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Abstract
Evolutionary Finance explores financial markets as evolving biological systems. Investors
pursuing diverse investment strategies compete for the market capital. Some “survive” and
some “become extinct”. A central goal is to identify strategies guaranteeing survival in
the market selection process. The problem is analyzed in frameworks combining stochastic
dynamic games and evolutionary game theory.Most of themodels currently considered in the
field assume that asset payoffs are exogenous and depend only on the underlying stochastic
process of states of the world. The present work examines a model where the payoffs are
endogenous: they depend on the share of total market wealth invested in the asset.

Keywords Evolutionary finance · Behavioral finance · Stochastic dynamic games · DSGE ·
Capital growth · Survival portfolio rules · Martingales

1 Introduction

Evolutionary Finance (EF) is a rapidly developing research area at the interface of Financial
Economics and Mathematical Finance applying the evolutionary approach to the modeling
of stochastic dynamics of financial markets. The classical theory (Radner 1972, 1982) relies
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upon the hypothesis of full rationality of market players, who are assumed to maximize their
utilities subject to budget constraints, i.e. solve well-defined and precisely stated constrained
optimization problems. EFmodels abandon this hypothesis and permitmarket players to have
patterns of investment behavior determined by their individual psychology, not necessarily
describable in terms of utility maximization.

In EF models asset prices are determined endogenously via a short-run equilibrium of
supply and demand. Dynamic equilibrium is formed consecutively in each time period in
the course of interaction of investment strategies of competing market participants. It is
defined directly via the set of strategies of the market players describing their investment
behavior. An important feature of EF models is that they employ only objectively observable
market data and do not use hidden individual agents’ characteristics, such as their utilities
and beliefs, which makes them amenable for quantitative practical applications (Schnetzer
and Hens 2022).

The main focus of studies in the field is on questions of survival and extinction of invest-
ment strategies in the market selection process. A central goal is to identify those strategies
which survive in this process and/or are evolutionary stable (immune to extinction) in one
sense or another. Typical results show that under very general assumptions, such strategies
exist, are asymptotically unique and in many cases easily computable.

Important contributions to the formation of modern EF as a research area were made in
Anderson et al. (1988), Arthur et al. (1997), Blume and Easley (1992), Bottazzi et al. (2018),
Bottazzi et al. (2005), Bottazzi and Dindo (2014), Brock et al. (2005), Coury and Sciubba
(2012), Farmer (2002), Farmer and Lo (1999), Lo (2004), Lo (2005), Lo (2012), Lo (2017),
Lo et al. (2018), Sciubba (2005), Zhang et al. (2014). A recent general survey on EF is
provided by Holtfort (2019). The modern state of the art in EF is reflected in papers collected
in the special issue of the Proceedings of the National Academy of Sciences of the USA
“EvolutionaryModels of Financial Markets” (Levin and Lo 2021). The Editors’ introduction
to the special issue contains an insightful discussion of conceptual links between EF and
Evolutionary Biology. An elementary textbook treatment of EF can be found in Evstigneev
et al. (2015), Ch. 20.

The model studied in this paper pertains to the family of EF models that has its roots in
the papers by Amir et al. (2011), Amir et al. (2013), which initiated a game-theoretic strand
in the EF literature. The former paper deals with long-lived dividend-paying assets, while
the latter considers short-lived assets. A survey describing the state of the art in this line of
research by 2016 and putting forward a program for further studies was given in Evstigneev
et al. (2016). For recent progress in the field see Evstigneev et al. (2020), Schnetzer and Hens
(2022), Amir et al. (2022), Hens and Naebi (2022), Zhitlukhin (2021), Zhitlukhin (2022),
Zhitlukhin (2023a), Zhitlukhin (2023b), and references therein.

In nearly all EF models considered in the literature, asset payoffs or dividends are given
exogenously and do not depend on the investment strategies of market players. In reality,
however, such a dependence is more of a rule than an exception, see e.g. Tobin (1969), Tobin
and Brainard (1977), Li et al. (2009), and Lintner (1965). At present one of the key general
open problems in EF is to develop game-theoreticmodels of financial markets that would take
into account the endogenous nature of asset payoffs. The first step in this direction was made
in Amir et al. (2021), where a game-theoretic framework for the analysis of markets with
long-lived dividend-paying securities was developed. The main result was a construction of
an evolutionary stable strategy. The notion of evolutionary stability in EF is understood in the
sense of classical evolutionary game theory: Maynard Smith and Price (1973) and Schaffer
(1988).
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The present paper considers a model with short-lived assets and endogenous random
payoffs Ak(ω, μk) of assets k = 1, . . . , K depending on the share μk of total market wealth
invested in asset k. First results regarding models of this kind were obtained in Evstigneev
and Vanaei (2022) and Evstigneev et al. (2023). In the former paper it was discovered (rather
unexpectedly) that in the linear case, when the function Ak(ω, μk) is linear inμk , the problem
of constructing a survival strategy reduces to the classical capital growth theory: Kelly (1956),
Breiman (1961), Algoet and Cover (1988), MacLean et al. (2010), MacLean et al. (2011),
Ziemba (2015), Hakansson and Ziemba (1995) and others. It turned out that one can construct
a survival strategy by maximizing the expected logarithm of the growth rate – the famous
idea of the Kelly portfolio rule (Kelly 1956). A nonlinear case was considered in Evstigneev
et al. (2023), where the existence and uniqueness of an evolutionary stable strategy was
established.

The present paper unifies the models considered in Evstigneev and Vanaei (2022) and
Evstigneev et al. (2023) in the framework with affine asset payoffs Ak(ω, μk) = αk(ω) +
βk(ω)μk . There are threemain results in this work. First, we prove that in ourmodel a survival
strategy exists and construct it in a semi-closed form as a fixed point of some randomoperator.
In contrast to existing literature on survival strategies, where such strategies can be found
explicitly, our construction exhibits a new method which can be applied to models where
explicit solutions are not readily available. Our second result shows that in any strategy profile
the aggregate market strategy of all agents converges to the survival strategy if at least one
agent uses it. As a corollary, this implies that the survival strategy is asymptotically unique
in the class of all basic strategies (those which depend only on the process of states of the
world). The above findings extend previously known facts in this area (see, e.g., Amir et al.
(2013)) to models with endogenous asset payoffs. The third result demonstrates that in an
i.i.d. case a stronger assertion is true: the survival strategy turns out to be constant and in any
strategy profile drives out of the market any other constant strategy, thus becoming a single
survivor. This generalizes the early result in Evstigneev et al. (2002) obtained for an i.i.d.
model with exogenous payoffs.

The paper is organized as follows. In Sect. 2, we describe the model. Section 3 states the
key results. A numerical example is provided in Sect. 4. Section 5 discusses the relation of
our model to other models in the literature. Section 6 contains the proofs of the main results.

2 Themodel

We consider a discrete-time market where K ≥ 2 assets are traded among N ≥ 2 agents. The
assets live for one period and are identically reborn at the beginning of each period. The asset
prices are determined endogenously through a short-run equilibrium of supply and demand.
The supply (the total volume) of each asset is constant and without loss of generality is
normalized to 1. The assets yield payoffs which are distributed among the agents at moments
of time t = 1, 2, . . .

The market is influenced by random factors modeled in terms of a sequence of random
elements s1, s2, . . . with values in a standard measurable space S. The random element st
is interpreted as the “state of the world” at time t . Recall that a measurable space is called
standard if it is isomorphic to the segment [0, 1] or a discrete finite or countable set with the
Borel σ -algebra. This assumption will be needed below to ensure the existence of regular
conditional distributions.
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Agent i = 1, . . . , N in this market is characterized by his/her trading strategy and non-
random wealth wi

0 > 0 (initial endowment) with which this agent enters the market at time
t = 0. The wealth wi

t at time t ≥ 1 is determined by the dynamics described below.
At every moment of time t ≥ 0, each agent chooses investment proportions λit =

(λit,1, . . . , λ
i
t,K ), according to which he/she allocates the available budget (wealth wi

t ) for

purchasing assets at time t , i.e. the budget λit,kw
i
t is allocated by agent i for purchasing asset

k. The investment proportions are selected by the agents simultaneously and independently.
These proportions may depend on the history of states of the world st := (s1, . . . , st ), the
game history λt−1 := (λ0, . . . , λt−1), where λs = (λ1s , . . . , λ

N
s ), and the vector of initial

endowments w0 := (w1
0, . . . , w

N
0 ). A strategy �i of agent i is defined as a sequence of

measurable functions

�i
t (s

t , w0, λ
t−1), t = 0, 1, . . . ,

with values in the unit simplex

�K := {(a1, . . . , aK ) ∈ R
K+ : a1 + . . . + aK = 1}.

The value of �i
t represents the vector of investment proportions λit chosen by agent i at time

t . These proportions are non-negative, i.e. short sales are not allowed. For t = 0, the function
�i

0 = �i
0(w0) does not depend on the history of states of the world and the game history.

A strategy which depends only on the history of states of the worlds but not on the initial
wealth or the game history, i.e. �i

t = �i
t (s

t ), will be called basic. Basic strategies play a
special role in this paper. In particular, the survival strategy which we construct below in
Sect. 3.2 is basic.

Given a vector of initial endowments w0 = (w1
0, . . . , w

N
0 ) and a strategy profile � =

(�1, . . . , �N ), the investment proportions chosen by the agents in this market are defined
by the recursive relation

λi0 = �i
0(w0), λit (s

t ) = �i
t (s

t , w0, λ
t−1(st−1)), t ≥ 1, (1)

whereλt (st ) = (λ0, λ1(s1), . . . , λt (st )). Inwhat follows,wewill omit the argument st where
it does not lead to ambiguity.

By pt = (pt,1, . . . , pt,K ), we will denote the vector of asset prices. The coordinate pt,k
stands for the price of one unit of asset k at time t . We will now define the dynamics of
agents’ wealth wi

t = wi
t (s

t ) and asset prices pt = pt (st ) for a fixed strategy profile � and a
vector of initial endowments w0.

The prices are formed in equilibrium over each time period as follows. The portfolio of
agent i at time t ≥ 0 is specified by a vector xit = (xit,1, . . . , x

i
t,K ), where xit,k is the amount

(the number of units) of asset k in the portfolio. The scalar product 〈pt , xit 〉 = ∑K
k=1 pt,k x

i
t,k

expresses the value of agent i’s portfolio at time t .
At time t = 0, the agents’ budgets are given by their (non-random) initial endowments

wi
0. Let At,k = At,k(st ), k = 1, . . . , K , denote the asset payoffs at time t ≥ 1 per one unit

of asset. Since we assume the supply of each asset is 1, the quantity At,k represents the total
payoff of asset k. Agent i’s budget (wealth) at time t ≥ 1 is given by

wi
t = 〈At , x

i
t−1〉 =

K∑

k=1

At,k x
i
t−1,k, (2)

i.e. it is constituted of the payoff of the portfolio xit−1 that was purchased at time t − 1.
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If agent i allocates a fraction λit,k of his/her wealth for purchasing asset k at time t , then
the number of units of this asset that can be bought is

xit,k = λit,kw
i
t

pt,k
. (3)

Assume that the market is always in equilibrium: the total asset supply is equal to the total
demand (recall that the former is normalized to 1). This implies that for all t ≥ 0 and
k = 1, . . . , K we have

1 =
N∑

i=1

xit,k =
N∑

i=1

λit,kw
i
t

pt,k
,

and, consequently, the equilibrium (market clearing) asset prices are given by

pt,k =
N∑

i=1

λit,kw
i
t . (4)

Formulas (2)–(3) make sense only if the asset prices pt,k defined by (4) are non-zero. In
view of that, we shall say that a strategy profile and agents’ initial endowments are admissible,
if pt,k > 0 for all t and k. Further results will be obtained only for admissible strategy profiles
and vectors of initial endowments.

Given an admissible strategy profile and a vector of initial endowments we can, by
using equations (2)–(4), generate recursively the random path of the system specified by
the sequences of variables wi

t (agents’ wealth), pt = (pt,1, . . . , pt,K ) (vectors of equilib-
rium asset prices) and xit = (xit,1, . . . , x

i
t,K ) (agents’ portfolios). In particular, the sequences

wi
t follow the dynamics

wi
t+1 =

K∑

k=1

λit,kw
i
t

∑N
j=1 λ

j
t,kw

j
t

At+1,k . (5)

We assume that the asset payoffs At,k are endogenous in the sense that they may depend
on the agents’ strategies. In the remaining part of the paper, we will deal with the following
particular form of the payoffs, which we call affine payoffs.

LetWt denote the total market wealth at time t , and wt,k denote the total wealth allocated
by all agents for purchasing asset k at time t :

Wt =
N∑

i=1

wi
t , wt,k =

N∑

i=1

λit,kw
i
t .

Denote by μt,k the fraction of market wealth allocated for purchasing asset k:

μt,k = wt,k

Wt
.

Note thatμt,k essentially represent theweighted strategy of the agents, with theweights being
equal to their market shares wi

t /Wt (cf. the notion of the market portfolio in Markowitz’s
mean-variance portfolio analysis).

We will assume that the asset payoffs are affine functions of μt,k of the form

At+1,k = (αt+1,k + βt+1,kμt,k)Zt+1, (6)
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where αt+1,k = αt+1,k(st+1) and βt+1,k = βt+1,k(st+1) are non-negative random variables,
and Zt+1 = zt+1(st+1, wt,1, . . . , wt,K ) with some measurable function zt+1.

Relation (6) means that the asset payoffs At+1,k at the next moment of time t + 1 may
depend on random factors as well as on the investment proportions λt (through the fractions
μt,k) chosen by the agents at time t . Multiplication by Zt+1 expresses the idea that the payoffs
may scale proportionally to the amount of capital allocated to the assets.

Thus, from relations (2)–(6), one can see that the wealth of an agent evolves according to
the following dynamics:

w1
t+1 = wi

t Zt+1

K∑

k=1

λit,k

(
αt+1,k

∑N
j=1 λ

j
t,kw

j
t

+ βt+1,k
∑N

j=1 w
j
t

)

. (7)

Observe that the relative wealth (market share) wi
t /Wt , which will play the key role in what

follows, does not depend on the choice of the scaling factors Zt .
In what follows, to avoid a degenerate model, we will assume that for all t ≥ 1 and any

values of st , wt−1,1, . . . , wt−1,K it holds that

K∑

k=1

(αt,k(s
t ) + βt,k(s

t )) > 0, zt (s
t , wt−1,1, . . . , wt−1,K ) > 0. (8)

In particular, one can see that if the above condition holds, then a sufficient condition for
admissibility of a strategy profile is that there is an agent who uses a strictly diversified
strategy, i.e. λit,k > 0 for some i and all t, k.

3 Main results

3.1 Definitions

Wewill be interested in the behavior of the relative wealth or themarket shares of the agents,
which are defined by

r it := wi
t

Wt
.

The following definitions introduce the two main concepts of the paper. Hereinafter, “a.s.”
means “almost surely”, i.e. holding with probability 1.

Definition 1 We call a strategy �i of agent i survival, if for any (admissible) vector of initial
endowments w0 and strategy profile � = (�1, . . . , �N ) consisting of the given strategy �i

and arbitrary strategies � j of agents j �= i , it holds that wi
t > 0 a.s. for all t ≥ 0 and

inf
t≥0

r it > 0 a.s.

According to this definition, a survival strategy allows an agent to keep a.s. a strictly
positive (bounded away from zero) share of market wealth over an infinite time horizon
irrespective of strategies used by the other agents.

A comment is in order. One might think that the focus on survival substantially restricts
the scope of the analysis, since one should care about survival only if “things go wrong”. It
turns out, however, that the class of survival strategies in most of the evolutionary finance
models coincides with the class of unbeatable strategies performing asymptotically no worse
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(or, even, strictly better) in terms of wealth accumulation than any other strategies competing
in the market. Namely, as follows from the above definition, if agent i uses a survival strategy,
then for the wealth of any other agent j it holds that w

j
t ≤ Cwi

t for all t ≥ 0, where C is a
random variable. This property expresses the fact that the wealth of any agent cannot grow
asymptotically faster than the wealth of an agent who uses a survival strategy. Moreover, as
we show in Sect. 3.3, under some additional conditions, a survival strategy actually outper-
forms asymptotically any other strategy in the market. For further details on the concept of
unbeatable strategies, we refer to Section 6 in Amir et al. (2013) and Amir et al. (2023).

In order to find a survival strategy we will look for a relatively growth-optimal strategy,
the concept of which is introduced in the next definition. To state it, recall that a random
sequence ξt , which is adapted to the filtration generated by the state process st , is called a
submartingale if E|ξt | < ∞ and Etξt+1 ≥ ξt a.s. for all t ≥ 0, where Et (·) = E(· | st )
denotes the conditional expectation given st = (s1, . . . , st ). For t = 0, put E0(·) = E(·).
Definition 2 We call a strategy �i relatively growth-optimal, if for any (admissible) vector
of initial endowments w0 and strategy profile � = (�1, . . . , �N ), where �i is the given
strategy, it holds that wi

t > 0 a.s. for all t ≥ 0 and

ln r it is a submartingale. (9)

This concept is similar to the notion of a growth-optimal (or log-optimal) strategy in the
classical capital growth theory for markets with exogenous asset prices, which explains the
terminology. Recall that in this theory a strategy is called growth-optimal if no competing
strategy can improve the expected logarithmic wealth relative to it (see, e.g., Algoet and
Cover (1988)). Note that, however, in our model we focus on the relative wealth of an agent.
Moreover, the relativewealth of an agent (aswell as the absolutewealth) in ourmodel depends
also on the strategies of other agents, so the problem of constructing a relative growth-optimal
strategy does not simply reduce to an optimization problem.

Proposition 1 Any relatively growth-optimal strategy is a survival strategy.

Proof A non-positive submartingale has a finite limit with probability 1 as t → ∞; see,
e.g., ((Shiryaev, 2019), Ch. 7.4). Hence, if �i is a relatively growth-optimal strategy, then
limt→∞ ln r it is finite, which implies inf t≥0 r it > 0.

3.2 Construction of a relatively growth-optimal strategy

For t ≥ 1, define the �K -valued functions gt (λ, st ), λ ∈ �K , by

gt,k(λ, st ) = αt,k(s
t ) + λkβt,k(s

t ).

Let Pt (·) = P( · | st ) and Et (·) = E( · | st ) denote the conditional probability and
conditional expectation given st (where P0(·) = P(·), E0(·) = E(·)). Introduce the functions
Lt = Lt (λ, st ), t ≥ 0, with values in �K defined by

Lt,k(λ, st ) = Et

(
gt+1,k(λ, st+1)

∑K
j=1 gt+1, j (λ, st+1)

)

.

We will assume that the conditional probabilities Pt (·) and expectations Et (·) are computed
with respect to some fixed variant of the regular conditional distribution of st+1, which
implies that the functions Lt,k are jointly measurable with respect to their arguments. For
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t = 0, the function L0 = L0(λ) does not depend on the random state. The existence of
the regular conditional distribution of st+1 follows from the assumption that the measurable
space S of possible states of the world is standard (for details, see, e.g., Appendix 2 in Arkin
and Evstigneev (1987)).

In what follows, to alleviate notation, we will omit the arguments st and st+1. In par-
ticular, if �t = �t (st ) is a random function, then gt+1(�t ) and Lt (�t ) will stand for
gt+1(�(st ), st+1) and Lt (�t (st ), st ), respectively.

Proposition 2 For each t ≥ 0, there exists a measurable function �∗
t (s

t ) with values in �K

which has the following properties:

(a) it holds that

K∑

j=1

gt+1, j (�
∗
t ) > 0 a.s., (10)

Et

(
βt+1,k

∑K
j=1 gt+1, j (�

∗
t )

)

≤ 1 a.s., k = 1, . . . , K , (11)

(b) �∗
t is a fixed point of Lt , i.e.

Lt (�
∗
t ) = �∗

t a.s., (12)

where for t = 0, we assume that �∗
0 is non-random.

The next theorem is the first main result of the paper.

Theorem 1 A strategy �∗ = (�∗
t )

∞
t=0 which consists of functions satisfying properties (10)–

(12) is relatively growth-optimal, and, consequently, survival.

Note that such a relatively growth-optimal strategy �∗ belongs to the class of basic
strategies. Also observe that the functions zt (see (6)) do not affect the form of �∗.

The idea of constructing a survival strategy as a fixed point of a random operator first
appeared in the paper of Evstigneev et al. (2023). That paper considered a more general
model, in which asset payoffs depend in a concave way on the fractions of market wealth
allocated to the assets; however only local stability of a certain (constant) strategywas proved.
In the case of i.i.d. affine payoffs, the strategy of Evstigneev et al. (2023) coincides with our
strategy �∗, and the above proposition and theorem extend that construction to the non-i.i.d.
case.

Theorem 1 does not provide a numerical algorithm for computing a survival strategy �∗.
The problem of developing such algorithms might constitute an interesting topic for further
research. It should be noted that in all the EF models with exogenous asset payoffs that have
been considered up to now, it was possible to indicate efficient procedures for constructing
�∗.

Remark 1 Let us make some comments regarding properties (10)–(12).
(a) As can be seen from the proof of Theorem 1, the main role in establishing the relative

growth optimality of �∗ is played by (12). Property (11) is needed to identify a “good” fixed
point of Lt (see relations (28)–(29) in the proof of Theorem 1). Property (10) just ensures
that the denominator in (11) is non-zero.

One can see that if a strategy �∗ satisfies (10) and (12), then a simple sufficient condition
for the validity of (11) is that for each t ≥ 0

Pt (αt+1,k > 0) > 0 a.s., k = 1, . . . , K
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(this condition will be used below in Theorem 3 and in the example in Sect. 4). Indeed, in
this case (11) is true since Lt,k(λ

∗, st ) > 0 for any λ∗ ∈ �K , which implies �∗
t,k > 0 and

therefore

Et

(
βt+1,k

∑K
j=1 gt+1, j (�

∗
t )

)

≤ Lt,k(�
∗
t )

�∗
t,k

= 1.

Here, the inequality is obtained bymultiplying the numerator anddenominator in the left-hand
side by �∗

t,k and then adding αt+1,k to the numerator.
Finally, note that if the payoff coefficients αt,k are strictly positive a.s., then any function

�∗
t obviously satisfies (10).
(b) Functions �∗

t satisfying (10)–(12) are, in general, not unique. Theorem 1 states that
any sequence of them constitutes a relatively growth-optimal strategy.

A simple example of the non-uniqueness of a relatively growth-optimal strategy is as
follows. Assume that αt,k ≡ 0, βt,k ≡ 1 and Zt+1 = Wt for all t, k. It is easy to see that
equation (5) in this case readswi

t+1 = wi
t . Consequently, the agents’ wealth remain the same

no matter what strategies they use.
Note that under additional assumptions on the payoff coefficients αt,k , βt,k , it is possible

to show that the functions satisfying (10)–(12) are unique. Related details can be found in
Evstigneev et al. (2023).

3.3 A relatively growth-optimal strategy determines the aggregatemarket behavior

As was mentioned above, the fractions μt,k can be thought of as the weighted strategy of
the market agents (or the market portfolio). Our next result shows that, under an additional
assumption, if at least one agent uses a relatively growth-optimal strategy, thenμt,k approach
this strategy in the limit as t → ∞ with probability 1.

Theorem 2 Suppose a strategy �∗ satisfies conditions (10), (12), and the following stronger
version of condition (11): there exists ε > 0 such that for any t ≥ 0 it holds that

Et

(
βt+1,k

∑K
j=1 gt+1, j (�

∗
t )

)

≤ 1 − ε a.s., k = 1, . . . , K . (13)

Then, if in a strategy profile � = (�1, . . . , �N ) agent i uses the strategy �∗, it holds that
∞∑

t=1

‖λit − μt‖2 < ∞ a.s., (14)

where λit = λit (s
t ) and μt = μt (st ) denote, respectively, the realization of the strategy of

agent i and the realization of the weighted strategy of all agents in this strategy profile (see
(1)). In particular, ‖λit − μt‖ → 0 as t → ∞.

A sufficient condition for the validity of (13) is that all βt,k are uniformly bounded from
above and αt,k are uniformly bounded away from zero.

The above theorem implies that �∗ is an asymptotically unique survival strategy in the
class of basic strategies: any other basic survival strategy approaches it as t → ∞ in the
sense of (14).

In an i.i.d. case, we can also prove that �∗ turns out to be a unique survival strategy in the
class of all constant strategies (under mild additional assumptions). This is our third main
result.
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Theorem 3 Suppose that the sequence of states of the world st , t ≥ 1, consists of i.i.d.
random elements and the payoff coefficientαt,k , βt,k do not depend on time, i.e.αt,k = αk(st ),
βt,k = βk(st ). Then the following claims hold true.

(a) There exists a constant relatively growth-optimal strategy �∗
t ≡ �∗ ∈ �K .

(b) Assume that

P(αk > 0) > 0 for each k = 1, . . . , K . (15)

Then the strategy �∗ is a unique survival strategy in the class of all constant strategies
and �∗

k > 0, k = 1, . . . , K. Moreover, �∗ satisfies (13). In particular, in any strategy
profile � = (�1, . . . , �N ), in which some agent uses the strategy �∗, it holds that
μt → �∗ with probability 1 as t → ∞.

(c) Assume that, in addition to (15), it holds that the random variablesαk+βk�
∗
k are linearly

independent, i.e. if
∑K

k=1 ck(αk + βk�
∗
k) = 0 a.s. for some constants ck , then ck = 0 for

all k = 1, . . . , K.

Then in any strategy profile in which some agent uses the strategy �∗ and other agents
use constant strategies with strictly positive components (�i

k > 0 for all i, k), it holds that
r it → 0 a.s. as t → ∞ for any agent i who uses a strategy �i �= �∗.

Remark 2 The assumption of linear independence of the random variables αk + βk�
∗
k can

be interpreted as the absence of redundant assets when the weighted strategy coincides with
�∗: one cannot construct a “synthetic asset”, a portfolio with fixed weights consisting of
assets j �= k, that yields the same payoffs as a given asset k.

4 A numerical example

Let us illustrate the main results of the paper with simulations and consider the following
simple model, in which only two assets are traded. Assume the random states of the world
are modeled by a sequence of i.i.d. random vectors st = (s1t , s

2
t ) with values in the set

{(1, 0), (0, 1), (1, 1)} and symmetric joint distribution

P(st = (1, 0)) = P(st = (0, 1)) = 1 − p, P(st = (1, 1)) = 2p − 1,

where 1/2 ≤ p < 1 is a parameter. Assume the payoff coefficients do not depend on time
and are given by

αk(st ) = βk(st ) = I(skt = 1), k = 1, 2, Zt = 1.

Thus, the payoff of each asset at time t + 1 is either 1 + μt,k with probability p or 0 with
probability 1 − p. With probability 2p − 1, both of the assets yield payoffs simultaneously.

By symmetry, the relatively growth-optimal strategy in thismodel is�∗ = (1/2, 1/2); it is
not difficult to check that it indeed satisfies the conditions of Proposition 2. By Theorem 3(b),
it is a unique constant survival strategy. Note that it also satisfies the condition of part (c) of
Theorem 3, i.e. αk/�

∗
k + βk are linearly independent random variables.

Let us place�∗ in amarket environment. As an example, consider amarket which consists
of 9 agents who use the constant strategies �i = (i/10, 1 − i/10), where i = 1, 2, . . . , 9.
In particular, agent i = 5 uses the strategy �∗. We do not include the strategies �0 = (0, 1)
and �10 = (1, 0) since their wealth vanishes in a finite number of time periods.

Figure 1 shows the evolution of the agents’ wealth in one simulation of this market over
400 time periods with parameter p = 2/3. The first graph displays the relative wealth r it of
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Fig. 1 Evolution of agents’ wealth in one simulation of the model. Top left: the relative wealth of each strategy
�i = (i/10, 1 − i/10). Top right: the relative wealth of the relatively growth-optimal strategy �∗. Bottom:
the fraction of the total market wealth invested in the first asset μt,1

each agent, with r it corresponding to the width of the corresponding colored area at time t .
The second graph shows the relative wealth of the relatively growth-optimal strategy. As can
be seen from these two graphs, the relatively growth-optimal strategy eventually dominates
the market and its relative wealth converges to 1, as proved in Theorem 3(c). The third graph
shows the fraction of the total market wealth invested in asset 1, i.e.μt,1 (the fraction invested
in the second asset is obviouslyμt,2 = 1−μt,1), which, as expected, converges to�∗

1 = 1/2.
To show the convergence of the fractions μt,k to �∗, in Figure 2 we present multiple

simulated trajectories of the sequence μt,1 for the three different parameters p = 1/2,
p = 3/4, p = 19/20.

5 Relation to existingmodels

To demonstrate the generality of our model, let us show how known results on log-optimal
and survival strategies can be derived from it.

In the first part of this section, we will consider the evolutionary finance model with short-
lived assets of Amir et al. (2013), in which the asset payoffs At,k are exogenous, i.e. depend
only on the random states st , but not on the agents’ strategies. In the second part, we will
consider the classical model of an asset market with exogenous asset prices, in which agents’
actions do not affect the asset prices and the wealth of other agents.

5.1 The evolutionary financemodel with exogenous asset payoffs

Suppose in our model βt,k = 0, Zt = 1. Then equation (5) describing the wealth dynamics
reads
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Fig. 2 Trajectories of the fraction of the total market wealth invested in the first asset μt,1 for different value
of the probability p. Each graph contains 100 simulated trajectories

wi
t+1 =

K∑

k=1

λit,kw
i
t

∑K
j=1 λ

j
t,kw

j
t

αt+1,k .

If at least one agent uses a strictly diversified strategy (λ j
t,k > 0 for all k = 1, . . . , K ), then

the wealth of this agent remains positive in view of (8), the denominator in the above formula
does not vanish, and the total market wealth satisfies the relation

Wt+1 =
K∑

k=1

αt+1,k .

As a result, the relative wealth of agents has the dynamics

r it =
K∑

k=1

λit,kw
i
t

∑K
j=1 λ

j
t,kw

j
t

Rt+1,k,

where Rt+1,k := αt+1,k/
∑K

j=1 αt+1, j are the relative payoffs of the assets. The unique
strategy which satisfies conditions (10)–(12) of Proposition 2 is

�∗
t,k = Et Rt+1,k,

i.e. it allocates the current available investment budget among the assets proportionally to
the conditional expectations of their relative payoffs. The survival property of this strategy
was first established by Amir et al. (2013). Further generalizations can be found in Drokin
and Zhitlukhin (2020) and Zhitlukhin (2023b).
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5.2 The classical model with exogenous asset prices

Let us now consider a market with exogenous asset prices St,k(st ) > 0, as in the standard
textbook model without short sales (see, e.g., ((Föllmer & Schied, 2011), Ch. 5). The goal of
this example is to show that such a market model is a particular case of our model, while the
relatively growth-optimal strategy constructed in Theorem 1 maximizes the expected loga-
rithm of an agent’s wealth or, equivalently, the logarithmic return of portfolio. In particular,
this provides a new characterization of an expected log-wealth maximizing strategy as a fixed
point of the mapping defined in (12).

Denote by Xt+1,k = St+1,k/St,k the asset returns. Then the evolution of wealth wt of an
agent who uses a strategy � = �t (st ) is specified by the relation

wt+1 = wt 〈�t , Xt+1〉,
where 〈 · , · 〉 denotes the scalar product. This model can be obtained from our model if in
Eq. (6) we put

αt+1,k = 0, βt+1,k = Xt+1,k, Zt+1 = Wt (16)

and assume that all the agents use the same strategy.
Recall that a log-optimal strategy �∗ = �∗

t (s
t ) in the classical capital growth theory is a

strategy which maximizes the expected log-return of a portfolio in each time period, i.e.

�∗
t ∈ argmax

λ∈�K
Et ln〈λ, Xt+1〉. (17)

Such a strategy is often referred to as theKelly portfolio rule. Although the above optimization
problem may not have a solution when the log-returns are not integrable, if we introduce the
relative returns

Rt,k = Xt,k
∑K

j=1 Xt, j
, k = 1, . . . , K ,

then it is not difficult to show that a log-optimal strategy can be characterized as a solution
of the maximization problem for the logarithms of relative returns

�∗
t ∈ argmax

λ∈�K
Et ln〈λ, Rt+1〉. (18)

Namely, problem (18) always has a solution and if (17) has at least one solution, then the
sets of solutions of (17) and (18) coincide.

Let us investigate the relation between relatively growth-optimal strategies, which satisfy
conditions (10)–(12) in our model, and the classical notion of a log-optimal strategy (18).
Observe that condition (10) is satisfied by any strategy, since it is equivalent to that

wt 〈�∗
t , Xt+1〉 > 0,

which holds because Xt+1,k > 0. Conditions (11) and (12) are equivalent to, respectively,

Et

(
Rt+1,k

〈�∗
t , Rt+1〉

)

≤ 1, (19)

Et

(
�∗

t,k Rt+1,k

〈�∗
t , Rt+1〉

)

= �∗
t,k . (20)

It is easy to see that (19) implies (20). Indeed, multiplying the both sides of (19) by �∗
t,k , we

get the inequality Et (�
∗
t,k Rt+1,k〈�∗

t , Rt+1〉−1) ≤ �∗
t,k , which must actually be an equality
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with probability 1, since otherwise, by taking the sum of the both sides over k = 1, . . . , K ,
we would get the contradiction 1 < 1 with positive probability.

Thus, in the particular case of our model under consideration, conditions (10)–(12) are
equivalent to (19).

Proposition 3 A strategy �∗ = �∗
t (s

t ) satisfies conditions (10)–(12) of Proposition 2 (or,
equivalently, condition (19)) if and only if it is a (measurable) solution of maximization
problem (18).

Proof If a strategy �∗ satisfies condition (19), then for any other strategy � = �t (st ) we
have

Et ln〈�t , Rt+1〉 − Et ln〈�∗
t , Rt+1〉 = Et ln

( 〈�t , Rt+1〉
〈�∗

t , Rt+1〉
)

≤
〈

�t , Et

(
Rt+1

〈�∗
t , Rt+1〉

)〉

− 1 ≤
K∑

k=1

�t,k − 1 = 0,

where the first inequality holds because ln x ≤ x − 1.
On the other hand, if a strategy �∗

t solves problem (18), then it is known (see (Algoet &
Cover, 1988), Th. 1) that for any other strategy �

Et
〈�t , Rt+1〉
〈�∗

t , Rt+1〉 ≤ 1.

Taking �t = (0, . . . , 0, 1, 0, . . . , 0), we obtain (19).

6 Proofs of themain results

6.1 Auxiliary results

This section contains several simple lemmas needed to prove the main results.

Lemma 1 Let C ⊂ R
K be a compact set and (�,F) be a measurable space. Suppose a

function L(x, ω) : C × � → C is continuous in x and measurable in ω. Then L has a
measurable fixed point ξ(ω), i.e. L(ξ(ω), ω) = ξ(ω) for all ω ∈ �.

This result follows from Brouwer’s fixed point theorem and Aumann’s measurable
selection theorem (see, e.g., (Castaing & Valadier, 1977), Theorem III.22).

Lemma 2 Let Ln(ω), n = 1, 2, . . . , be a sequence of measurable functions on a measurable
space (�,F) with values in a compact set C ⊂ R

K . Then there exists a measurable function
L∗(ω) and a strictly increasing sequence of integer-valued measurable functions ni (ω) ≥ 1,
i = 1, 2, . . . , such that limi→∞ Lni (ω)(ω) = L∗(ω) for any ω.

The above lemma follows from Lemma 2.1.2 in Kabanov and Safarian (2009). The next
lemma generalizes the Gibbs inequality. It will play a key role in the proof of Theorem 1. By
‖ · ‖ we will denote the Euclidean norm.

Lemma 3 Suppose x, y ∈ R
K+ are two vectors such that

∑K
k=1 xk ≤ 1,

∑K
k=1 yk ≤ 1, and

for each k = 1, . . . , K it holds that if yk = 0, then xk = 0. Then

K∑

k=1

xk ln
xk
yk

≥ ‖x − y‖2
4

+
K∑

k=1

(xk − yk), (21)

123



Annals of Operations Research

where we define xk ln
xk
yk

= 0 if xk = 0 or both xk = 0 and yk = 0.

Proof Using that ln a ≤ 2(
√
a − 1), we obtain

K∑

k=1

xk ln
xk
yk

= −
∑

k : xk �=0

xk ln
yk
xk

≥ 2
K∑

k=1

(xk − √
xk yk)

=
K∑

k=1

(
√
xk − √

yk)
2 +

K∑

k=1

(xk − yk).

Applying the inequality (
√
xk −√

yk)
2 ≥ (xk − yk)2/4, which is true for any xk, yk ∈ [0, 1],

we obtain (21).

The final lemma in this section is a simple result from the theory of martingales.

Lemma 4 Let ζt = ζt (st ), t = 0, 1, . . . , be a random sequence (ζ0 is constant) which is
uniformly bounded from above (i.e. ζt ≤ c a.s. for all t and some constant c) and Et−1ζt ≥
ζt−1 a.s. for all t ≥ 1. Then E|ζt | < ∞, so ζt is a submartingale.

Proof We have Et−1ζ
−
t ≤ Et−1ζ

+
t − ζt−1 ≤ c− ζt−1, and, consequently, Eζ−

t ≤ c−Eζt−1.
From this relation, the claimed result follows by induction.

6.2 Proof of Proposition 2

Fix t ≥ 0. Define �K -valued functions gnt (λ
∗, st ) and Ln

t (λ
∗, st ), n = 1, 2, . . . , by

gnt,k = gt,k + 1

n
,

Ln
t,k(λ

∗, st ) = Et

(
gnt+1,k(λ

∗, st+1)
∑K

j=1 g
n
t+1, j (λ

∗, st+1)

)

.

By treating Et (·) as the conditional expectation with respect to a fixed variant of the regular
conditional distribution of st+1, we can assume that the functions Ln

t are continuous in
λ∗ ∈ �K and measurable in st . Hence by Lemma 1 they have measurable fixed points
�n

t = �n
t (s

t ), i.e. for any st it holds that

Ln
t (�

n
t (s

t )) = �n
t . (22)

Let

δnt,k = Et

(
βt+1,k

∑K
j=1 g

n
t+1, j (�

n
t )

)

.

Observe that

δnt,k ≤ 1, k = 1, . . . , K , (23)

since

(1 − δnt,k)�
n
t,k = Et

(
αt+1,k + 1/n

∑K
j=1 g

n
t+1, j (�

n
t )

)

> 0.
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By Lemma 2, it is possible to find an increasing sequence ni = ni (st ), i = 1, 2, . . . , such
that there exists the limit

�∗
t = lim

i→∞ �
ni
t .

Now by passing to the limit i → ∞ and ni → ∞ in (23) using Fatou’s lemma and taking into
account assumption (8), one can see that (10) holds. Then, by the dominated convergence
theorem, we obtain (11) from (23), and (12) from (22).

6.3 Proof of Theorem 1

Fix an admissible vector of initial endowments and a strategy profile in which one agent uses
the strategy �∗. Without loss of generality, assume that �∗ is used by agent 1.

Define (omitting the argument st for brevity)

θt,k = λ1t,k

μt,k
.

Then equation (5) defining the wealth dynamics can be written as

w1
t+1 = r1t

K∑

k=1

θt,k At+1,k = r1t

K∑

k=1

(θt,kαt+1,k + λ1t,kβt+1,k)Zt+1.

From (12), we see that if Pt (αt+1,k + βt+1,k = 0)(st ) = 1, then �∗
t,k(s

t ) = 0. This and

assumption (8) implies thatw1
t+1 > 0. Therefore, the totalmarket wealth satisfies the relation

Wt+1 =
K∑

k=1

At+1,k =
K∑

k=1

(αt+1,k + μt,kβt+1,k)Zt+1.

From the above two relations, we find

ln r1t+1 − ln r1t = ln

(∑K
k=1(θt,kαt+1,k + λ1t,kβt+1,k)

∑K
j=1(αt+1, j + μt, jβt+1, j )

)

. (24)

Consequently, we can represent

Et ln r
1
r+1 − ln r1t = Et (Ft+1 + Gt+1),

where

Ft+1 = ln

(∑K
k=1(θt,kαt+1,k + λ1t,kβt+1,k)

∑K
j=1(αt+1, j + λ1t, jβt+1, j )

)

, (25)

Gt+1 = ln

( ∑K
k=1(αt+1,k + λ1t,kβt+1,k)

∑K
j=1(αt+1, j + μt, jβt+1, j )

)

. (26)

Let us show that Et (Ft+1 + Gt+1) ≥ 0. Consider the argument of the logarithm in (25) as
the convex combination of the values

θt,1, . . . , θt,K , 1
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with the coefficients

αt+1,k
∑K

j=1(αt+1, j + λ1t, jβt+1, j )
, k = 1, . . . , K ,

∑K
k=1 λ1t,kβt+1,k

∑K
j=1(αt+1, j + λ1t, jβt+1, j )

.

By the concavity of the logarithm, we obtain

Ft+1 ≥
K∑

k=1

αt+1,k
∑K

j=1(αt+1, j + λ1t, jβt+1, j )
ln θt,k . (27)

Let

γt,k = 1 − Et

(
βt+1,k

∑K
j=1(αt+1, j + λ1t, jβt+1, j )

)

, k = 1, . . . , K . (28)

By (11), we have γt,k ∈ [0, 1], and from (12) it follows that

γt,kλ
1
t,k = Et

(
αt+1,k

∑K
j=1(αt+1, j + λ1t, jβt+1, j )

)

. (29)

Taking the expectation in (27), we find

Et Ft+1 ≥
K∑

k=1

γt,kλ
1
t,k ln θt,k =

K∑

k=1

γt,kλ
1
t,k ln

γt,kλ
1
t,k

γt,kμt,k

≥ 1

4

K∑

k=1

(γt,k(λ
1
t,k − μt,k))

2 +
K∑

k=1

γt,k(λ
1
t,k − μt,k), (30)

where in the second inequality we applied Lemma 3 to the vectors x, y with coordinates

xk = γt,kλ
1
t,k, yk = γt,kμt,k .

Observe that the conditions of the lemma
∑K

k=1 xk ≤ 1,
∑K

k=1 yk ≤ 1 are met because the
vectors λ1t and μt have this property and γt,k ∈ [0, 1].

In order to bound EtGt+1, by using the inequality ln a ≥ 1 − a−1, we find

EtGt+1 ≥ Et

( ∑K
k=1(λ

1
t,k − μt,k)βt+1,k

∑K
j=1(αt+1, j + λ1t, jβt+1, j )

)

=
K∑

k=1

(1 − γt,k)(λ
1
t,k − μt,k) =

K∑

k=1

γt,k(μt,k − λ1t,k), (31)

where the last equality holds because
∑K

k=1 λ1t,k = ∑K
k=1 μt,k = 1.

From (30) and (31), we obtain

Et (Ft+1 + Gt+1) ≥ 1

4

K∑

k=1

(γt,k(λ
1
t,k − μt,k))

2, (32)

so Et (Ft+1 + Gt+1) ≥ 0. By Lemma 4, we conclude that ln r1t is a submartingale.
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6.4 Proof of Theorem 2

Assume that the strategy�∗ is used by agent 1. In the course of proof of Theorem 1, we have
shown that ζt := ln r1t is a submartingale. By Doob’s decomposition, it can be represented as
ζt = ζ0 + Mt + At , where Mt is a martingale, At is a predictable non-decreasing sequence
(the compensator of ζt ), and M0 = A0 = 0. Since ζt has a finite limit as t → ∞, the
compensator converges as well, i.e. limt→∞ At < ∞ a.s. Inequality (32) implies that

At :=
t−1∑

u=0

(Euζu+1 − ζu) ≥ 1

4

t−1∑

u=0

K∑

k=1

(γu,k(λ
1
u,k − μu,k))

2.

From condition (13) and relation (28), it follows that γt,k ≥ ε > 0. Then relation (14) follows
from the convergence of At . This proves the first claim of the theorem.

In order to see that inequality (13) holds if βt,k are uniformly bounded from above and
αt,k are uniformly bounded away from zero, observe that in this case the right-hand side of
(29) is uniformly bounded away from zero. Consequently, γt,k are also uniformly bounded
away from zero, which implies (13).

6.5 Proof of Theorem 3

(a) The existence of a constant strategy satisfying conditions (10)–(12), and hence being a
relatively growth-optimal strategy, easily follows from inspecting the proof of Proposition 2.

(b) Suppose (15) holds. Let

γk = 1 − E

(
βk

∑K
j=1(α j + �∗

kβ j )

)

, k = 1, . . . , K . (33)

Then (12) implies (cf. (28)–(29))

γk�
∗
k = E

(
αk

∑K
j=1(α j + �∗

jβ j )

)

, (34)

hence γk�
∗
k > 0, so γk > 0, which means that condition (13) is satisfied. From Theorem 2,

we obtain the convergence μt → �∗.
If �̃ ∈ �K is another constant survival strategy, then it must survive in the strategy

profile (�̃,�∗, . . . , �∗). This means inf t≥0 r1t > 0 a.s. But then the convergence μt =
r1t �̃ + (1 − r1t )�∗ → �∗ takes place only if �̃ = �∗. Hence, �∗ is a unique survival
strategy.

(c) Consider a strategy profile in which some agent, say agent 1, uses the strategy �∗.
Let agent i use a constant strategy �i �= �∗. To prove the theorem, we need to show that
r1t /r it → ∞ with probability 1 as t → ∞. For this end, we will show that

lim inf
t→∞ t−1 ln

r1t
r it

> 0. (35)

From equation (24) in the proof of Theorem 1, it follows that

Dt+1 := ln
r1t+1

r it+1

− ln
r1t
r it

= ln

(∑K
k=1(θ

1
t,kαt+1,k + �∗

kβt+1,k)
∑K

k=1(θ
i
t,kαt+1,k + �i

kβt+1,k)

)

,
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where in the model under consideration αt,k = αk(st ), βt,k = βk(st ), and θ1t,k = �∗
k/μt,k ,

θ it,k = �i
k/μt,k . Then we have

t−1 ln
r1t
r it

= t−1 ln
r10
r i0

+ t−1
t−1∑

u=0

Eu Du+1 + t−1
t−1∑

u=0

(Du+1 − Eu Du+1).

It is easy to see that the sequence Dt is uniformly bounded:

1

c
≤ Dt < c,

where c = maxi,k �i
k/mini,k �i

k . Then from the SLLN for martingales, we have ξt :=
t−1 ∑t−1

u=0(Du+1 − Eu Du+1) → 0 a.s. Thus, to establish (35), it will be sufficient to show
that there exists ε > 0 and a random time τ such that for t ≥ τ it holds that

Et Dt+1 ≥ ε. (36)

By Theorem 1, we have μt,k → �∗
k , so θ1t,k → 1 and θ it,k → �i

k/�
∗
k . Consequently, with

probability 1 we have

lim
t→∞Et Dt+1 = E ln

( ∑K
k=1(αk + �∗

kβk)
∑K

k=1(�
i
kαk/�

∗
k + �i

kβk)

)

=: E ln ζ.

Then, in order to prove (36), we need to show that E ln ζ > 0, or equivalently E ln ζ−1 < 0.
In view of the strict concavity of the logarithm and Jensen’s inequality, it is enough to show
that Eζ−1 = 1 and ζ is not constant a.s. To prove the former, use relations (33) and (34),
which yield

Eζ−1 = E

(∑K
k=1(�

i
kαk/�

∗
k + �i

kβk)
∑K

k=1(αk + �∗
kβk)

)

=
K∑

k=1

(γk�
i
k + (1 − γk)�

i
k) = 1.

The fact that ζ is not constant follows from the assumption that the random variables αk +
βk�

∗
k (and, hence, αk/�

∗
k + βk) are linearly independent. Indeed, if ζ = c, then

K∑

k=1

(c�∗
k − �i

k)

(
αk

�∗
k

+ βk

)

= 0,

which implies c�∗
k = �i

k for all k, so �i = �∗, which contradicts our assumption.
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