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Abstract

How should one construct a portfolio from multiple mean-reverting

assets? Should one add an asset to portfolio even if the asset has zero

mean reversion? We consider a position management problem for an

agent trading multiple mean-reverting assets. We solve an optimal

control problem for an agent with power utility, and present a semi-

explicit solution. The nearly explicit nature of the solution allows

us to study the e↵ects of parameter mis-specification, and derive a

number of properties of the optimal solution.

Contents

1 Introduction 3

2 Main results 5

⇤⇤
Email: elena.boguslavskaya@brunel.ac.uk

†⇤
Email: michael@boguslavsky.net

‡⇤
Email: d.muravey87@gmail.com

1

ar
X

iv
:2

00
9.

09
81

6v
1 

 [q
-fi

n.
M

F]
  2

1 
Se

p 
20

20



3 The model 5

3.1 Price processes . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Wealth process . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Value function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Main result 8

4.1 The Hamilton–Jacobi–Belman equation . . . . . . . . . . . . . 8
4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Analysis. Review of the one-dimensional case 10

5.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 The structure of the optimal strategy . . . . . . . . . . . . . . 11
5.3 Value function structure . . . . . . . . . . . . . . . . . . . . . 11
5.4 Wealth process structure . . . . . . . . . . . . . . . . . . . . . 12
5.5 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . 12

6 Analysis. Multidimensional case. 13

6.1 Explicitly solvable cases. . . . . . . . . . . . . . . . . . . . . . 13
6.1.1 Non-correlated assets . . . . . . . . . . . . . . . . . . . 13
6.1.2 Common reversion rate . . . . . . . . . . . . . . . . . . 14
6.1.3 Hedging a mean reverting asset via correlated Brown-

ian Motions . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 The structure of the optimal strategy . . . . . . . . . . . . . . 16
6.3 Wealth dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 Example. 2-dimensional model . . . . . . . . . . . . . . . . . . 16
6.5 Impact of correlation . . . . . . . . . . . . . . . . . . . . . . . 17

7 Wealth distribution moments and analysis of parameters mis-

specification 19

7.1 Closed from formulas. . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Impact of mis-specified reversion rates . . . . . . . . . . . . . 21

A Reduction of the HJB equation to the linear PDE 24

A.1 Distortion transformation . . . . . . . . . . . . . . . . . . . . 24

B Wealth SDE solution 27

2



C Proof of Theorem 6.1 28

C.1 Proof of formulas (28) and (29) . . . . . . . . . . . . . . . . . 28
C.2 Proof of formula (30) . . . . . . . . . . . . . . . . . . . . . . . 29
C.3 Proof of formulas (31) . . . . . . . . . . . . . . . . . . . . . . 30

D Auxiliary facts about the structure of the matrix F in the

zero correlation case 31

E Auxilliary facts about correlation matrices 35

E.1 Proof of formula (1). . . . . . . . . . . . . . . . . . . . . . . . 36
E.2 Proof of formula (2) . . . . . . . . . . . . . . . . . . . . . . . 36
E.3 Proof of formula (3) . . . . . . . . . . . . . . . . . . . . . . . 37
E.4 Proof of formula (4) . . . . . . . . . . . . . . . . . . . . . . . 37

1 Introduction

One of the basic patterns of statistical arbitrage is mean reversion trading.
Typically, one constructs a synthetic asset from one or several traded assets
in such a way that its price dynamics is mean reverting. For example, for a
pair of cointegrated assets there exists a mean-reverting linear combination
of these assets. We will be calling this mean-reverting synthetic asset the
spread. Generally, trading a mean reverting asset consists of buying the
spread when it is below its mean level and sellings when it is above. The main
question is how should the position be optimally managed with movement
of the spread, trader’s risk aversion, and time horizon. When there are
several mean-reverting assets available, the trader should additionally solve
a dynamic portfolio optimization problem in order to decide the best way to
combine positions in these assets.

A number of papers addressed this problem by specifying a stochastic dif-
ferential equation (SDE) for spread dynamics and finding the optimal strat-
egy that optimizes the expected utility over the terminal wealth. The sim-
plest example of mean-reverting dynamics in continuous time is the Ornstein–
Uhlenbeck process, the continuous version of the AR(1) discrete process. For
a single spread optimal trading strategy see [4]. For a more complicated
mean-reverting dynamics we refer to paper [2], where the spread is modelled
by a Markov modulated Ornstein–Uhlenbeck process, and to papers [9] and
[10] where the authors consider fractional stochastic processes. The models
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with uncertainty in the mean reversion level were discussed in [14]. Other
models for the spread have also been considered in the literature: for mod-
els based on Brownian brigde see [16], and for models based on CER/CIR
processes see [19]. A comprehensive review of the mean reversion trading
can be found in [13]. For methodology of statistical arbitrage we refer to [3].
In [15] the authors assume di↵erent mean-reversion dynamics for multiple
spread processes. They solve a portfolio optimization problem for several
Geometric Brownian motions with multiple co-integration terms in drifts.

Usually a portfolio allocator has access to multiple investing opportuni-
ties. Optimal sizing and timing of positions in each of these opportunities
may be a↵ected by positions in other assets and performance of those assets.
To develop intuition about optimal dynamic allocation strategy, we gener-
alise [4] to the case of multiple correlated Ornstein-Uhlenbeck and Brownian
Motion processes. We solve the problem of maximization of a power utility
over the terminal wealth for a finite horizon agent. Power utilities are a suf-
ficiently broad family of utility functions, containing log-utility as a special
case and linear utility as a limit case.

For the general problem, the optimal strategy is found in quasi–analytical
form as a solution to a matrix Riccati ordinary di↵erential equation. For
several important special cases it is possible to solve this equation explicitly.
We also propose an e�cient approach to analyse e↵ects of parameter mis-
specification. Although the proposed model is very simple, one can observe
non-trivial qualitative properties of the optimal strategy. The availability
of a quasi–analytical solution allows us to study how the trading strategy
is a↵ected by correlation between spreads, and demonstrate the tradeo↵s
between ”harvesting” each spread separately and hedging positions in corre-
lated spreads.

The rest of this paper is organized as follows: in Section 2 we give a
brief overview of optimal strategy properties. In Section 3 we specify our
formal asset and trading model and formulate a stochastic optimal control
problem. Section 4 contains explicit formulas for the optimal control and the
value function. Section 5 reminds main insights for the one-dimensional case.
Optimal solution analysis is presented in Section 6. In Section 7, we present
an ODE based framework to analyse the e↵ect of parameter mis-specification
and calculate the moments of the terminal wealth’s distribution. We then
apply this framework to analyse strategy and value sensitivity to reversion
rates misspecification.

Implementation source code in python and numerical implementation
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hints are available at [1].

2 Main results

The optimal solution has a number of interesting qualitative properties.

• Trade-o↵ between hedging and spread extraction
In the case of a single asset, the position is managed to extract value
from this asset movements. With several correlated mean-reverting
assets, the optimal strategy also uses positions in assets with slower
mean reversion to hedge positions in faster mean reverting assets.

• Impact of correlations
With all other parameters fixed, higher absolute values of correlations
between asset driving processes are preferable to lower absolute values,
as long as they stay below 1. See Section 6.5 for more details.

• Impact of di↵erent reversion rates
With all other parameters fixed, higher reversion speeds are not always
preferable for the trader. An asset with a lower reversion rate and
a non-zero correlation with higher reversion rate assets, may be used
primarily as a hedge for positions in these assets. Hedge e�ciency may
be declining with the increases in the lower reversion rate. See Section
6.4 for more details.

• Cost of parameter misspecification
The optimal strategy has a strong dependence on assumed reversion
rates. It is safer to underestimate reversion rates than to overestimate
them. The value function is more sensitive to errors in reversion rate
ratios between assets than to joint correlated errors in rate estimates.
See Section 7.

3 The model

3.1 Price processes

Assume the canonical multivariate filtered probability space (⌦, F , F, P)
with filtration (Ft)t�0 to satisfy the usual conditions, see e.g. [11]. On this
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space let [X1
t , X

2
t , . . . , X

n
t ]

> be a collection of tradeable assets following a
multidimensional Ornstein–Uhlenbeck process

dXt = �Xtdt+ �dBt (1)

Here Bt = [B1
t , B

2
t , . . . , B

n
t ]

> is an n-dimensional Wiener process with corre-
lation matrix ⇥ 2 Rn⇥n (i.e. dBtdB

>
t = ⇥dt), and  2 Rn⇥n

+ and � 2 Rn⇥n
+

are diagonal matrices with reversion rates and volatility entries correspond-
ingly

 = diag(1,2, . . . ,n),
� = diag(�1, �2, . . . , �n),

⇥ =

2

6664

1 ⇢12 . . . ⇢1n
⇢21 1 . . . ⇢2n
...

...
. . .

...
⇢n1 ⇢n2 . . . 1

3

7775

The diagonality of matrices  and � means that all dependency between
assets comes from the correlations between the driving Brownian motions.
We also consider models with some assets exhibiting zero mean reversion (i.e.
with some zero elements of .) These assets are simply following correlated
Brownian motions. However, we assume that elements of vector  are not all
zero to avoid a trivial problem. Correlation matrix ⇥ should be symmetric
and positive semi-definite with unit diagonal elements, ⇢ii = 1, ⇢ij = ⇢ji. We
will assume that ⇥ has full rank to avoid obvious arbitrages.

Without loss of generality, we can also assume that long-term means of
each process are equal to zero. The general case can be reduced to equation
(1) by the substitution [Xt � ✓] ! Xt, where ✓ is a vector of long term
means. Equation (1) can be solved explicitly in terms of Itô integral:

Xt = e�t
X0 +

Z t

0

e�(t�s)�dBs

Here eA is a matrix exponential:

eA =
1X

k=0

1

k!
Ak, A0 = I.

3.2 Wealth process

The problem can be treated in the general Merton portfolio optimisation
framework, see [17]. Let vector ↵t

↵t =
⇥
↵1
t ,↵

2
t , . . . ,↵

n
t

⇤>
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be a traders position at time t, i.e. the number of units of each asset held.
This is the control in our optimization problem. Assuming zero interest rates
and no transaction costs, for a given control process ↵t, the wealth process
W↵

t is given by

dW↵
t = ↵>

t dXt =
nX

i=1

↵i
tdX

i
t ,

or in integral form

W↵
t = W↵

t +

Z T

t

↵>
u dXu = W↵

t +
nX

i=1

Z T

t

↵i
udX

i
u.

3.3 Normalization

Without loss of generality, we assume unit noise magnitudes: i.e. � = I.
For the general case, the following parametrisation should be used:

Xt ! ��1
Xt, ↵t ! �↵t.

3.4 Value function

The value function J(W↵
t ,Xt, t) : R+⇥Rn⇥[0, T ] ! R is the supremum over

all admissible controls of the expectation of the terminal utility conditional
on the information available at time t

J(w,x, t) = sup
↵t2A

E [U(W↵
T )|W↵

t = w, Xt = x] ,

where the set of admissible controls A is defined as

A =

(
↵ : [0, T ]⇥ ⌦! Rn |↵t 2 Ft,

Z >

0

(W↵
t )2

nX

i=1

�
↵i

tX
i
t

�2
dt < 1, a.s

)
(2)

We consider a power utility function with the parameter � < 1

U = U(W↵
T ) =

1

�
(W↵

T )� .

The relative risk aversion is measured by 1��. It is convenient to use another
measure � which is also known as a distortion rate (see [18])

� =
1

1� �
, 0 < � < 1
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so the smaller � is, the less risk averse the agent. The case � = 0 corresponds
to the logarithmic utility function and the investor with � ! 1 is a risk
seeking investor.

4 Main result

4.1 The Hamilton–Jacobi–Belman equation

Our aim is to find the optimal control ↵⇤(W↵
t ,Xt, t) and the value function

J(W↵
t ,Xt, t) as the functions of wealth W↵

t , prices Xt and time t. The
Hamilton–Jacobi–Bellman equation is

sup
↵

((@/@t+ L) J) = 0. (3)

Here L is the infinitesimal generator of the wealth process W↵
t :

L =
↵>
⇥↵

2

@2

@w2
+↵>

⇥r @

@w
+

r>
⇥r
2

�↵>x
@

@w
� x>r

and the first order optimality condition on the control ↵⇤ is

↵⇤(w,x, t) =
Jw
Jww
⇥

�1x� rJw
Jww

. (4)

The operator r denotes a vector di↵erential operator

r =


@

@x1
,

@

@x2
, . . . ,

@

@xn

�>

for which we define the following operations for any vectors a 2 R1⇥n and
matrices A 2 Rn⇥n:

a
>r =

nX

i=1

ai
@

@xi
, r>

Ar =
nX

i=1

nX

j=1

Aij
@2

@xi@xj
.

Note that the first summand in the right-hand side of (4) is the myopic de-
mand term corresponding to a static optimization problem while the second
term hedges from changes in the investment opportunity set. For a log utility
investor (� = 0 or, equivalently, � = 1) the second term vanishes (see [17].)
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Substituting this condition into the equation (3) for the value function,
we obtain a non-linear PDE which can be linearised by the distortion trans-
formation (see [18]):

J(w,x, t) =
w�

�
f 1/�(x, t).

Here the function f(x, t) is a solution to the Cauchy problem for the parabolic
PDE:

r>
⇥r
2

f � � + 1

2
x>rf � � � 1

2
r>fx+

�(� � 1)

2
x>⇥�1xf +

@f

@t
= 0.

f(x, T ) = 1.

4.2 Solution

The main equation (5) can be reduced to the matrix Riccati ODE. The value
function J and the optimal control ↵⇤ have quasi-analytic representations
via solutions to this ODE. Using an ansatz similar to [5] and [15], we prove
that the value function J is given by

J(w,x, t) =
w�

�
· exp

⇢Z T�t

0

Tr (A(u)⇥)

�
du

�
· exp

⇢
x>A(T � t)x

�

�

where Tr denotes trace operator and the function A : R+ ! Rn⇥n ⇥R+ is a
matrix function of inverse time ⌧ = T � t:

A(⌧) =

���������

A11(⌧) A12(⌧) . . . A1n(⌧)
A21(⌧) A22(⌧) . . . A2n(⌧)

...
...

. . .
...

An1(⌧) An2(⌧) . . . Ann(⌧)

���������

which is defined as a solution to the following matrix Ricatti equation:

A0(⌧) = R⇥,,�A (5)

A(0) = 0

with R⇥,,� denoting the nonlinear operator

R⇥,,�A =

�
A> +A

�
⇥
�
A> +A

�

2
(6)

� � + 1

2

�
A> +A

�
� � � 1

2

�
A> +A

�
+

�(� � 1)

2
⇥�1
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The optimal strategy ↵⇤ has the following representation:

↵⇤(w,x, t) = w
⇥
��⇥�1+A+A>⇤x. (7)

Introducing a new matrix D as

D(⌧) = �⇥�1�
�
A(⌧) +A>(⌧)

�

we get the following formula for optimal strategy ↵⇤:

↵⇤(w,x, t) = �wD(⌧)x (8)

Matrix D can be found directly from another Riccati ODE:

D0(⌧) = �D>
⇥D + �⇥�1. (9)

D(0) = �⇥�1.

If one only needs the optimal control it is su�cient to solve the simpler
equation (9). To find the value functions, one needs to solve the more complex
system (5.)

Optimality of the candidate control ↵⇤ can be verified using the same
arguments as in [15] (see also [6] and [7].)

5 Analysis. Review of the one-dimensional

case

5.1 The problem

Before we analyse the multidimensional case, let us present a short review
of the one-dimensional case, for more details see [4]. It is obtained from our
problem by setting n = 1 in all formulas from Section 3.1. To be more precise,
we consider mean-reverting asset Xt which follows an Orntein–Uhlenbeck
process with zero mean and unit variance:

dXt = �Xtdt+ dBt

and the wealth process W↵
t generated by the trading strategy ↵:

dW↵
t = ↵tdXt.

We are looking for the maximizer ↵⇤ of the expected utility over the terminal
wealth W↵

T :
↵⇤ = argmax

↵
[Et [U(W↵

T )]] .
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5.2 The structure of the optimal strategy

The optimal control ↵⇤ can be expressed as

↵⇤(w, x, t) = �wD(T � t)x,

where the function D(⌧) is a solution to the following Riccati equation:

D0
 = �D2

 + �k2 (10)

D(0) = �.

This one-dimensional problem (10) can be solved explicitly (this can be done
via the substitution ⌧(D) = D�1

 ). The function D(⌧) is a shifted and
scaled sigmoid function of the inverse time ⌧ = T � t :

D(⌧) = 
p
�

p
� cosh

p
�⌧ + sinh

p
�⌧p

� sinh
p
�⌧ + cosh

p
�⌧

It is worth to mention that for � < 0 the function D can be represented
as

D(⌧) = 
p
� tanh

⇣

p
�⌧ + '

⌘
, tanh' =

p
�

The behavior of the function D(T � t) depends on the value of risk
aversion �: an agent with negative gamma (less risk averse than log-utility
inversor) becomes less agressive if time approaches to the terminal time while
traders with positive gamma become more aggressive (see Figure 1). For the
log-utility agent (� = 0, red line on Figure 1) the optimal strategy is static,
i.e. D(⌧) ⌘ const.

5.3 Value function structure

The value function J(w, x, t) can be split into three terms:

J(w, x, t) =
w�

�|{z}
a

· exp
⇢
�
Z T�t

0

D(u)� �

2�
du

�

| {z }
b

· exp
⇢
�x2(D(T � t)� �)

2�

�

| {z }
c

which can be interpreted as follows:

• a: present wealth utility,

• b: time value (utility of future expected opportunities),

• c: instrinsic value (utility of the immediate investment opportunity
set.)
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Figure 1: Position size multiplierD(T�t) for di↵erent values of risk aversion

5.4 Wealth process structure

The stochastic process W↵
t generated by the optimal strategy ↵⇤ can be

represented as (for more details see B)

log

✓
W↵

t

W↵
s

◆
=

Z t

s

D(T � u)� �2X2
u

2
du

| {z }
a

+
X2

sD(T � s)�X2
t D(T � t)

2| {z }
b

.

So the log return of wealth between times s and t is the sum of

• a: profit/loss from dynamic trading in the time period [s, t],

• b: profit/loss on position open at at time s.

5.5 Monte Carlo simulations

The higher mean reversion speed  makes trader more aggressive. Authors
also make the following observations based on Monte Carlo simulations:

• The influence of mean reversion coe�cient misspecification is asymet-
ric.
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• Trading with a conservatively estimated  reduces greatly the utility
uncertainty. The overestimation of  leads to excessively aggressive
positions. It is much safer to underestimate  than to overestimate it.

6 Analysis. Multidimensional case.

The main di↵erence between multidimensional and one dimensional case is
that changes in some spreads may a↵ect positions in other spreads via changes
in risk exposures. Generally, one might expect two possible motivations to
take a position in each of the assets: to extract value from its reversion or to
hedge positions in other assets.

In the multidimensional case, the time decay function D is a matrix.
The main di�culty is that there are no known techniques to explicitly solve
generic matrix Riccati equations. However, there are several important spe-
cial cases in which explicit solutions can be obtained. We start our analysis
with these cases; based on these formulas we can demonstrate the main prin-
ciples of interaction between asset prices and optimal positions.

For the rest of the paper, we will analyse only the case X0 ⌘ ✓, i.e. the
long-term investment behavior of the value function J(w,0, t).

6.1 Explicitly solvable cases.

6.1.1 Non-correlated assets

Assume that the asset processes are driven by non-correlated Wiener pro-
cesses, ⇥ = I. We can expect that the optimal strategy is simply a vector
of one dimensional optimal strategies for each asset. That is, a candidate
optimal control is

↵⇤ = �wD(⌧)x, D(⌧) = diag (D1(⌧), D2(⌧) . . . , Dn(⌧)) , ⌧ = T � t.

For the definition of D see 5. One can directly confirm that this control is
indeed optimal by checking that it solves the system (9).

In this case, there are no interactions between the assets. The position
in the i-th assets depends only on time t, current wealth and i-th asset
parameters.

13



6.1.2 Common reversion rate

Another case that allows an explicit solution is when the correlations are
non-trivial but the reversion rate  is the same for all assets  = I. Recall
SDE for the price process

dXt = �Xtdt+ dBt, dBtdB
>
t = ⇥dt.

We show that for this case the explicit solution can also be constructed.
Indeed, with a single common reversion rate, any non-zero linear com-

bination Yt = L�1
Xt of Ornstein–Uhlenbeck processes is also an Ornstein–

Uhlenbeck process:

dYt = �Ytdt+ dB̃t, dB̃tdB̃t
>
= L�1⇥(L�1)>dt

Here B̃t is a n- dimensional Wiener process with correlation matrix

L�1⇥(L�1)>.

Assuming invertibility of L, one can find an optimal control ↵Y for this
new process Yt and then transform it to an optimal control for Xt. The
transformation is based on the following equality

dW↵
t = ↵>

Y dYt = ↵>
XdXt, ↵X(W

↵
t ,Xt, t) = (L�1)>↵Y (W

↵
t ,L�1

Xt, t).

The transformaton matrix L is constructed as a Cholesky decomposition of
correlation matrix ⇥ :

L>L = LL> = ⇥, (L�1)>L�1 = L>(L�1)> = ⇥�1.

Applying this transformation, we obtain the following equation for the opti-
mal control:

↵⇤ = �wD(T � t)⇥�1x.

Thus, the optimal trading rule can be interpreted as constuction of linearly
independent factor portfolios and then trading them in the manner of the
previous case. This is similar to the portfolio signal construction approach
of [12].

In this case, there are also no interactions between the assets. The value
function J(w0, t) does not depend on asset correlations:

J(w,0, t) =
w�

�
exp

⇢
n

Z T�t

0

��D(u)

2�
du

�

14



6.1.3 Hedging a mean reverting asset via correlated Brownian

Motions

Let us consider a case when the tradeable asset set consists of a single mean-
reverting asset and one or several correlated Brownian motions. We can also
consider this case as the limiting case for tradeable asset sets where one asset’
mean reversion rate  is very large relatively to all other asset’ reversion rates.

Consider the following matrix of reversion rates:

 = diag(, 0, 0, . . . , 0).

One can check by a direct calculation that the solution to the Riccati equation
(9) has the following form:

D(t) =

���������

D11 0 . . . 0
D21 0 . . . 0
...

...
. . .

...
Dn1 0 . . . 0

���������

Dj1 = �
�
⇥

�1
�
j1
. The term D11(⌧) can be derived from the following

Riccati ODE:

D0
11(⌧) = �D2

11 + 2�(⇣ � 1)D11 + 2�⇣ (�(1� ⇣) + 1)

D0
11(0) = �⇣.

This ODE can be solved explicitly to yield the following formula for D:

D11(⌧) =

8
<

:

� � cosh�⌧+� sinh�⌧
� sinh�⌧+� cosh�⌧ + �(⇣ � 1), � < 1/⇣

� 1
1+�⌧ + �(⇣ � 1), � = 1/⇣

� � cos�⌧�� sin�⌧
� sin�⌧+� cos�⌧ + �(⇣ � 1), 1/⇣ < � < 1.

Here
⇣ =

�
⇥

�1
�
11
, � =

p
|�(� � 1)⇣ � �2|

Thus, in this case we trade the mean-reverting asset and hedge it via
correlated Brownian motions. Both the mean revertion asset position and the
hedging positions are larger for large correlations. Availability of correlated
hedging assets allows us to take larger positions for given risk aversion and
wealth.
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6.2 The structure of the optimal strategy

To illustrate the structure of the optimal strategy, we expand the product
D(⌧)x in formula (8) for optimal control ↵⇤:

���������

↵⇤
1

↵⇤
2
...
↵⇤

n

���������

= �w

���������

D11(⌧)x1 +D12(⌧)x2 + . . .D1n(⌧)xn

D21(⌧)x1 +D22(⌧)x2 + . . .D2n(⌧)xn
...

Dn1(⌧)x1 +Dn2(⌧)x2 + . . .Dnn(⌧)xn

���������

The summand Diixi is a position size multiplier for a mean reversion trading
of i� th asset while Dijxj is a quantity of i� th asset required to hedge the
position in j � th asset. In case of non-correlated assets each Dij = 0, for
i 6= j. The quantities Dij and Dji satisfy the following relations :

Dij + �⇥�1
ij j = Dji + �⇥�1

ij i.

Note that the di↵erence between Dij and Dji does not depend on time t.

6.3 Wealth dynamics

Similarly to the one-dimensional case, the wealth process W↵
t can be ex-

pressed as

log
⇣

W↵
t

W↵
s

⌘
=

az }| {Z t

s

Tr⇥D(T � u)� �X>
u⇥

�1Xu

2
du+

+
X

>
s D(T � s)Xs �X

>
t D(T � t)Xt

2| {z }
b

+
1

2

Z t

s

X
>
u

⇥
D �D>⇤ dXu

| {z }
c

(11)

One term of equation (11) that is missing in the one-dimensional case is
c. This summand corresponds to hedging e�ciency. It is easy to see that for
cases ⇥ = I or  = I this term vanises. As we mentined before, the case
 = I can be reduced to the case ⇥ = I.

6.4 Example. 2-dimensional model

.
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To illustrate interactions between reversion speed and correlation, let us
consider a two-dimensional example in more details. We will use the following
parameters for this illustration: numbers of assets be n = 2, noise magnitude
� = I, long term mean and initial point ✓ = X0 = 0, risk aversion � = �4
and time horizon T = 3. We consider an optimal strategy for a portfolio
of two correlated Ornstein–Uhlenbeck processes with 1 = 1 and di↵erent
values of 2 and correlation ⇢.

n = 2, � = �4, � = I,  = diag(1,2), ✓ = X0 = 0, ⇥ =


1 ⇢
⇢ 1

�

Figure 2 shows of the value function J as a function of log(2/1) (1 = 1)
for several di↵erent values of ⇢. We are varying here the lower of two asset
mean-reversion rates. It turns out that for su�ciently high correlation ⇢,
the value function has a proper minima as function of 2 and it becomes
decreasing in 2 as correlation gets closer to 1. This means that in these
cases, one would prefer to have a lower value for the second asset’ mean-
reversion rate to a slightly higher value (but not to a much higher value
2 >> 1. Therefore, with more that one asset, a higher reversion rate
is not always good for extracting value from trading, quite unlike the one-
dimensional case.

6.5 Impact of correlation

We have seen in the previous section that the value function can be non-
monotonic in mean-reversion rates. Let us show that it is always increasing
with the correlation all other parameters being equal.

Suppose now that we start our trading process with no immediate trad-
ing opportunities (i.e. x = 0). We consider J(w,0, t) as the function on
correlation coe�cients ⇢mn. In the standard Markowitz portfolio optimiza-
tion problem, one can construct more profitable portfolios when correlations
are lower. In our setting, we can prove that the value function has a local
minima at zero correlations ⇥ = I. Correlations between driving processes
enable cross-hedging between positions in di↵erent assets and these increase
the value function. We have already seen a similar beneficial e↵ect of higher
correlations in section 6.1.3 for a special case of a single mean-reverting asset
hedged with Brownian motions and the following theorem demonstrates that
this e↵ect holds in the general case as well.
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Figure 2: 2D example. Value function for a range of values for 2 and
correlation ⇢.

Theorem 6.1. In the absense of immediate trading opportunities (x = 0)
the value function J(w,0, t) as a function of pairwise correlation coe�cients
⇢mn has a local minima at ⇥ = I.

Proof. Recall the representation of the value function:

J(w,0, t) =
w�

�
exp

⇢
1

�

Z T�t

0

Tr (F (u)) du

�

where matrix F is equal

F =
1

2
(A+A>)⇥. (12)

Define new matrix � :
� = ⇥�1⇥ (13)

Note that � is a result of similarity transformation of the matrix  and
lim⇥!I � = . For the matrix F we have the following ODE:

F 0 = 2F 2 � � (F + F�) +
�(� � 1)

2
� (14)

F (0) = 0.
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Let ⇢mn be an arbitrary correlation coe�cient at the position mn (i.e. mn =
(ij), ⇥ij = ⇥ji = ⇢mn) and let us consider the following partial derivatives:

@J(w,0, t)

@⇢mn
=

J(w,0, t)

�

Z T�t

0

Tr

✓
@F (u)

@⇢mn

◆
du

@2J(w,0, t)

@⇢mn@⇢pq
=

J(w,0, t)

�

Z T�t

0

Tr

✓
@2F (u)

@⇢mn@⇢pq

◆
du

@2J(w,0, t)

@⇢2mn

=
J(w,0, t)

�

Z T�t

0

Tr

✓
@2F (u)

@⇢2mn

◆
du

We will prove the following properties for any mn and pq:

lim
⇥!I

@J(w,0, t)

@⇢mn
= 0 (15)

lim
⇥!I

@2J(w,0, t)

@⇢mn@⇢pq
= 0 (16)

sign lim
⇥!I

@2J(w,0, t)

@⇢2mn

= sign�, (i 6= j) (17)

lim
⇥!I

@2J(w,0, t)

@⇢2mn

= 0 (i = j) (18)

From equation (15), the point ⇥ = I is an extrema point. Equation (16)
implies that the Gessian matrix at ⇥ = I is a diagonal matrix. Using
Silvester’s criterion we prove that Gessian matrix is a positive definite at the
point ⇥ = I, for more details see Appendix C.

7 Wealth distribution moments and analysis

of parameters mis-specification

7.1 Closed from formulas.

In practice, one does not know the true values for model parameters, so it is
important to understand value function sensitivities to errors in parameters
estimation. In this section, we present an ODE based framework for the
analysis of parameter mis-specification sensitivity. We provide semi-explicit
formulas for the value function corresponding to misspecified parameters.
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Let ̂, �̂, ⇥̂ be an estimates of reversion rates, volatility and correlation. We
consider the control ↵̂ as a function of these estimates

↵̂ = w�̂�1
h
��⇥̂

�1
̂+

⇣
Â

>
+ Â

⌘i
�̂�1x.

Here the matrix Â is a solution to the following ODE

Â
0
(⌧) = R⇥̂,̂,�Â (19)

Â(0) = 0,

where the di↵erential operator R is defined in (6). The wealth process Ŵt

generated by the strategy ↵̂ is a solution to the following SDE

dŴt = ↵̂>
t dXt (20)

Theorem 7.1. Let P✏(w,x, t) be the following expectation of a function of
terminal wealth ŴT defined by (20):

P✏(w,x, t) = E
"
Ŵ ✏

T

✏

��� Ŵt = w, Xt = x

#
.

The expectation P✏(w,x, t) can be explicitly found in the following form

P✏(w,x, t) =
w✏

✏
· exp

⇢Z T�t

0

Tr (⇥Q(u)) du

�
(21)

· exp
�
x>��1Q(T � t)��1x

 
,

where matrix Q is a solution to Riccati equation

Q0 = BQ (22)

Q(0) = 0.

The nonlinear operator B is given by

BQ =

�
Q+Q>�

⇥
�
Q+Q>�

2
+

+
�
✏�>
⇥� 

� �
Q+Q>�+ ✏(✏� 1)

2
�>
⇥� � ✏�>

and the matrix � is defined as

� = ��̂�1
h
��⇥̂

�1
̂+

⇣
Â+ Â

>⌘i
�̂�1�

here the matrix Â is a solution to the equation (19).
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In the setting ✏ = � we obtain the expected utility corresponding to the
misspecified parametes. The values ✏ = 1 or ✏ = 2 corresponds to the first
two moments of WT , so we can calculate Sharpe ratio:

Sh[↵̂] =
P1(w,x, t)p

2P2(w,x, t)� P 2
1 (w,x, t)

.

It is worth to mention, that the e↵ects on misspecified long term mean level
✓ can be also analysed in the same way. For this case, we have to add extra
term

exp
�
x>

V
 

to the equation (21). Here V is an n⇥1 vector function of inverse time T � t.
As an alternative, one can analyse the e↵ect of parameter misspecifica-

tion by using Monte-Carlo methods. However, from our point of view, the
proposed ODE approach is computationally much more e�cient than Monte-
Carlo simulations.

7.2 Impact of mis-specified reversion rates

We illustrate the method presented above on the analysis of misspecified
reversion rates . For simplicity, we consider the portfolios with only two
assets. The results are presented on figure 3. We measure e↵ect on misspec-
ification by the di↵erence between the value functions corresponding to true
and mis-specified parameters (color and value of z-axis respectively).

Similarly to the one-dimensional case, the infuence of mean reversion
coe�cient misspecification is asymmetric. Depending on the value of corre-
lation, correct estimation of the ratio between reversion rates is more impor-
tant than the estimations of the exact values of each mean-reversion rate. It
follows from the nature of optimal strategy: the faster mean-reverting asset
is hedged in the slower one and the hedging accuracy depends on the ratio
between reversion speeds.
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Figure 3: Misspecified reversion rates. Heatmap plot and 3D plot.
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A Reduction of the HJB equation to the lin-

ear PDE

A.1 Distortion transformation

The first order optimality condition on the control ↵⇤ yields the following
linear system for the ↵⇤:

Jww⇥↵⇤ = xJw �⇥�rJw. (23)

The solution of this system reads

↵⇤ =
1

Jww

�
⇥

�1x�r
�
Jw (24)

Using again the first order optimality condition, we get:

(↵⇤)>xJw � (↵⇤)>⇥rJw = (↵⇤)>⇥↵⇤Jww
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Substituting it into HJB equation we arrive at the following terminal problem
for PDE:

Jt �
1

2
(↵⇤)>⇥↵⇤Jww � x>rJ +

1

2
r>
⇥rJ = 0, (25)

J(w,x, T ) =
w�

�

Plugging the exact value for an optimal control ↵⇤ yields non-linear PDE:

Jt �
1

2

J2
w

Jww
(x)>⇥�1 (x) +

1

2

Jw
Jww

h
(x)> rJw +r>Jw (x)

i

�1

2

1

Jww
r>Jw⇥rJw � x>rJ +

1

2
r>
⇥rJ = 0.

We proceed with an application of the so-called distortion transformation:

J =
w�

�
f 1/�(x, t), � =

1

1� �
(26)

The exact formulas for the partial derivatives of the value function J reads

Jt =
1

�

J

f

@f

@t
, Jw =

�

w
J, Jww =

�(� � 1)

w2
J

rJ =
1

�

J

f
rf, rJw =

�

w

1

�

J

f
rf
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Plugging in these expressions into terms of non-linear HJB PDE we get:

1

2
r>
⇥rJ =

1

2

1

�

J

f
r>
⇥rf +

1

2

1

�

✓
1

�
� 1

◆
J

f 2
r>f⇥rf.

�1

2

1

Jww
r>Jw⇥rJw = �1

2

�2

w2

1

�2
J2

f 2

w2

�(� � 1)J
r>f⇥rf

=
1

2

�

�

J

f 2
r>f⇥rf

= �1

2

1

�

✓
1

�
� 1

◆
J

f 2
r>f⇥rf

�1

2

J2
w

Jww
= �1

2

�2

w2
J2 w2

�(� � 1)J

=
1

2

�

1� �
J

=
1

2

1

�
�(� � 1)J

1

2

Jw
Jww

h
(x)> rJw +r>Jw (x)

i
=

1

2

�J

w

w2

�(� � 1)J

"
(x)>

✓
�

w

1

�

J

f
rf

◆

+

✓
�

w

1

�

J

f
rf

◆>

(x)

#

=
1

2

1

�

�

� � 1

J

f

⇥
x>rf +r>fx

⇤

=
1� �

2

1

�

J

f

⇥
x>rf +r>fx

⇤

= �� � 1

2

1

�

J

f

⇥
x>rf +r>fx

⇤

This yields the following linear equation for the function f :

1

2
r⇥rf � � + 1

2
x>rf � � � 1

2
r>f (x) +

1

2
�(� � 1) (x)>⇥�1 (x) f +

@f

@t
= 0.

or
1

2
r⇥rf � � + 1

2
x>rf � � � 1

2
r>fx+

�(� � 1)

2
x>⇥�1xf +

@f

@t
= 0.

The optimal control ↵⇤ reads:

↵⇤(w,x, t) = w


�� (�⇥�)�1 x+

rf

f

�
. (27)
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B Wealth SDE solution

The wealth process corresponding to the optimal control takes the following
form :

dWt = �WtX
>
t D

>dXt.

We represent the process Wt in the stochastic exponent form:

Wt = W0e
�>Yt , dYt = udt+ ⌘dXt.

and apply Itô’s lemma :

dWt = Wt


�>dYt +

1

2
�>dYtdY

>
t �

�
.

Let us note that

�>u = �1

2
�>⌘⇥⌘>�

�>⌘ = �X
>
t D

>

⌘>� = �DXt

�>u = �1

2
X

>
t D

>
⇥DXt

�>dYt = �>udt+ �⌘dYt.

�>dYt = �1

2
X

>
t D

>
⇥DXtdt�X

>
t D

>dXt

Therefore
Z t

0

�>dYs = �1

2

Z t

0

X
>
s D(T � s)>⇥D(T � s)Xsds�

Z t

0

X
>
s D(T � s)>dXs

Using that the matrix D solves the following Riccati ODE:

�dD

dt
= D>

⇥D � �⇥�1

we get

Wt = W0 exp

⇢
��

2

Z t

0

X
>
s ⇥

�1Xsds�
1

2

⇥
X

>
t D(T � t)Xt �X

>
0 D(T )X0

⇤�

· exp

⇢
1

2

Z t

0

Tr⇥D(T � s)ds+
1

2

Z t

0

X
>
s

⇥
D �D>⇤ dXs

�
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C Proof of Theorem 6.1

The proof of Theorem 6.1 is equivalent to proof of the following 4 facts about
matrix F :

lim
⇥!I

✓
@F

@⇢mn

◆

ij

= 0, (ij) /2 mn. (28)

lim
⇥!I

Tr
@F

@⇢mn
= 0 (29)

lim
⇥!I

Tr
@2F

@⇢mn@⇢pq
⌘ 0. (30)

lim
⇥!I

Tr
@2F

@⇢2mn

> 0, � > 0, i 6= j. (31)

lim
⇥!I

Tr
@2F

@⇢2mn

< 0, � < 0, i 6= j,

lim
⇥!I

Tr
@2F

@⇢2mn

⌘ 0, � = 0 or i = j

C.1 Proof of formulas (28) and (29)

Consider the partial derivative of F with respect to the any correlation ⇢mn:

✓
@F

@⇢mn

◆0

=
@

@⇢mn

✓
2FF � � (F + F�) +

�(� � 1)

2
�

◆

= 2

✓
@F

@⇢mn
F + F

@F

@⇢mn

◆
� �

✓


@F

@⇢mn
+

@F

@⇢mn
�+ F

@�

@⇢mn

◆

+
�(� � 1)

2


@�

@⇢mn
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Tending ⇥ to I we get:

�0 = 2 (� + �)� �

0

@�+ �+ 

under LemmaE.1, 2z }| {
[Imn � Imn]

1

A

+
�(� � 1)

2
 [Imn � Imn]| {z }

under LemmaE.1, 2

�0
ij = 2�ij ( ii + jj � � [i + j])� �

nX

s=1

nX

k=1

�
 isskI

mn
kj � isI

mn
sk kj

�

+
�(� � 1)

2

nX

s=1

nX

k=1

⇥
isskI

mn
kj � isI

mn
sk kj.

⇤

�0
ij = �ij (2 ii + 2 jj � � [i + j])� � iiI

mn
ij [i � j]

+
�(� � 1)

2
iI

mn
ij [i � j] .

�0
ij = �ij (2 ii + 2 jj � � [i + j])� �Imn

ij [i � j]


 ii +

1� �

2
i

�
.

�ij(0) = 0.

Since Imn
ij = 0 for (ij) /2 mn, hence �ij ⌘ 0. Moreover, for diagonal elements

(ii) /2 mn, 8i = 1..n, therefore Tr� ⌘ 0.

C.2 Proof of formula (30)

✓
@2F

@⇢mn@⇢pq

◆0

=
@

@⇢mn@⇢pq

✓
2FF � � (F + F�) +

�(� � 1)

2
�

◆
(32)

= 2

✓
@2F

@⇢mn@⇢pq
F +

@F

@⇢mn

@F

@⇢pq
+

@F

@⇢pq

@F

@⇢mn
+ F

@2F

@⇢mn@⇢pq

◆

� �

 


@2F

@⇢mn@⇢pq
+

@2F

@⇢mn@⇢pq
�+

@F

@⇢mn

@�

@⇢pq
+

@F

@⇢pq

@�

@⇢mn

+ F
@2
�

@⇢mn@⇢pq

!
+

�(� � 1)

2


@2
�

@⇢mn@⇢pq

Let us define

⌘ = lim
⇥!I

@2F

@⇢mn@⇢pq
, �̃ = lim

⇥!I

@F

@⇢pq

29



therefore

⌘0 = 2 [⌘ + ⌘]� �
h
⌘ + ⌘+ � (Ipq � Ipq) + �̃ (Imn � Imn) + Q

i

+
�(� � 1)

2
Q

⌘0
ii = 4⌘ii ii � 2�i⌘ii � � iiQii

� �
nX

s=1

nX

k=1

h
�isskI

pq
ki � �isI

pq
skki + �̃isskI

mn
ki � �̃isI

mn
sk ki

i
+

�(� � 1)

2
iQii

⌘0
ii = 2⌘ii [2 ii � �ii]� �

nX

s=1

h
�issI

pq
si � �isI

pq
si i + �̃issI

mn
si � �̃isI

mn
si i

i

⌘0
ii = 2⌘ii [2 ii � �ii] , ⌘ii(0) = 0.

⌘ii ⌘ 0.

Tr⌘ ⌘ 0.

C.3 Proof of formulas (31)

According to the definition of ' we obtain the following ODE:

'0 = 2 [' + ']� � ['+'+ 2� (Imn � Imn) + P ] +
�(� � 1)

2
P

'(0) = 0

or in the element wise notation:

'0
ii = 2'ii [2 ii � �ii]� 2��ijI

mn
ij (j � i)� � iiP ii +

�(� � 1)

2
iP ii

'0
ii = 'ii [4 ii � 2�ii] + 2��ijI

mn
ij (i � j)� �P ii

✓
 ii +

1� �

2
i

◆

'0
ii = 'ii [4 ii � 2�ii] + 2�Imn

ij (i � j)

"
�ij � i

(1�
p
�)

2

e2i

p
�⌧ + 1

e2i

p
�⌧ + !

#

'(0) = 0.

It is easy to check that under the condition i = j:

'ii = 'jj = 0. (33)
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The formula 33 also holds for the special case � = 0(� = 1). Indeed, for this
case �ij = �ji = 0. It turns out to that the RHS of the last equation for 'ij

is equal to zero, therefore 'ii = 'jj = 0.
We proceed with the case i /2 mn. Each element P ii equals 0, i.e. 'ii(⌧) ⌘

0. Therefore, the trace of the matrix ' contains only two non-zero terms
with multi-index mn. For simplicity of notation, we denote it as i and j,
i.e mn = (ij). The summands 'ii and 'jj can be found via the following
ODEs:

'0
ii �'ii [4 ii � 2�i] = 2�(i � j)

"
�ij � i

(1�
p
�)

2

e2i

p
�⌧ + 1

e2i

p
�⌧ + !

#
.

'0
jj �'jj [4 jj � 2�j] = 2�(j � i)

"
�ji � j

(1�
p
�)

2

e2j

p
�⌧ + 1

e2j

p
�⌧ + !

#

'ii(0) = 'jj(0) = 0.

Using Lemma D.3 we finish the proof.

D Auxiliary facts about the structure of the

matrix F in the zero correlation case

Here we present some facts about the structure of F for the zero correlation
case. We consider the matrices  , � and ' defined as follows:

 = lim
⇥!I

F , � = lim
⇥!I

@F

@⇢mn
, ' = lim

⇥!I

@2F

@⇢2mn

(34)

Lemma D.1. The matrix  is a diagonal matrix with the following entries:

 = diag ( (1, ⌧), (1, ⌧), . . . , (n, ⌧))

Here the function  (, ⌧) can be defined as a solution to the following one-
dimensional Riccati equation

d 

d⌧
= 2 2 � 2� +

�(� � 1)

2
2,  (0) = 0. (35)

which can be solved explicitly:

 (, ⌧) =

p
�(
p
� � 1)

2

e2
p
�⌧ � 1

e2
p
�⌧ + !

, ! =
1�

p
�

1 +
p
�
. (36)
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Moreover, the function  has the following properties:

Z
 (, ⌧)d⌧ =

� +
p
�

2
⌧ � 1

2
ln
⇣
e2

p
�⌧ + !

⌘
+ C. (37)

 (, ⌧) +
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2
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p
�)

2

e2
p
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p
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(38)

Proof.
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2
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Hence  equals to

 =
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p
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1� e2
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Lemma D.2. Each element �ij of the matrix � is the following function:

�ij = i

p
�(1�

p
�)

2(e2i

p
�⌧ + !)(e2j

p
�⌧ + !)

⇥

⇥
"
j � i

j + i

⇣
e(j+i)

p
�⌧ � 1

⌘⇣
e(j+i)

p
�⌧ + !

⌘
(39)

+ e2i

p
�⌧
⇣
e(j�i)

p
�⌧ � 1

⌘⇣
e(j�i)

p
�⌧ + !

⌘#

Proof. Di↵erentiating the matrix equation 12 with respect to time t and
taking the limit ⇥! I, we get the following element wise ODEs for the �ij:

�0
ij = �ij (2 ii + 2 jj � � [i + j])� � [i � j]


 ii +

1� �

2
i

�

�ij(0) = 0.

The corresponding homogeneous ODE can be solved explicitly:

ei

p
�⌧+j

p
�⌧

(e2i

p
�⌧ + !)(e2j

p
�⌧ + !)

.
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Thus, the solution of non-homogeneous problem reads

�ij = �� [i � j]
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Lemma D.3. Any diagonal element 'ii of the matrix ' can be defined as a
solution to the following ODE:

'0
ii = �2i

p
�
e2i

p
�⌧ � !

e2i

p
�⌧ + !

'ii + �(1�
p
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Moreover, the following inequalities holds for any i > 0, j > 0, T > 0 and
� > 0:

Z T

0

⇥
'ii(u) +'jj(u)

⇤
du > 0, � > 1, i 6= j

Z T

0

⇥
'ii(u) +'jj(u)

⇤
du ⌘ 0, � = 1 or i = j

Z T

0

⇥
'ii(u) +'jj(u)

⇤
du < 0, 0 < � < 1 i 6= j

Proof. Can be checked by the direct calculations.

E Auxilliary facts about correlation matrices

In this section we use two special types of square symmetric matrices, Imn

and Iuu. These objects are defined as follows: Matrix Imn has zero entries,
except elements with multiindex (mn), these elements are equal to 1:

Imn
ij = 0, 8(ij) 6= (mn), Imn

ij = 1, (ij) = (mn), or (ji) = (mn). (41)

Matrix Imn is a traceless matrix, TrImn = 0. The matrix Iuu has also zero
entries, except only one element on (u, u). This element is equal to 1.

We prove some useful facts about correlation matrix ⇥ and the similarity
transform � = ⇥�1⇥ of the matrix .

Lemma E.1. Correlation matrix ⇥ and its similarity transform � have the
following properties:

1.
@⇥�1

@⇢mn
= �⇥�1 @⇥

@⇢mn
⇥

�1. (42)

2.

lim
⇥!I

@�

@⇢mn
= Imn � Imn. (43)

3.

lim
⇥!I

@2
�

@⇢mn@⇢pq
= Q, Qii = 0, 8i = 1..n. (44)

4.

lim
⇥!I

@2
�

@⇢2mn

= P , P ii = 2I(ij 2 mn) [i � j] (45)
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E.1 Proof of formula (1).

⇥⇥
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@⇢mn
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⇥⇥
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E.2 Proof of formula (2)
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E.3 Proof of formula (3)
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Q = IpqImn+ ImnIpq� ImnIpq � IpqImn

Qii =
nX

s=1

nX

k=1

[Ipq
is I

mn
sk si + Imn

is Ipq
sksi � Imn

is skI
pq
ki � Ipq

isskI
mn
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Qii =
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mn
si ii + Imn

is Ipq
siii � Imn

is ssI
pq
si � Ipq

isssI
mn
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Qii = 0.

Since Imn
is = 0 if Ipq

si = 1 for each s = 1..n and vice versa.

E.4 Proof of formula (4)

P ii = 2
nX

s=1

[Imn
is Imn

si ii � Imn
is ssI

mn
si ] (47)

P ii = 2I(ij 2 mn) [i � j]

37


