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1 Reminder about pricing under ) and Q7 mea-
sures

According to the definition of Q-measure for first equaity (and Bayes formula
for second), we have:

PV = BiEg | 3F| = p(t. T)E?” X 1)




Indeed, according to Bayes formula, and since
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X t
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where we used that By = 1,p(T,T) = 1 and E? [%Wt] = % due to
definition of T-forward measure.
For t = 0 we have a less difficult proof:

2 Reminder about formulas for Libor IRS and Caps

Recall that by definition of Libor rate we have:

LT, T+7)=LTT,T+T)= 1((T711+7‘)_1>

Forward Libor rate (predicted at time t) is by definition:

Ft,T,T+71)= 1(%—1)

Since rhs is some tradable portfolio, divided by the price of T+ 7-bond,
it is a martingale under 7'+ 7-forward measure, and hence, rhs (that is
F(t,T,T + 7)) is also a martingale under T' + 7-forward measure. Hence

F(t,T,T+7) = E"V" [F(T,1,T +7)|F] = E"*" [L(T,T,T + 7)|F]| (2)

3 Proposed approximation for compounding and
simple average

Now consider the payoffs of IRS and Cap on Libor rate with (constant over
all periods) notional N and n periods 7; =T; — T;-1,To =0



According to the second part of (1) and (2) , PV of IRS is given by the
formula

N
PV — Zp (t, T)E{* [L(Ty-1, i) = K] N7 = Y _p(t, TH)E{* [F(t,T,-1,T;) — K] N;
=1

(3)
PV = Zp (t, TE/ [L(Ti_1,T;) — K]" N~

Now remember that we are considering IRS and Cap on RFR, so instead
of L(T;—1,T;) - N - ; floating leg will pay A(T;—1,T;)- N - 7; in case of Simple
Average and R(T;—1,T;) - N - 7; in case of Compounding, where A(T;_1,T;)
and R(T;_1,T;) are defined as following:

T;
A(T, N p
( i— 17 ZTZth'k] - [/Tll Ty ’U,]
1 L 1 fTi d
rudu
R(n—l;n) = : H(l + Tithik> — 1] ~ ; |:e Ti1 _ 1:|
b le=1 i

According to IRS pricing formula (3), now we need to find conditional
expectations of A(T;_1,T;) and R(T;—1,T;) in T;-forward measure. Let’s
denote them R;(t) and A;(t):

Ri(t) :=E" [R(T;-1,T))| ) = <(tTZI) - 1)

(¢, T3)

Ait) = BT [A(T;-1, T}) | 1Y)
R;(t) and A;(t) does not admit a model-free expression, so we will assume
Hull-White (and then LGM) model for interest rates.
In both cases fgil rydu will have Normal distribution with parameters
p and o2, and hence we can compute R;(t) and A;(t) and so we can easily

compute prices for IRS and Cap for Simple Average and Compounding:
For IRS:

N
pyuonCmy _ Zp (4. TOB] [R(Ti1. T) = K] N7 = > p(t. T [Ri(0) = K N,
=1
N N
Pvtswap,SA _ Zp(t’ﬂ)E;Fi [A(T;_1,T;) — K] N7y = Zp(t, T;) [Ai(t) — K] N
i=1 i=1



For Cap:

A ZPtT R(T;1,T;) — K]" N7; = ZPtT 7iR(T;-1, Ti) — K] N =

T;
/ T, dU =
Ti—

N
Yot TN [(1+7Ri(1))@(d1) — (1 + 1)@ (da)] |
i=1

N
= Zp(t, T;)N Black <1 + 7 Ri(1),1 + K, Varl
i=1

where
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Pyt = ZptTET T,1,Ti) — K]" N7y = ZptT TA(T;1,T,) = K" N =
N T;
= Zp(t,Ti)N (1 A;(t) — 7 K)®(d) + Var;fi / Tudu] o(d)| |,
121 Ti—l
where

TiAi(t) — T, K
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So what we are left to do is to compute conditional expectation and
conditional variance of [)T;_17¢ in T} -forward measure (and in Q-measure
also, just for an exercise) in Hull-White and LGM models.

d:

4 Hull-White model

4.1 HW: model setup

For more details see page 73 of Brigo-Mercurio.
Hull and White (1994a) assumed that the instantaneous short-rate process
evolves under the risk-neutral measure according to:

drt == (9,5 - CLTt)dt + O'th, (4)

where a and o are positive constants and 6 is chosen so as to exactly fit
the term structure of interest rates being currently observed in the market



(see below how the formula for # is obtained. As the input to calibrate this
model, the initial forward curve f*(0,T) is given. Here fM(0,T) is market
instantaneous forward rate at time 0 for the maturity 7, i.e.,

_opM(0,7)

M —
f (OaT) - 8T )

where p™ (0, T) are the market discount factor for the maturity 7.
Hull-White SDE (4) admits exact solution (since it is an Ornshtein-Uhlenbeck
process), but for calibration of 6; (and for subsequent comparison with LGM
model) it is more convenient to split r; into stochastic part z; and determin-
istic part oy (process z; now oscillates around zero, not for initial forward
curve, as it is in case of r;):

Tt =X+ oy
Hence, plugging in (4) that r; = x4 + oy, we obtain:
dxy+day = dry = (0 —a(zi+oy))dt+o0dWy = [—axydt + odWi]+ (0, — acy)dt
Hence we obtain SDEs for z; and ay4:

dry = —azedt + odWy, 29 = 0
doy = (0 — aoy)dt, g = 0(7)

Now we will show, how to calibrate this model to initial market curve
fM(0,t): we will obtain explicit formulas for z¢, ay, 6, and they will be the
following;:

Ty =20+ 0 fg e_a(t_“)qu,
2 )
a; = fM(0,t) + Ty (L—e )7,
M
0; = or~ (01) &EO’t) +afM(0,t) + ‘2’—2 (1 — 6_2‘”)

4.2 HW: integrating SDE

a) Finding z; is just solving Ornstein-Uhlenbeck SDE;
b) ay is found to fit into the initial discount-factors (note that by this moment
we have already found x;):

P (0,1) = EQ [~ Jitestands] _ o= 3 1 0.0
¢) 0y is now found to satisfy SDE doy = (6; — aay)dt, that is, a; =0; — ay
(note that by this moment we have already found «).

Let’s do these three steps:
a) solve Ornshtein-Uhlenbeck SDE:

dry = —azidt + odW;



First we apply Ito’s formula to y = f(t,z) = :Eeat,ft, = axeat,f/

e, f.. = 0, hence obtaining the SDE that has no y; in the rhs and so can
be integrated:

/ / 1 "
dy; = d(ze™) = f,dt + f.dx + §fm(da?t)2 = azie™dt + e"dry =

= axie™dt + e (—axidt + cdWy) = oe™dW;

t ¢
=>yt=yo+ U/ e dW,, = xo + U/ e dw,,
0 0

t
=> |z = zoe~ ¥ + O‘/ e_“(t_“)qu
0

b) Find «4: to do this we look at initial market discount-factors

PM(O,t) _ EQ |:6_ fot(;ts+as)ds] — e fot f(0,s)ds

=> EQ |:67 fot !L‘sti| — ef()t asdsffot f(O’s)ds (5)

To find the expectation in the lhs, we calculate f(f xsds by changing the
order of integration:

t
z; = xpe” % + 0'/ e qW,: 20 = 0
0

t
_>/xsd5—0'// —a(s— udeS—O’/ dW/ —a(s— u)ds_o_/ audW/ e~ s —
0

t o [t o [t
= a/ e‘“‘qu-—fe_“S\Z =— / e (e M —em M) AW, = / (a—e~ ="\ aw,
0 a aJo 0

a
t o2 [t

=> —/ "L‘Sds NN (O’ 2/ (1 _ ea(tu))Zdu>
0 a 0

0,2
And since if & ~ N (p, 02), then Eet = e#T 2 | we obtain:

EQ [6_ Il xsds} = 62a2 Jo(—et=)2du _2 ef(f asds—[g f1(0,5)ds

0.2 t

t t
=> 222 J, (1 — e t=w)2qy, :/ asds —/0 (0, s)ds

0
By differentiating both sides with respect to ¢, we obtain:

2

t —a(t—u ' o” ! —a(t—u —a(t—u
= M0,4)+ 5a 2/ [(1—6 (¢ ))Q]tdu:fM(O,t)—F/o 2(1—e o= gemlt=0) gy =

2a?



Finally,

2

t
re = x + oy = FM(0,8) + %(1 —e )2 4 0'/ e =W aw,.
0

¢) Now we find 6; from the formula a; =0; — aoy:

/ an(O7 t) 02 —at —at M 02 —at\2
= at+aat = T+@2(1—€ )ae +a f (O,t) =+ @(1 — e ) =
_ an(Ov t) M 02 —at —2at —at —2at] _
—T—Faf (O,t)—l-%[Ze —2e +1-2e% 472" =
afM(0,1)

2
M o —2at
ot af(0,7) 2a ( € )

Note that in case of term-structure of volatility, 8; will take the form:

_ oM,

0
t ot

¢
+afM(0,t) + / olem 20t gy
0

Also not that the third term in the expression of ; coincides with mean-
reversion parameter y; in LGM model (but it is not intentionally, there is
no hidden sence here).

4.3 HW: E and Var of fot rsds in T-forward measure

Now from explicit formula for r; we see that in Hull-White model r; follows
normal distribution in Q-measure, so it follows normal distribution in T;-
forward measure, and so f’l@q rwdu also follows normal distribution.

Recall that in Q-measure x; follows SDE
da:t = —aaztdt + O'th

By using Girsanov theorem, we obtain that in T-forward measure it
follows SDE:

o2

doy = — | —(1 — e T L azy| dt + odW]T
a



Hence we can write an explicit formula for z;. Hence an explicit formula

for -
/t Tudu = Axy + B + Stoch.Term
Hence
T T T
E” {/ rudu|Ft0] =— MT(tg,u)du+/ o, du,
t to to
where
MT(S t) = U: (1 _ efa(tfs)) fi (efa(Tft) _ efa(Tthst))
’ a? 2a?
And

T 2
2 —2a(T— c
Var® [/ TuduFto] = % (T g ZemalT—t)—ggeT t>23a>
¢ a a

5 LGM model

5.1 LGM: Model setup

dzy = (yr — A\xy)dt + odWy, 29 = x9
dy; = (02 — 2\y)dt,yo = 0
re = fM(0,t) + ay

This model admits analytical solutions (we will derive them):

xp = zoe M) j;’; e MWy duy + ftto e~ A= g dW,

Y = f[;/ e’2A(t’“)JT(u)2du
p(t, T) _ p(O,T) e—G(t,T)J:f,—%G(t,T)2yt

p(%t)—,\ —t 1—e=MT—1)
G(t.T) = [ e N0y = 1=e210

We will show that:

EQ /t T‘ud’LL’Ft _ tft (S)dS + l (1 o e—)\(t—to)> Teo + L /t (6—)\(130—8)"" . e—)\(t—S))ZO_QdS
to 0 o A 0 2X2 °

t 1 t 2
Var® [/to rudu|Ft0} = )\z/t (1 - e_)‘(t_s)) o2ds




5.2 LGM: connection to Hull-White model

As derived above, in Hull-White model we have

2 t
ry=x; + oy = fM(O,t) + %(1 —e )2 4 0/ e~ = aqw,,.
‘ 0

In LGM model, in next subsection we will derive that

t t
re = fM(O,t)+3:t = fM(O,t)+:Boe_’\t+/ e_’\(t_“)yudzﬁ—/ e MW g qW, =
0 0

2 gt t
= M(0,t) + U)\/ e A=9) (1 - e_’\(t_s)> ds +/ e AW g dW,
0

0
Obviously
¢ t
/ e~ ME—s) (1 _ e—A(t—s)) ds = / (6>\(s—t) . 62)\(5_t)) ds —
0 0
1 A(s—t)|t 1 2A(s—t) |t 1 At 1 o (1 _ ef)\t)2
A6 ’O 2A€ ‘0 )\( e ) 2A( e ) o

Hence,
2

0-2 t A ag ‘
—A(t—s) = A(t—s) — A2
5% /0 e (1 e >ds —2/\2(1 e )

This means that (at least in case of constant o), Hull-White and LGM
models are identical.

5.3 LGM: connection to HJM model

A general HIM model is given in Q-measure (drift is given by HIM-drift
condition)

T
df(,T) = o4(t,T) (/t ot s)ds) dt + o5(t, T)dW,

The dynamics of r, will be Markov if o (¢,T") = h(t)g(T'). For this case after
solving SDE we obtain:

dy; = <92(t)h2(75) + 299((Z))yt> dt

f(th) :f(o’t)+

where



Let’s denote

)
)h - UT<t xtvyt)

and Cheyette) formulation:

Hence we obtain LGM

d.ﬁUt = (yt - )\(t).'l?t)dt + Ur(ta Tt, yt)SWt
dyr = (02 (t, e, yp) — 2y )dt

5.4 HJM: reminder of HJM drift condition derivation
5.5 LGM: derivation of bond price p(¢,T)
5.6 LGM: connection between implied and local vol

Let v be implied volatility for forward rate. The local volatility in LGM will
be o,.(t)? = 2uv*t 4+ v2. It follows from relation for total variance:

¢
V(0,t) = vt = / e 2= g (u)2du
0

t
=> v’ :/ e, (u)?du
0

=> (V) = 2o, (1)
=> 02 4 2tte?t = eQ“tar(t)Q

=> v 4+ 2utv? = o,(t)?
5.7 LGM: integration of SDE with 2(0) =0
a) First we solve SDE for y;, by first solving dy; = —2\y;
=> Y = C(t)e_”‘t

=> gy = Ce™ M —20Ce M =762 — 2\,

=> C = g2

t
=> (C(t) :/ e*olds
0

t t
=> 1y = 62)\t/ e*Mods —/ e t=9)52
0 0
b) Solve SDE for x;:

dZL‘t = (yt — /\tl‘t)dt + O'th; Tog = 0

10



First let’s consider

Zt = ar:te)‘t

2ty = 19 =0
Apply Tto’s formula: f; = AzyeM, f, =M f. =0

=> dz; = Az Mdt + e ((yr — A\zy)dt + odWy)) = Mydt + eMoydW,

¢ t
=> zt:/ e/\sysds—i-/ e osdWy
0 0
! A “ —2X\(u—s)o2d !
:/e“(/e “sgss>du+/e SosdWy
0 0 0
t u
:// e’\(QS_“)aﬁdsdu—l—/ e o, dW
o Jo
t ¢ t
:/ ds </ du - e’\(23“)> af—i—/ ePosdWs
0
t
= ( )‘(ZSUUt)U +/6 fosdWs
0
/ (e)\s AN2s— t)) U§d8+/ Moo dW,
0

t

t
| (269 =9 g2as . [ a,
0 0

V\H

>

1 t t
=z ~N (fM(O, t) + / (e_’\(t_s) — 6_2)‘(t_8)> agds,/ 6_2)‘(t_8)asds>
AJo 0

5.8 LGM: integration of SDE with z(ty) = zg
a) First we solve SDE for y;, by first solving dy; = —2\y;

=> Y = C(t)eiz\t

=> g = Ce M —2XCe M =202 — 22y,

=>(C = 0'262)\t

t
=>C(t) —/ eo2ds
0

t t
=> 1y = 6_2)\t/ M o?ds = / e =952
0 0

11



b) Solve SDE for x;:
d‘rt = (yt - Atxt)dt + O'th; T, = X0

First let’s consider

Rty = X0

{Zt — g, eN(t=10)

1

Apply Tto’s formula: f, = Azt f1 = eAlt=to) ¢" —

t t
=>dz; = 2, _|_/ e)x(u—to)yudu_i_/ eA(u_to)Juqu

to to

t ¢
=>|x; = zte*’\(t’t") = xtoe*’\(t*t‘)) —|—/ e)‘(“’t)yudu —|—/ eA(“*t)auqu

to to

Now we plug in the last equation the expression for y;, found above:

t u t
=> 3 = xtoe)‘(tto)—F/ M= gy, (/ 62)‘(“3)0§d8> +/ A g AW, =
to 0 to

t ¢
= xtoe_k(t_m) +/ du (/u e’\(_“_tHS)J?dS) +/ e’\(“_t)auqu =
to 0

to
to t t t t
= a:toe)‘(tto)+/ agds/ e)‘(“t+2s)du+/ o2ds e)‘(“t”s)dtH—/ Mg dW, =
0 to to s

to

t
= xtoe*/\(t—to) 4 / 0 Ugdsi |:e)\(*t0*t+25) _ eA(ft7t+2s)} i
0

t t
+/ Uzdsl [6,\(754+2s) _ eA(7t7t+2s)} +/ Mot g A, =
to A to

t
= thoe*A(tfto) 4 / 0 U?dS% [67,\(t73+tofs) _ 672)\(,5,8)} n
0

t 1 t
+/ af,dsx [G—A(t—s) _6—2)\(15—3)} +/ At gy —
to

to

1 t 1 to 1 t t
= a:toe)‘(tto)—/ eQA(tS)agds—i—/ Uzdse/\(t“tos)—i-/ Uzdse/\(ts)—i-/ AN g, dW, -
)\ 0 )\ 0 to to

>

t t
_ $toe—x(t—t0)+1/ (e—A[(t—s)—i-(to—s)ﬂ B e—2>\(t—s)> agds—l—/ MNuty gy, —
A 0 to

t t
— |2y e A10) +1/ o A(t) (6—)\(1&0—5)+ _e—)\(t—s)> agder/ Mty qyy | =
A 0 to

t
= e MO L M (89, t) + / A= g AW,

to

12



5.9 LGM: derivation of moments of j;to rudu

. t
So we have found expression for x5, now we compute fto Tydu:

t t u
/ Tudu = / <afoe’\(“t°) + M(to,u) + / e’\(us)ades) du =
t to to

0

t
= 2 / e Mu=to) gy, + M(to, )du + / du / “Mu=s)g ds =
to to

t
:1(1—6—A<t—to>) M(to, )du—i—/ USdW/ =)y =
A to to

t t
=2 mys [Madus [ 10 eNNoaw,

to to

It remains to compute ftto M (tg, u)du.

t
M to, / / - —)\(to s)t e—)\(u—s))o_gdsdu _
to
to 1 t u
/ du/ (u— s) e Mbo—s)_ (“S))azds—i—/ du/ e*)‘(”*s)(l—e*/\(“*s))azds:
to A to to
to 1 t t
= / azds/ eA(“S)(eA(tOs)—e’\("s))du—i-/ U?ds/ e A=) (1 A=)y gy =
)\ 0 to )\ to
1 to t
= / agds/ (e>‘(2s_t°_“) (s—u) Ydu+— / 2d8/ (s—u) ))du—
)‘ to to

t

0 1 1
)\/ sti 9p2Ms—t0)_ 2e>\(25—t0—t)+62>\(s—t)762)\(s—t0))+x 2dsﬁ( 21— Mot 4 2Me=0)_1

t
2ds( —2>\(t—s)_26—>\(t—s+to—s)+€—2A(t0—s))+21\2/ Ugds(e—%\(t—s)_26—A(t—s)+1) _
to

2)\2
_ 1 to(e—)\(t—s)_ “Ato=9))25275 4 L / o2ds(1 — —e 7925245 =
22 22 8
Lo Ntoms)t  —A(t—s)\2 2
= 27)\2 (6 —€ ) Usds

Hence

t t t
1
/ wudu|Fyy = %(1—6*A<t*t0>)+ M (to, u)du+ / L= o aw, =
to

to to

t t
T Ate)y 4 L Ato—s)t  —A(t—s)\2 .2 1 -
) (1—e )+ 2 / (e e )ooids + ; )\(1 e YosdWs

13



Hence

B [ wudul iy | = (1= 7000) gy (2000 —-200)2020s
Var®? [fti) zydulFyy | = %(1 — e A~ 8)) asds

Hence

E? [ftt rudu]FtO] ft f(0,s)ds + 52(1 — e At—to)) 1 f (e Ato=s)T _ e=A(t=9))252
Var® [f rudu]FtO] = & (1 —e=9))20.ds

14



