_when_entered_season_1 0.000812
Caesarean_last_season_2 -0.000775
Colour_7 -0.000701
Sire_Breed_1 0.000695
Colour_0 -0.000669
Diet_when_entered_season_5 0.00065
Season_1 0.00062
Colour_1 -0.000558
Season_3 -0.000494
Diet_when_entered_season_11 -0.000483
Diet_when_entered_season_7 -0.000309
Colour_6 -0.000278
Sire_Breed_5 -0.000256
Colour_3 -0.000253
Weight_when_entered_season -0.000152
Sire_Breed_0 0.000076
Dam_Breed_O 0.000076
Colour_5 -0.000031
Diet_when_entered_season_4 0.000012
Diff_from_opt_weight -0.000007
Sire_Breed_6 0.0
Diet_when_entered_season_12 0.0
Sire_Breed_4 0.0

Table 5. Automatic Relevance Regression Coefficients

llkiw et al.

features importances
Mean_previous_intervals 0.371944
Age_at_last_season 0.126169
Dam_season_interval_mean 0.098669
Mating_last_season 0.066181
Pregnant_last_season 0.054241
Caesarean_last_season_2 0.051458
Diff_from_opt_weight 0.041766
Weight_when_entered_season 0.035529
Number_of _previous_pregnancies 0.015775
Diet_when_entered_season_3 0.010759
Season_1 0.010688
Sire_Breed_3 0.010342
Season_0 0.008079
Season_2 0.007793
Season_3 0.007671
Diet_when_entered_season_7 0.007585
Colour_10 0.006944
Caesarean_last_season_0 0.006391
Colour_O 0.006389
Diet_when_entered_season_1 0.006386
Diet_when_entered_season_8 0.005771
Dam_Breed_3 0.005723
Colour_7 0.004356
Dam_Breed_5 0.004285
Diet_when_entered_season_5 0.003519
Caesarean_last_season_1 0.003456
Sire_Breed_5 0.003438
Sire_Breed_2 0.003079
Colour_2 0.002711
Colour_5 0.002384
Colour_8 0.00182
Dam_Breed_2 0.001581
Maiden_last_season 0.001549
Colour_6 0.001331
Diet_when_entered_season_2 0.001283
Dam_Breed_1 0.000839
Sire_Breed_1 0.000553
Colour_4 0.000548
Diet_when_entered_season_0 0.000346
Colour_9 0.000303
Diet_when_entered_season_10 0.000136
Dam_Breed_4 0.00009
Colour_1 0.000072
Sire_Breed_0O 0.000023
Colour_3 0.000017
Dam_Breed_0 0.000016
Dam_Breed_6 0.000013
Diet_when_entered_season_6 0.0
Dam_Breed_7 0.0
Sire_Breed_7 0.0
Diet_when_entered_season_12 0.0
Diet_when_entered_season_9 0.0
Sire_Breed_6 0.0
Diet_when_entered_season_4 0.0
Sire_Breed_4 0.0
Diet_when_entered_season_11 0.0

Table 6. Random Forest Coefficients

PNAS

June 16, 2022
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Features Importance
Pregnant_last_season 24.325443
Mean_previous_intervals 24.319204
Caesarean_last_season_1 18.686875
Mating_last_season 15.017106
Dam_Breed_2 -13.636035
Sire_Breed_3 10.123664
Diet_when_entered_season_2 10.101656
Dam_Breed_3 9.031015
Diet_when_entered_season_3 8.763656
Colour_10 8.351856
Diet_when_entered_season_5 7.734572
Colour_0 6.927703
Diet_when_entered_season_1 6.898951
Diet_when_entered_season_7 6.489626
Season_2 -5.845605
Caesarean_last_season_0 5.638568
Season_0 5.046608
Number_of_previous_pregnancies -4.723435
Dam_Breed_5 -4.091594
Dam_season_interval_mean 3.504125
Colour_2 -2.888650
Season_1 2.239755
Diet_when_entered_season_8 2.096886
Age_at_last_season -1.896190
Sire_Breed_5 -1.828621
Season_3 -1.440758
Sire_Breed_2 1.252593
Colour_5 0.668362
Diet_when_entered_season_0O 0.657098
Diff_from_opt_weight -0.521505
Weight_when_entered_season 0.312684

Table 7. Linear Regression Coefficients

llkiw et al.
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