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Plan

Our goal was to was to compare hedging in Black-Scholes model and in the
Local Volatility model, according to the article "Historical backtesting...",
with prices generated by Heston model.
We have found some discrepancies in this article:
1) The formula (11) for local volatility in terms of K and T on page 3 is
incorrect: θ2 is forgotten in the numerator; the correct formula (1.26) is on
page 23 in the paper "Local Stochastic Volatility Models. Solving the
Smile Problem with a Nonlinear Partial Integro-Differential Equation".
2) As we discussed last time, in the article they interpolate between
different times using cubic splines - but the better way is to interpolate
linearly; moreover, this interpolation should be done in the coordinates not
(K,T), but (y,w) or (y,T) instead. We tried both variants. Then we also
tried to extrapolate across strikes with cubic splines and linear function
according to the Lee formulas (with interpolation cubic in both cases).
3) They use Cranck-Nicolson scheme to solve the PDE to find V in Local
Volatility model - but it unstable when the payoff is not smooth - and the
payoff of a European option is not smooth. We used fully implicit scheme.
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The formula for local volatility in terms of IV

Figure: The incorrect formula from [Shevchenko, Ling]

Figure: The formula from [Barucci]
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Description of the model

dSt = St(rdt + σ(t, St)dWt), S0 > 0. (1)

Definition
The function σ(t, s) such that the call option prices given by the model (1)
coincide with the market prices Ĉ (T ,K ) is called local volatility, i.e.

Ĉ (T ,K ) = C (T ,K ) := e−rTE (ST − K )+, T ∈ [0,Tmax ], K ∈ (0,∞).
(2)

The aim is to calibrate the model to get the option prices in each defined
time and strike price.
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LV in terms of IV

C = CBS(St , t,K ,T , σI (K ,T ))

Applying the chain rule of differentiation and Black-Scholes formula it is
possible to prove that:

σ2
LV (K ,T ) =

σ2
I + 2TσI (

∂σI
∂T + (r − d)K ∂σI

∂K )

(1 + d1K
√
T ∂σI

∂K )2 + K 2σIT (∂
2σI

∂K2 − d1
√
T (∂σI

∂K )2)
, (3)

where

d1 =
log(S0

K ) + (r − d + 1
2σ

2
I )T

σI
√
T

But it is better to calculate local volatility as the function of log-moneyness
y = log K

S0
and time T , using total variance w = σ2

I · T .
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LV in terms of IV Part 1

Denote σI by θ for convenience.
Then we take formula (1) and change the variables from (K,T) to (y,w).

y = ln(
K

S0
) = lnK − lnS0

w = θ2T

∂θ

∂K
=

∂θ

∂y
· ∂y
∂K

=
∂θ

∂y
· 1
K

∂2θ

∂K 2 =
∂

∂K

(
∂θ

∂K

)
=

∂

∂K

(
∂θ

∂y
· 1
K

)
=

∂2θ

∂y2 · 1
K 2 − ∂θ

∂y
· 1
K 2
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LV in terms of IV Part 2

∂θ

∂T
=

∂θ

∂w
· ∂w
∂T

=
∂θ

∂w

(
θ2 + 2θT

∂θ

∂T

)

=⇒ ∂θ

∂T

(
2θT

∂θ

∂w
− 1

)
= −θ2 ∂θ

∂w

=⇒ ∂θ

∂T
=

θ2 ∂θ
∂w

1 − 2θT ∂θ
∂w
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LV in terms of IV Part 3

We put these expressions into formula (1).

σ2
LV =

θ2 + 2θT
(

θ2 ∂θ
∂w

1−2θT ∂θ
∂w

+ rK ∂θ
∂y

1
K

)
(
1 + d1K

√
T 1

K
∂θ
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)2
+ K 2θT

(
∂2θ
∂y2 · 1

K2 − ∂θ
∂y · 1

K2 − d1
√
T
(

∂θ
∂y

)2
1
K2

)
(4)

=

θ2 + 2θT
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θ2 ∂θ
∂w

1−2θT ∂θ
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+ r ∂θ
∂y
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(
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√
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+ θT
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LV in terms of IV Part 4

σ2
LV =

θ3

θ−2w ∂θ
∂w

+ 2r ∂θ
∂y

w
θ(

1 + d1
√
T ∂θ

∂y

)2
+ w

θ

(
∂2θ
∂y2 − ∂θ
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√
T
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∂θ
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LV in terms of IV Part 5

Thus,
• to compute the local volatility function (4), we need partial derivatives of
the implied volatility surface θ;
• in practice we only have a finite number of market data points, typically
5 values for a given maturity and about 10 maturities; We need some
interpolating procedure for θ;
• This is an ill-posed problem, and there are a number of ways to
interpolate these data points. We use natural cubic splines to interpolate
across log moneyness, linear ones to interpolate across maturities.
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Interpolation across log moneyness

Suppose we have market data for N different maturities and that for each
maturity M options are available. Let y (i)j and θ

(i)
j denote the log

moneyness and implied volatility of the j-th vanilla option with maturity
Ti (wi ).
1. Interpolation across log moneyness with fixed t (w): For each market
maturity Ti , i ∈ 1, ...,N fit a natural cubic spline zi (y) through

(y
(i)
1 , θ

(i)
1 ), ..., (y

(i)
M , θ

(i)
M )

Note that z
′
i (y) =

∂θ
∂y in (y ,Ti ) and z

′′
i (y) =

∂2θ
∂y2 in (y ,Ti ).

2. Extrapolation across log moneyness with fixed t (w): For each maturity
Ti , i ∈ 1, ...,N fit a linear function with coefficient determined by Lee
formula.
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Interpolation across maturities w with fixed y

3. To find ∂θ
∂y at any given (y ,w) fit another linear spline f (w) through

(w1, z
′
1(y)), ..., (wN , z

′
N(y))

Then ∂θ
∂y = f (w).

4. Similarly to find ∂2θ
∂y2 at any given (y ,w) fit another linear spline g(w)

through
(w1, z

′′
1 (y)), ..., (wN , z

′′
N(y))

Then ∂2θ
∂y2 = g(w).

5. To find θ and ∂θ
∂T at (y ,w), fit a linear spline u(w) through

(w1, z1(y)), ..., (wN , zN(y))

Then θ(y ,w) = u(w) and ∂θ
∂T = u′(w).
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LV in terms of IV

Figure: The local volatility surface
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Implicit scheme

First we need a mesh of (price,time) pairs.
1 {ti}i=0,...,N , ti = ∆t ∗ i , ∆t = T/N.

2 {sj}j=0,...,M , sj = S0e
−D+j∆x ,

D = γθ
√
T , θ is the average of the at the money implied volatilities,

∆x = 2D/M.
(The time interval is [0,T ] and the price interval is [S0e

−D ,S0e
D ].)
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Implicit scheme

∂V

∂t
+ (r − q − 1

2
[σ(eXt , t)]2)

∂V

∂X
+

1
2
[σ(eXt , t)]2

∂2V

∂X 2 − rV = 0. (7)

Lets denote by ν(t, x) = r − q − 1
2 [σ(e

x , t)]2 and V i
j = V (ti , sj).

The implicit scheme is given by

c i−1
j−1V

i−1
j−1 + d i−1

j V i−1
j + e i−1

j V i−1
j+1 = V i

j , (8)

where i ∈ {1, . . . ,N} and

c i−1
j−1 =

τν i−1
j

2h
− τ

2h2 (σ
2)i−1

j ,

d i−1
j = 1 +

τ

h2 (σ
2)i−1

j + rτ,

e i−1
j = −

τν i−1
j

2h
− τ

2h2 (σ
2)i−1

j .
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Implicit scheme

For boundary conditions we use the fact that lim
S→0

∂V
∂S = 0 and

lim
S→∞

∂V
∂S = 1. This leads to the following equations

V i
0 − V i

1 = 0, (9)

V i
M − V i

M−1 = sM − sM−1. (10)

To initiate the scheme, we set for all j = 0, . . . ,M

VN
j = (sj − K )+. (11)

We then repeatedly solve the system until we obtain (V 0
1 , . . . ,V

0
M)T .
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Hedging

We compared hedging in two setups: in Black-Scholes model and in Local
Volatility model. We took a stoke with S0 = 100 and simulated the
evolution of the stocke with Heston model. Then we tried to hedge 3
different options: with strikes 120,100,80.
• In the Black-Scholes setup the needed delta is Φ(d1), where

d1 =
ln(S0

K ) + 0.5σ2(T − t)

σ
√
T − t

Here σ is the iv, taken at point t, and Φ is cdf of N (0, 1).
• In the local volatility model, delta is V ′

St
. V we have found on the grid

using the implicit scheme for PDE. Now at fixed time t we fit a cubic spline
on the V (St) - and obtain delta at any spot at this fixed time t. Here it is
important that we solved the PDE on the grid of (y_extended,
w_extended).
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Results

Figure: Mean and std of hedging errors for options with different strikes and
S0 = 100
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LSV model

Considering the Heston-like LSV model, the dynamics of the spot price and
the stochastic variance under the risk neutral measure are:

dSt = rStdt + L(St , t)
√

VtStdW
1
t (12)

dVt = κ(θ − Vt)dt + λ
√

VtdW
2
t

dW 1
t · dW 2

t = ρdt

LSV model is exactly calibrated to market smiles if and only if

σDup(t, S)
2 = L(t,S)2 EQ[Vt |St = S ]

Therefore, SDE (12) of asset price can be rewritten as

dSt = rStdt +

√
σDup(t, St)2

EQ[Vt |St ]

√
VtStdW

1
t (13)
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Particle method

Consider the McKean SDE for the n-process Xt :

dXt = b(t,Xt ,Pt)dt + σ(t,Xt ,Pt)dWt , Law(Xt) = Pt , X0 ∈ Rn,
(14)

where Wt is d-dimensional Brownian motion.
The fundamental concept to develop the particle method to simulate the
stochastic McKean SDE consists of approximate the law Pt with the
empirical distribution of a fixed large number N of particles (ξi ,Nt )Ni=1

Pt ≈ PN
t :=

1
N

N∑
i=1

δ
ξi,Nt

,

where (ξi ,Nt )Ni=1 are solutions to the (Rn)N -dim classical linear SDE:

dξi ,Nt = b(t, ξi ,Nt ,PN
t )dt+σ(t, ξi ,Nt ,PN

t )dW
i
t , Law(ξi ,N0 ) = P0, 1 ≤ i ≤ N
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