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Optimal pair trading: consumption-investment problem
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Abstract We expose a simple solution of the consumption-investment problem pair
trading. The proof is based on the remark that the HJB equation can be reduced to a
linear parabolic equation solvable explicitly.
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1 Introduction

This note contains a short proof of the recent result by Sahar Albosaily and Serguei
Pergamenchtchikov [1] on the consumption-investment optimal control problem in
a pair trade setting. The pair trading is based on the idea that stocks of companies
with the same business are strongly correlated and their difference fluctuates near
zero. A trader matches a long position with a short position in two stocks having a
high correlation. The portfolio value increment is proportional to the increment of
the spread between prices. By this reason such a setting, frequently used by hedge
funds, is also called spread trading. The mentioned paper [1] contains an extension
of the model considered earlier by Elena Boguslavskaya and Mikhail Boguslavsky in
[2] where the spread was modeled by the Ornstein–Uhlenbeck process and investor’s
goal is to maximize only the expected utility of the terminal wealth. The HJB equa-
tion in [2], though looking rather involved, admits a solution which can be referred to
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as an explicit one. In [1] the functional to optimize includes also the expected utility
of consumption with the same power utility function. The suggested analysis of the
latter, rather involved and lengthy, is based on a fixed point method. It leads to the
optimal solution which is the main contribution , see Ths. 5.1 and 5.3 in [1]. Though
it may happen that the ideas of [1] could be useful in a more general context, they
are not needed in the considered case. Here we provide arguments showing that the
spread trading problem is not much more complicated than the classical Merton prob-
lem. The key ingredient of our proof is a reduction of the HJB equation to a linear
parabolic equation admitting explicit solution.

2 Model

First we recall briefly the formulation of optimal control problem for spread trading.
Its dynamic on [t, T ] is given by the two-dimensional process (Xv, Sv)v∈[t,T ] with

dXv = (rXv − κ1avSv − cv)dv + αvσdWv , Xt = x,

dSv = −κSvdv + σdWv, St = s.

The constants r ≥ 0, σ,κ > 0 are, respectively, the interest rate, market volatil-
ity, and mean-reverting parameter, and κ1 := r + κ. The admissible control pro-
cesses u := (a, c) = (av, cv)v∈[t,T ] are predictable with respect to the filtration Ft

formed by the σ-algebras F t
v := σ{Wu −Wt, t ≤ θ ≤ v} and have trajectories in

L2([t, T ])×L1
+([t, T ]). Moreover, the control process vanishes after the instant when

the component X attains zero. The set of such controls is denoted by At. Note also
that S does not depend on control, while X = Xu does.

The Bellman function of the problem is

J∗(x, s, t) := sup
u∈At

E

[

∫ T

t
cγvdv + βXγ

T

]

(2.1)

where 0 < γ < 1, β > 0. It is easily seen that the function x %→ J∗(x, s, t) is concave
and even homogeneous of order γ.

We assume, as in [1], that κ ≥ r.

3 Verification lemma

The verification method is the simplest way to find the solution of optimal control
problem. It prescribes to consider the Hamilton–Jacobi–Bellman (HJB) equation

sup
(a,c)∈R×R+

H(x, s, t, a, c, z(x, s, t)) = 0, z(x, s, T ) = βxγ , (3.1)

where the operator H is given by the formula

H(x, s, a, c, z) := zt+(rx−κ1a−c)zx−κszs+
1

2
σ2zss+aσ2zxs+

1

2
a2σ2zxx+cγ .
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Let z = z(x, s, t) ≥ 0 be a classical supersolution of the HJB equation, that is a
function such that H(x, s, a, c, z) ≤ 0 for all (a, c). Then z dominates the Bellman
finction J∗. Indeed, take arbitrary u ∈ At. By the Ito formula for θ ∈ [t, T ]

z(Xu

θ , Sθ, t)+

∫ θ

t
cγvdv−z(x, s, t) = Mu

θ +

∫ θ

t
H(Xu

v , Sv, av, cv, z(X
u

v , Sv, t))dv,

where the stochastic integral

Mu

θ :=

∫ θ

t

(

(rXu

v − κ1av − cv)zx(X
u

v , Sv, t)− κSvzs(X
u

v , Sv, t)
)

dWv

as a process on the interval [t, T ] is a local martingale. It is easily seen that Mu is
bounded from below, hence, it is a supermaringale andEMu

θ ≤ 0 for every θ ∈ [t, T ].
It follows that

z(x, s, t) ≥ E

[

∫ T

t
cγvdv + β(Xu

T )
γ

]

.

Since u is arbitrary, this implies that z(x, s, t) ≥ J∗(x, s, t).
The following assertion is usually referred to as the verification lemma (or theo-

rem). We use the following version.

Lemma 3.1 Let z(x, s, t) ≥ 0 be a solution of (3.1) which is C2 in (x, s), C1 in t,
and concave in x. Let u ∈ At be such that the process H(Xu, S, a, c, z(X,S, t)) ≡ 0
(a.s.). Define the family of random variables Z := {z(Xτ , Sτ , t)} where τ runs the

set of stopping times with values in [t, T ]. If Z is uniformly integrable, then u is the

optimal control and z(x, s, t) = J∗(x, s, t).

4 HJB equation

Note that the supremum in a and c in the formula (3.1) is attained at

ã =
κ1szx − σ2zxs

σ2zxx
, c̃ =

(zx
γ

)
1

γ−1

. (4.1)

Thus, the Cauchy problem (3.1) can be reduced to the Cauchy problem

zt +
σ2

2
zss −

(σ2zxs − κ1szx)2

2σ2zxx
+ rxzx − κszs + (1 − γ)

(zx
γ

)

γ
γ−1

= 0 (4.2)

with the terminal value z(x, s, T ) = βxγ .
The equation above is nonlinear but a change of variable tansforms it to a linear

parabolic equation. Namely, we have

Lemma 4.1 The solution of the terminal Cauchy problem for (4.2) admits the repre-

sentation z(x, s, t) = xγu1−γ(s, t) where u(s, t) is the solution of the problem

ut + Lu+ 1 = 0, u(s, T ) = β
1

1−γ , (4.3)

where

Lu :=
σ2

2
uss −

(

γκγ + κ
)

sus +
( 1

2σ2
γκ2

γs
2 + r

γ

1 − γ

)

u (4.4)

with κγ := κ1/(1− γ).
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Proof. The substitution z(x, s, t) = xγy(s, t) in (4.2) leads to the problem

yt +
σ2

2
yss +

γ

1− γ

(σ2ys/y − κ1s)2

2σ2
y + γry − κsys + (1− γ)y

γ
γ−1 = 0 (4.5)

with the terminal condition y(s, T ) = β.

Let y = u1−γ . Substituting the formulae yt = (1−γ)u−γut, ys = (1−γ)u−γus,
yss = (1−γ)u−γuss−γ(1−γ)u−1−γu2

s, ys/y = (1−γ)us/u in the above equation
and dividing both sides by (1− γ)u−γ we obtain the result. !

The representation of z given by the above lemma allows us to represent the
formulae (4.1) in terms of the function u = u(s, t) as follows:

ã = xR(s, t) where R(s, t) :=
us(s, t)

u(s, t)
− s

κγ

σ2
, c̃ =

x

u(s, t)
. (4.6)

4.1 Explicit solution

Lemma 4.2 Let g be a function satisfying the Riccati equation

ġ + σ2g2 − 2
(

γκγ + κ
)

g + σ−2γκ2
γ = 0 (4.7)

and let f be a function satisfying the linear homogeneous equation

ḟ +
σ2

2
gf + r

γ

1− γ
f = 0. (4.8)

Then the function ũ(s, t) := f(t)es
2g(t)/2 satisfies the equation ũt + Lũ = 0.

Proof. We have the following expressions: ũ = fes
2g/2, us = sfges

2g/2,

ũt =
(

ḟ + (1/2)s2ġf
)

es
2g/2, ũss =

(

gf + s2g2f
)

es
2g/2.

Substituting them into the formula (4.4) we get the result. !

Let g = gθ and f = fθ be two functions satisfying on [0, θ] the equations (4.7)

and (4.8) with the terminal conditions gθ(θ) = 0 and fθ(θ) = β
1

1−γ . As an obvious

corollary of the above lemma we get that the function ũθ(s, t) := fθ(t)es
2gθ(t)/2

solves on R× [0, θ] the terminal Cauchy problem

ũθ
t + Lũθ = 0, ũθ(s, θ) = β

1
1−γ . (4.9)

To alleviate formulae we skip θ when θ = T .

Lemma 4.3 The function ũ(s, t) := f(t)es
2g(t)/2 solves the problem

ũt + Lũ = 0, ũ(s, T ) = β
1

1−γ . (4.10)
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Lemma 4.4 Let hθ(s, t) := fθ(t)es
2gθ(t)/2. Then the function

u(s, t) := β
1

γ−1

∫ T

t
hθ(s, t)dθ + ũ(s, t) (4.11)

solves (4.3).

Proof. Note that

ut(s, t) = β
1

γ−1

∫ T

t
hθ
t (s, t)dθ − β

1
γ−1ht(s, t) + ũt(s, t).

and ht(s, t) = β
1

1−γ . Since

ut(s, t)+Lu(s, t)+1 = β
1

γ−1

∫ T

t
(hθ

t (s, t)+Lhθ(s, t))dθ+ũt(s, t)+Lũt(s, t) = 0,

the result follows from the previous lemma.

4.2 The Riccati equation with constant coefficients

Let q = σ2g. Then q solves the equation

q̇ + q2 − 2(γκγ + κ)q + γκ2
γ = 0, (4.12)

Suppose that κ > r
√
γ. Then the quadratic equation λ2 − 2(γκγ + κ)λ + γκ2

γ = 0
with the discriminant

D := (γκγ + κ)2 − γκ2
γ =

(

γ
κ+ r

1− γ
+ κ

)2

− γ

(

κ+ r

1− γ

)2

=
κ2 − r2γ

1− γ
> 0

has the real roots λ1 := γκγ + κ+
√
D and λ2 := γκγ + κ−

√
D > 0. Substituting

q = p+λ2 into (4.12) we obtain that ṗ+p2−Ap = 0 where A := 2
√
D = λ1−λ2.

If p does not take the zero value, then d(1/p) = −(1/p2)dp. The function P := 1/p
satisfies the equation Ṗ = −AP + 1 and can be represented as

P (t) = e−A(t−θ)
(

P (θ) + (1/A)(eA(t−θ)− 1)
)

= (P (θ)− (1/A))e−Atv−θ) +1/A.

Since q = λ2 + 1/P , we obtain from here an explicit formula for q. In particular, if
q(θ) = 0, then P (θ) = −1/λ2 and for t ∈ [0, θ]

qθ(t) = λ2 − λ2
λ1 − λ2

λ1e(λ1−λ2)(θ−t) − λ2
≥ 0, qθ(θ) = 0.

It is easily seen that

max
0≤t≤θ≤T

qθ(t) = qT (0) ≤ λ2 = γκγ + κ−
√
D. (4.13)

In the case where κ ≥ r the discriminant
√
D ≥ κ and, therefore,

gT (0) = qT (0)/σ2 ≤ γκγ/σ
2. (4.14)
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4.3 Useful bounds

In the sequel C will denote a constant which value is no importance; it may be dif-
ferent even in a chain of formulae. To simplify formulae we skip the dependence on
t where it has no importance.

According to (4.8) the function fθ admits an explicit expression and we have that

β
1

1−γ ≤ fθ(t) = β
1

1−γ exp

{

∫ θ

t

(σ2

2
gθ(ν) +

rγ

1− γ

)

dν

}

≤ C.

It follows that

β
1

1−γ ≤ u(s, t) ≤ Ces
2gT (0)/2 ≤ Ces

2γκγ/(2σ
2). (4.15)

4.4 Uniform integrability

Let us consider the process X following on [t, T ] the stochastic differential equation
whose coefficients are defined in (4.6):

dXv = Xv

(

r − κ1SvR(Sv)− 1/u(Sv)
)

dv +XvσR(Sv)dWv , X∗
t = x.

It can be given in more explicit way as Xv = x exp{Iv + Jv} where

Iv := σ

∫ v

t
R(Sν)dWν , Jv :=

∫ v

t
F (Sν)dν. (4.16)

F (S) := r − κ1SR(S)− (1/2)σ2R2(S)− 1/u(S).

Our aim is to find δ > 1 such that supτ Ezδ(Xτ , Sτ ) < ∞ where τ runs the set
of all stopping times with values in [t, T ]. Using the upper bound from (4.15) we get
that

zδ(Xτ , Sτ ) ≤ CXγδ
τ u(1−γ)δ(Sτ ) ≤ CXγδ

τ eS
2
τδγκ1/(2σ

2)

By the Ito formula applied to the square Ornstein–Uhlenbeck process

S2
τ = s2 +

∫ τ

t
(−2κS2

ν + σ2)dν + 2σ

∫ τ

t
SνdWν , v ∈ [t, T ].

Let p > 1 and let p′ be its conjugate, i.e. p′ := p/(p− 1). We prepare these numbers
to use the Hölder inequality to isolate a stochastic exponential of a local martingale.
With such a provision we rewrite the right-hand side of the above inequality as

zδ(Xτ , Sτ ) ≤ C exp

{
∫ τ

t
GνdWν −

1

2
p

∫ τ

t
G2

νdν

}

exp

{
∫ τ

t
G̃νdν

}

(4.17)

where we include in C results of integration of bounded terms,

G := δγσR+ (δγκ1/σ)S,

G̃ := −γδκ1SR− (1/2)δγσ2R2 − (1/σ2)κδγκ1S
2

+(1/2)p(δγ)2σ2R2 + pδ2γ2κ1RS + (1/2)p(δγκ1/σ)
2S2
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with the abbreviation R := R(S). If we take pδγ = 1, then the coefficients at R2 and
RS vanish and

G̃ =
δγκ1

2σ2
(κ1 − 2κ)S2 =

δγκ1

2σ2
(r − κ)S2 ≤ 0.

Thus, the Lp-norm of the first exponential in the rhs of (4.17) and the Lp′

-norm of
the second one are less or equal to one, E

[

zδp(Xτ , Sτ )
]

≤ C and we get the needed
uniform integrability property.

5 Conclusion

The consumption-investment problem in the setting of pair trade admits an explicit
solution. The arguments are based on the observation that the HJB equation in the
Ornstein–Uhlenbeck spread model is reduced to a linear parabolic PDE admitting an
explicit solution. This observation drastically simplifies the arguments in [1].
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