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Abstract

This research project investigates time risk preferences and goal-reaching problems
in the context of optimal investment. Framing investment objectives as goal-reaching
problems is increasingly popular in investment practice, especially in the emerging
industry of Fintech. These problems lead to interesting and challenging associated
stochastic control problems that are typically solved by one of two methods: Hamilton-
Jacobi-Bellman equations or Pontryagin’s maximum principle. The project aims to
build the associated theory for both approaches and translate developed theory to
practice through application of relevant stochastic control techniques to two real-world
problems: famous Merton problem and the problem of beating a target. New results,
obtained in this work, are the explicit solution of Merton problem by Pontryagin’s
maximum principle approach and explicit formula for optimal strategy in the problem
of beating a constant target in the model with risk-free rate, which is the extension of
existing result in the model without risk-free rate.
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1 Introduction

Goals-based portfolio management is an investment paradigm centered around the
fulfillment of client’s consumption goals. Client wants to achieve in (maybe) predefined
time/times one or several predefined goals, among which may be purchasing a car or
an apartment. The importance of goal-based investing has been recognized both by the
academic community and by the private sector. In year 2020 Q-Group panel discussion,
Robert Merton emphasized goal-based investing as one of the most important problems
in financial engineering for the next decade. Merton was first to address the problem: in
Merton (1969) he studied what fraction of wealth should the agent invest into the risky
asset if his goal is to maximize expected utility of terminal wealth on a finite horizon or to
maximize expected integrated utility of running consumption on an infinite horizon.

The workhorse method for solving stochastic optimal control problems is to find the
Hamilton-Jacobi-Bellman equations for the value function and then try to solve these in
some way. The second principal and most commonly used approach for solving stochastic
optimal control problems is Pontryagin’s stochastic maximum principle. An interesting
phenomenon one can observe from the literature is that these two approaches have been
developed separately and independently. Both methods are used to investigate the same
problems, and connections between these two approaches can be seen in classical mechanics
and are discussed in detail in Yong and Zhou (1999).

This project is focused on two connected themes in the area of portfolio management.
The first goal is to explore the connections between HJB equations approach and Pon-
tryagin’s stochastic maximum principle approach and solve the famous Merton problem
using seconds approach (while in the literature it is always solved using first approach,
see, for example, Chapter 3 of Pham (2009)). We will consider Merton problem without
consumption and with consumption.

The second goal is to study portfolio selection problems with both time risk preference
and utility of wealth, using stochastic control theory from dynamic programming and HJB
equations. In particular, in this project we extend the recent model from Chapter 4 of
Wang (2024) for finding the optimal investment portfolio to beat a constant target by in-
troducing the risk-free rate into the market and presenting the explicit formula for optimal
strategy. This result is of particular interest to the insurance industry, since insurance
companies and pension funds in their everyday work follow a benchmarking procedure, for
example by trying to beat inflation, exchange rates, or other indices.

The rest of this thesis is organized as follows.
In Chapter 2 we focus on stochastic optimal control problems and aim to explore

the connection between two existing approaches of solving these problems: via Pontrya-
gin’s maximum principle and via Hamilton-Jacobi-Bellman equation. We also give formal
justification of stochastic Pontryagin’s maximum principle together with dynamical pro-
gramming principle, Hamilton-Jacobi-Bellman equation and verification theorem.

In Chapter 3 we apply the machinery of two approaches from Chapter 2 to solve the
famous Merton problem. The novelty of this work is the solution of this problem via Pon-
tryagin’s maximum principle instead of via Hamilton-Jacobi-Bellman equation.

In Chapter 4 we give a brief introduction to beating a moving target problem and
develop mathematical apparatus for the general problem with time risk preferences. Then
we present our second main result: we explicitly find the optimal investment strategy in a
problem with risk-free rate.

In Chapter 5 we conclude and discuss directions for further research.
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2 Stochastic optimal control problems: two classical approaches

In this chapter, we use the dynamic programming method for solving stochastic control
problems. We consider the framework of controlled diffusion and formulate the problem
on finite or infinite horizon. The basic idea of the approach, called the dynamic pro-
gramming principle, is to consider a family of control problems by varying the initial state
values, and to derive some relations between the associated value functions. This approach
yields a certain partial differential equation (PDE), of second order and nonlinear, called
Hamilton-Jacobi-Bellman (HJB). When this PDE can be solved by the explicit or theo-
retical achievement of a smooth solution, the verification theorem validates the optimality
of the candidate solution to the HJB equation. This classical approach to the dynamic
programming is called the verification step. More details about this approach can be found
in Chapter 3 of Pham (2009).

2.1 Controlled diffusion processes

We consider a control model where the state of the system is governed by a stochastic
differential equation (SDE) with values in R𝑛:

𝑑𝑋𝑠 = 𝑏(𝑋𝑠, 𝛼𝑠)𝑑𝑠+ 𝜎𝑠(𝑋𝑠, 𝛼𝑠)𝑑𝑊𝑠, 𝑠 ∈ [0, 𝑇 ] (1)

where 𝑊 is a d-dimensional Brownian motion on a filtered probability space (Ω,ℱ ,F,𝒫).
Controlled parameter (or control) 𝛼 = (𝛼𝑠) ⊆ 𝐴 ⊆ R𝑚 is a progressively measurable (with
respect to F) process (not necessarily continuous), valued in 𝐴, subset of R𝑚.
Coefficients 𝑏 : R𝑛×𝐴 → R𝑛 and 𝜎 : R𝑛×𝐴 → R𝑛×𝑑 are measurable and satisfy a uniform
Lipshitz condition in 𝐴, which means that there exists constant 𝐾 ≥ 0 such that

∀𝑥, 𝑦 > 0 ∈ R𝑛,∀𝑎 ∈ 𝐴 : |𝑏(𝑥, 𝑎)− 𝑏(𝑦, 𝑎)|+ |𝜎(𝑥, 𝑎)− 𝜎(𝑦, 𝑎)| ≤ 𝐾|𝑥− 𝑦|. (2)

We denote by 𝜏𝑡,𝑇 the set of stopping times with values in [𝑡, 𝑇 ].
We will consider separately finite horizon problem and infinite horizon problem, because we
will use finite horizon for Merton problem and infinite horizon for target-beating problem.

2.2 Finite horizon problem setting

We fix a finite time horizon 𝑇 ∈ (0,+∞) and denote by 𝒜 the set of control processes

𝒜 =

{︂
𝛼 ∈ R𝑛 : E

(︂∫︁ 𝑇

0
|𝑏(0, 𝛼𝑡)|2 + |𝜎(0, 𝛼𝑡)

2|𝑑𝑡
)︂

< ∞.

}︂
(3)

According to Section 1.3 in Chapter 1 of Pham (2009), Lipshitz condition (2) and
condition (3) in the definition of 𝒜 guarantee that for all initial conditions (𝑡, 𝑥) ∈ [0, 𝑇 ]×R𝑛

there exists a unique strong solution to the SDE (1) starting from point 𝑥 at time 𝑠 = 𝑡.
Indeed, the conditions of Ito’s theorem require that there exist a constant 𝐾 ∈ R and

a process 𝜅𝑡 (a natural choice is 𝜅𝑡 = |𝑏(𝑡, 0)|+ |𝜎(𝑡, 0)|) that for all 𝑡 ∈ 𝑇, 𝜔 ∈ Ω, 𝑥, 𝑦 ∈ R :{︃
|(𝑏(𝑡, 𝑥, 𝜔)− 𝑏(𝑡, 𝑦, 𝜔)|+ |𝜎(𝑡, 𝑥, 𝜔)− 𝜎(𝑡, 𝑦, 𝜔)| ≤ 𝐾|𝑥− 𝑦|,
|(𝑏(𝑡, 𝑥, 𝜔)|+ |𝜎(𝑡, 𝑥, 𝜔)| ≤ 𝜅𝑡(𝜔) +𝐾|𝑥| with E

∫︀ 𝑡
0 |𝜅𝑢|

2𝑑𝑢 < ∞,∀𝑡 ∈ 𝑇.

Let
{︁
𝑋𝑡,𝑥

𝑠 ; 𝑡 ≤ 𝑠 ≤ 𝑇
}︁

be the (unique) solution of SDE with a.s continuous paths. We
also recall that under these conditions on 𝑏, 𝜎, 𝛼 we have (see Theorem 1.3.16 in Pham
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(2009)): ⎧⎨⎩𝐸
[︁
sup𝑡≤𝑠≤𝑇 |𝑋𝑡,𝑥

𝑠 |2
]︁
< ∞,

limℎ→0+ 𝐸
[︁
sup𝑡≤𝑠≤ℎ |𝑋

𝑡,𝑥
𝑠 − 𝑥|2

]︁
= 0.

(4)

Now we are ready to introduce the gain functional.
Let 𝑓 : [0, 𝑇 ] × R𝑛 × 𝐴 → R and 𝑔 : R𝑛 → R be two measurable functions. We suppose
that one of the following holds (Hg):[︃

(𝑖)g is lower-bounded
(𝑖𝑖)g satisfies a quadratic growth conditions: |𝑔(𝑥)| ≤ 𝐶(1 + |𝑥|2), ∀𝑥 ∈ R𝑛

For (𝑡, 𝑥) ∈ [0, 𝑇 ]×R𝑛 we denote by 𝒜(𝑡, 𝑥) the following set of controls (and we assume
that 𝒜(𝑡, 𝑥) is not empty for all (𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛):

𝒜(𝑡, 𝑥) =

{︂
𝛼 ∈ 𝒜 : E

[︂∫︁ 𝑇

𝑡
|𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠|𝑑𝑠
]︂
< ∞

}︂
.

We can then define under condition (Hg) the gain functional:

𝐽(𝑡, 𝑥, 𝛼) = E
(︂∫︁ 𝑇

𝑡
𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑔(𝑋𝑡,𝑥
𝑇 )

)︂
.

The objective is to maximize over control processes the gain functional 𝐽 , and we
introduce the associated value function:

𝑣(𝑡, 𝑥) = sup
𝛼∈𝒜(𝑡,𝑥)

𝐽(𝑡, 𝑥, 𝛼).

Given an initial condition (𝑡, 𝑥) ∈ [0, 𝑇 ]×R𝑛, we call 𝛼̂ ∈ 𝒜(𝑡, 𝑥) the optimal control if
𝑣(𝑡, 𝑥) = 𝐽(𝑡, 𝑥, 𝛼̂). We call the control Markovian, if 𝛼𝑠 = 𝑎(𝑠,𝑋𝑡,𝑥

𝑠 ) for some measurable
function 𝑎 from [0, 𝑇 ]× R𝑛 into 𝐴.

Remark 1. a) Under (Hg) we assume that 𝑔 satisfies quadratic growth conditions. If we
assume that 𝑓 also satisfies quadratic growth conditions, i.e. there exists a positive constant
𝐶 and a positive function 𝜅 : 𝐴 → R+, such that |𝑓(𝑡, 𝑥, 𝑎)| ≤ 𝐶(1+ |𝑥|2)+ 𝜅(𝑎), then due
to first part of (4) we can conclude that the constant controls from 𝒜 lie in 𝒜(𝑡, 𝑥).

b) Moreover, if in addition to |𝑓(𝑡, 𝑥, 𝑎)| ≤ 𝐶(1 + |𝑥|2) + 𝜅(𝑎) there exists a positive
constant 𝐶 such that 𝜅(𝑎) ≤ 𝐶(1+ |𝑏(0, 𝑎)|2+ |𝜎(0, 𝑎)|2), for all 𝑎 ∈ 𝐴, then conditions (3)
and (4) show that for all (𝑡, 𝑥) ∈ [0, 𝑇 ]×R𝑛, 𝛼 ∈ 𝒜 we have: E

[︁∫︀ 𝑇
𝑡 |𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠|𝑑𝑠
]︁
< ∞,

which means that 𝒜 and 𝒜(𝑡, 𝑥) coincide.

2.3 Infinite time horizon problem setting

We denote by 𝒜 the set of control processes 𝛼 such that

𝒜 =

{︂
𝛼 ∈ R𝑛 : E

(︂∫︁ +∞

0
|𝑏(0, 𝛼𝑡)|2 + |𝜎(0, 𝛼𝑡)

2|𝑑𝑡
)︂

< ∞.

}︂
(5)
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Given an initial condition 𝑡 = 0, 𝑥 ∈ R𝑛, and a control 𝛼 ∈ 𝒜, there exists a unique
strong solution of SDE (1) starting from 𝑥 at 𝑡 = 0, that we denote by {𝑋𝑥

𝑠 ; 𝑡𝑠 ≥ 0}.
According to Theorem 1.3.16 from Pham (2009), we have the following estimate:

E
[︀
|𝑋𝑥

𝑠 |2
]︀
≤ 𝐶|𝑥|2 + 𝐶𝑒𝐶𝑠E

[︂∫︁ 𝑠

0
|𝑥|2 + |𝑏(0, 𝛼𝑢|2 + |𝜎(0, 𝛼𝑢)|2𝑑𝑢

]︂
(6)

for some constant 𝐶, independent of 𝑠, 𝑥, 𝛼.
Now we are ready to define the gain functional.

Let 𝛽 > 0 and 𝑓 : R𝑛 × 𝐴 → R be a measurable function. We introduce set of controls
𝒜(𝑥) and assume that it is not empty for all 𝑥 ∈ R𝑛.

𝒜(𝑥) =

{︂
𝛼 ∈ 𝒜0 : E

(︂∫︁ +∞

0
𝑒−𝛽𝑠|𝑓(𝑋𝑥

𝑠 , 𝛼𝑠)|𝑑𝑠
)︂

< ∞.

}︂
(7)

We then define the gain functional:

𝐽(𝑥, 𝛼) = E
(︂∫︁ +∞

𝑡
𝑒−𝛽𝑠𝑓(𝑋𝑥

𝑠 , 𝛼𝑠)𝑑𝑠

)︂
.

The objective is to maximize over control processes the gain functional 𝐽 , and we
introduce the associated value function:

𝑣(𝑥) = sup
𝛼∈𝒜(𝑥)

𝐽(𝑥, 𝛼).

Given an initial condition 𝑥 ∈ R𝑛, we call 𝛼̂ ∈ 𝒜(𝑥) the optimal control if 𝑣(𝑥) =
𝐽(𝑥, 𝛼̂). We call the control Markovian, if 𝛼𝑠 = 𝑎(𝑋𝑥

𝑠 ) for some measurable function 𝑎
from R+ × R𝑛 into 𝐴.

Notice that it is important to suppose here that the function 𝑓(𝑥, 𝑎) does not depend
on time in order to get the stationarity of the problem, i.e. the value function does not
depend on the initial date at which the optimization problem is considered.

Remark 2. When 𝑓 satisfies a quadratic growth condition in 𝑥, i.e. there exist a posi-
tive constant 𝐶 and a positive function 𝜅 : 𝐴 → R+ such that |𝑓(𝑥, 𝑎) ≤ 𝐶(1 + |𝑥|2) +
𝜅(𝑎),∀(𝑥, 𝑎) ∈ R𝑛 × 𝐴, then estimate (6) shows that for 𝛽 > 0 large enough, for all
𝑥 ∈ R𝑛, 𝑎 ∈ 𝐴 we have E

[︁∫︀ +∞
0 𝑒−𝛽𝑠|𝑓(𝑋𝑥

𝑠 , 𝛼𝑠)|𝑑𝑠
]︁
< ∞, meaning that the constant con-

trols from 𝒜 lie in 𝒜(𝑥).

2.4 Approach 1: dynamical programming principle, HJB equation, ver-
ification theorem

2.4.1 Dynamical programming principle

The dynamic programming principle (DPP) is a fundamental principle in the theory of
stochastic control. In the context of controlled diffusion processes described in the previous
section, and in fact more generally for controlled Markov processes, it is formulated as
follows:

Theorem 1. (Dynamical programming principle, Theorem 3.1.1 in Pham (2009))
(1) Finite horizon: let (𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛.

Then we have

𝑣(𝑡, 𝑥) = sup
𝛼∈𝒜(𝑡,𝑥)

sup
𝜃∈𝜏𝑡,𝑇

E
(︂∫︁ 𝜃

𝑡
𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑣(𝜃,𝑋𝑡,𝑥
𝜃 )

)︂
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= sup
𝛼∈𝒜(𝑡,𝑥)

inf
𝜃∈𝜏𝑡,𝑇

E
(︂∫︁ 𝜃

𝑡
𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑣(𝜃,𝑋𝑡,𝑥
𝜃 )

)︂
.

(1) Infinite horizon: let 𝑥 ∈ R𝑛.
Then we have

𝑣(𝑥) = sup
𝛼∈𝒜(𝑥)

sup
𝜃∈𝜏

E
(︂∫︁ 𝜃

𝑡
𝑒−𝛽𝑠𝑓(𝑋𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑒−𝛽𝜃𝑣(𝑋𝑥
𝜃 )

)︂

= sup
𝛼∈𝒜(𝑥)

inf
𝜃∈𝜏

E
(︂∫︁ 𝜃

𝑡
𝑒−𝛽𝑠𝑓(𝑋𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑒−𝛽𝜃𝑣(𝑋𝑥
𝜃 )

)︂
.

Here we denote by 𝜏𝑡,𝑇 the set of stopping times with values in [𝑡, 𝑇 ].

Remark 3. In case of finite horizon :
a) The given above formulation of DPP is equivalent to:⎧⎨⎩∀𝛼 ∈ 𝒜(𝑡, 𝑥), 𝜃 ∈ 𝜏𝑡,𝑇 : 𝑣(𝑡, 𝑥) ≥ E

(︁∫︀ 𝜃
𝑡 𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑣(𝜃,𝑋𝑡,𝑥
𝜃 )
)︁

∀𝜖 > 0,∃𝛼 ∈ 𝒜(𝑡, 𝑥) : ∀𝜃 ∈ 𝜏𝑡,𝑇 : 𝑣(𝑡, 𝑥)− 𝜖 ≤ E
(︁∫︀ 𝜃

𝑡 𝑓(𝑠,𝑋𝑡,𝑥
𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑣(𝜃,𝑋𝑡,𝑥

𝜃 )
)︁

b) Also note that the given above formulation of the DPP is the stronger version of usual
finite horizon dynamical programming principle (where 𝜃 is fixed):

𝑣(𝑡, 𝑥) = sup
𝛼∈𝒜(𝑡,𝑥)

E
(︂∫︁ 𝜃

𝑡
𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑣(𝜃,𝑋𝑡,𝑥
𝜃 )

)︂
,∀𝜃 ∈ 𝜏𝑡,𝑇 . (8)

The proof of this theorem can be seen in Chapter 3.3 of Pham (2009).

2.4.2 HJB equation derivation

The Hamilton-Jacobi-Bellman equation (HJB) is the infinitesimal version of the dy-
namic programming principle: it describes the local behavior of the value function when
we send the stopping time 𝜃 in (8) to 𝑡.

For finite horizon, we put at DDP (8) 𝜃 := 𝑡+ ℎ, assume that 𝑣 is sufficiently smooth,
apply Ito’s formula, go to limit ℎ → 0 and obtain that 𝑣 should satisfy the following
equation:

−𝜕𝑣

𝜕𝑡
(𝑡, 𝑥)− sup

𝑎∈𝐴
[ℒ𝑎𝑣(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑎)] = 0, ∀(𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛.

We often rewrite this PDE in the form:

−𝜕𝑣

𝜕𝑡
(𝑡, 𝑥)−𝐻(𝑡, 𝑥,𝐷𝑥𝑣(𝑡, 𝑥), 𝐷

2
𝑥𝑥𝑣(𝑡, 𝑥)) = 0,∀(𝑡, 𝑥)𝑖𝑛[0, 𝑇 ]× R𝑛 (9)

where for (𝑡, 𝑥, 𝑝,𝑀) ∈ [0, 𝑇 ]× R𝑛R⋉ × 𝑆𝑛

𝐻(𝑡, 𝑥, 𝑝,𝑀) = sup
𝑎∈𝐴

[︂
𝑏(𝑥, 𝑎)𝑝+

1

2
𝑡𝑟(𝜎𝜎𝑇 (𝑥, 𝑎)𝑀) + 𝑓(𝑡, 𝑥, 𝑎)

]︂
.
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This function 𝐻 is called the Hamiltonian of the associated control problem. The equa-
tion (10) is called the dynamic programing equation or Hamilton-Jacobi-Bellman (HJB)
equation. The regular terminal condition associated to this PDE is

𝑣(𝑇, 𝑥) = 𝑔(𝑥), ∀𝑥 ∈ R𝑛.

For infinite horizon, we can use similar arguments as in the finite horizon case to derive
formally the HJB equation for the value function:

𝛽𝑣(𝑥)− sup
𝑎∈𝐴

[ℒ𝑎𝑣(𝑥) + 𝑓(𝑥, 𝑎)] = 0,∀𝑥 ∈ R𝑛,

which may be rewritten also as

𝛽𝑣(𝑥)−𝐻(𝑥,𝐷𝑥𝑣(𝑥), 𝐷
2
𝑥𝑥𝑣(𝑥)) = 0,∀𝑥 ∈ R𝑛, (10)

where for (𝑥, 𝑝,𝑀) ∈ R𝑛 × R𝑛 × 𝑆𝑛:

𝐻(𝑥, 𝑝,𝑀) = sup
𝑎∈𝐴

[︂
𝑏(𝑥, 𝑎)𝑝+

1

2
𝑡𝑟(𝜎𝜎𝑇 (𝑥, 𝑎)𝑀) + 𝑓(𝑥, 𝑎)

]︂
.

2.4.3 Verification theorem

Theorem 2. (Verification theorem for finite horizon, Theorem 3.5.2 in Pham (2009))
Let 𝜔 be a function in 𝐶1,2 ([0, 𝑇 )× R𝑛) ∩ 𝐶0 ([0, 𝑇 ]× R𝑛) and satisfying quadratic

growth condition, i.e. there exists a constant 𝐶 such that |𝑤(𝑡, 𝑥)| ≤ 𝐶(1 + |𝑥|2) for all
(𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛.

1) Suppose that{︃
−𝜕𝑤

𝜕𝑡 (𝑡, 𝑥)− sup𝑎∈𝐴 [ℒ𝑎𝑤(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑎)] ≥ 0, (𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛,

𝑤(𝑇, 𝑥) ≥ 𝑔(𝑥), 𝑥 ∈ R𝑛

Then 𝑤 ≥ 𝑣 on [0, 𝑇 ]× R𝑛.

2) Suppose further that 𝑤(𝑇.) = 𝑔, and there exists measurable control 𝛼̂(𝑡, 𝑥) ∈ 𝐴 such
that

−𝜕𝑤

𝜕𝑡
(𝑡, 𝑥)− sup

𝑎∈𝐴
[ℒ𝑎𝑤(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑎)] = −𝜕𝑤

𝜕𝑡
(𝑡, 𝑥)− ℒ𝛼̂(𝑡,𝑥)𝑤(𝑡, 𝑥)− 𝑓(𝑡, 𝑥, 𝛼̂(𝑡, 𝑥)) = 0

and SDE
𝑑𝑋𝑠 = 𝑏(𝑋𝑠, 𝛼̂(𝑠,𝑋𝑠))𝑑𝑠+ 𝜎(𝑋𝑠, 𝛼̂(𝑠,𝑋𝑠))𝑑𝑊𝑠

admits a unique solution, denoted by 𝑋̂𝑡,𝑥
𝑠 , given an initial condition 𝑋𝑡 = 𝑥, and the

process
{︁
𝛼̂(𝑠, 𝑋̂𝑡,𝑥

𝑆 )
}︁

lies in 𝒜(𝑡, 𝑥).
Then 𝑤 = 𝑣 on [0, 𝑇 ]× R𝑛, and 𝛼̂ is an optimal markovian control.

Theorem 3. (Verification theorem for infinite horizon, Theorem 3.5.3 in Pham (2009))
Let 𝜔 ∈ 𝐶2 (R𝑛) and satisfies a quadratic growth condition, i.e. there exists a constant

𝐶 such that |𝑤(𝑥)| ≤ 𝐶(1 + |𝑥|2) for all 𝑥 ∈ R𝑛.
1) Suppose that{︃

𝛽𝑤(𝑥)− sup𝑎∈𝐴 [ℒ𝑎𝑤(𝑥) + 𝑓(𝑥, 𝑎)] ≥ 0, 𝑥 ∈ R𝑛,

lim sup𝑇→+∞ 𝑒−𝛽𝑇E𝑤(𝑋𝑥
𝑇 ),∀𝑥 ∈ R𝑛,∀𝛼 ∈ 𝒜(𝑥).

8



Then 𝑤 ≥ 𝑣 on R𝑛.

2) Suppose further that for all 𝑥 ∈ R𝑛 there exists measurable control 𝛼̂(𝑥) ∈ 𝐴 such
that

𝛽𝑤(𝑥)− sup
𝑎∈𝐴

[ℒ𝑎𝑤(𝑥) + 𝑓(𝑥, 𝑎)] = 𝛽𝑤 − ℒ𝛼̂(𝑥)𝑤(𝑥)− 𝑓(𝑥, 𝛼̂(𝑡, 𝑥)) = 0

and SDE
𝑑𝑋𝑠 = 𝑏(𝑋𝑠, 𝛼̂(𝑠,𝑋𝑠))𝑑𝑠+ 𝜎(𝑋𝑠, 𝛼̂(𝑠,𝑋𝑠))𝑑𝑊𝑠

admits a unique solution, denoted by 𝑋̂𝑥
𝑠 , given an initial condition 𝑋0 = 𝑥, satisfying

lim inf𝑇→+∞ 𝑒−𝛽𝑇𝐸𝑤(𝑋̂𝑥
𝑇 ) ≤ 0, and the process

{︁
𝛼̂(𝑠, 𝑋̂𝑥

𝑆)
}︁

lies in 𝒜(𝑥).
Then 𝑤(𝑥) = 𝑣(𝑥) on R𝑛, and 𝛼̂ is an optimal Markovian control.

2.5 Approach 2: Pontryagin’s stochastic maximum principle

In the previous section, we studied how to solve a stochastic control problem by the
dynamic programming method. We present here an alternative approach, called Pontryagin
maximum principle, that is based on optimality conditions for controls.

We consider the framework of a stochastic control problem on a finite horizon as defined
before in Section 2.2.

We define the generalized Hamiltonian ℋ : [0, 𝑇 ]× R𝑛 ×𝐴× R𝑛×𝑑 → R by

ℋ(𝑡, 𝑥, 𝑎, 𝑦, 𝑧) = 𝑏(𝑥, 𝑎)𝑦 + 𝑡𝑟(𝜎𝑇 (𝑥, 𝑎)𝑧) + 𝑓(𝑡, 𝑥, 𝑎),

and we assume that ℋ is differentiable in 𝑥 with derivative denoted by 𝐷𝑥ℋ. We consider
for each 𝛼 ∈ 𝒜, the BSDE, called the adjoint equation:

−𝑑𝑌𝑡 = 𝐷𝑥ℋ(𝑡,𝑋𝑡, 𝛼𝑡, 𝑌𝑡, 𝑍𝑡)𝑑𝑡− 𝑍𝑡𝑑𝑊𝑡, 𝑌𝑇 = 𝐷𝑥𝑔(𝑋𝑇 ). (11)

Theorem 4. (Pontryagin’s stochastic maximum principle, see Theorem 6.4.6 in Pham
(2009))

Let 𝛼̂ ∈ 𝒜 and 𝑋̂ be the associated controlled diffusion. Suppose that there exists a
solution (𝑌 , 𝑍) to the associated BSDE (11) such that

ℋ(𝑡, 𝑋̂𝑡, 𝛼̂𝑡, 𝑌𝑡, 𝑍𝑡) = max
𝑎∈𝐴

ℋ(𝑡, 𝑋̂𝑡, 𝑎, 𝑌𝑡, 𝑍𝑡), 0 ≤ 𝑡 ≤ 𝑇, 𝑎.𝑠.

and
(𝑥, 𝑎) → ℋ(𝑡, 𝑥, 𝑎, 𝑌𝑡, 𝑍𝑡) is a concave function for all 𝑡 ∈ [0, 𝑇 ].

Then 𝛼̂ is an optimal control, i.e.

𝐽(𝛼̂) = sup
𝛼∈𝒜

𝐽(𝑡, 𝑥, 𝛼).

We want to provide the connection between maximum principle and dynamic program-
ming. The value function of the stochastic control problem considered above is defined by

𝑣(𝑡, 𝑥) = sup
𝛼∈𝒜

E
(︂∫︁ 𝑇

𝑡
𝑓(𝑠,𝑋𝑡,𝑥

𝑠 , 𝛼𝑠)𝑑𝑠+ 𝑔(𝑋𝑡,𝑥
𝑇 )

)︂
, (12)

where
{︁
𝑋𝑡,𝑥

𝑠 , 𝑡 ≤ 𝑠 ≤ 𝑇
}︁

is the solution to SDE (??), starting from 𝑥 at 𝑡. Recall that the
associated Hamilton-Jacobi-Bellman equation is

−𝜕𝑣

𝜕𝑡
(𝑡, 𝑥)− sup

𝑎∈𝐴
𝒢(𝑡, 𝑥, 𝑎,𝐷𝑥𝑣,𝐷

2
𝑥𝑥𝑣) = 0, ∀(𝑡, 𝑥) ∈ [0, 𝑇 ]× R𝑛, (13)
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where for (𝑡, 𝑥, 𝑎, 𝑝,𝑀) ∈ [0, 𝑇 ]× R𝑛 ×𝐴× R⋉ × 𝑆𝑛 :

𝒢(𝑡, 𝑥, 𝑝,𝑀) = [𝑏(𝑥, 𝑎)𝑝+
1

2
𝑡𝑟(𝜎𝜎𝑇 (𝑥, 𝑎)𝑀) + 𝑓(𝑡, 𝑥, 𝑎)].

Theorem 5. (Connection between DPP and Pontryagin’s maximum principle, see Theo-
rem 6.4.7 in Pham (2009))
Suppose that 𝑣 ∈ 𝐶1,3 ([0, 𝑇 )× R𝑛) ∩ 𝐶0 ([0, 𝑇 ]× R𝑛) and there exists an optimal control
𝛼̂ ∈ 𝒜 to optimal control problem (12) with associated controlled diffusion 𝑋̂. Then

𝒢(𝑡, 𝑋̂𝑡, 𝛼̂𝑡,𝐷𝑥𝑣(𝑡, 𝑋̂𝑡), 𝐷
2
𝑥𝑥𝑣(𝑡, 𝑋̂𝑡)) = max

𝑎∈𝐴
𝒢(𝑡, 𝑋̂𝑡, 𝑎,𝐷𝑥𝑣(𝑡, 𝑋̂𝑡), 𝐷

2
𝑥𝑥𝑣(𝑡, 𝑋̂𝑡))

and the pair
(𝑌𝑡, 𝑍𝑡) = (𝐷𝑥𝑣(𝑡, 𝑋̂𝑡), 𝐷

2
𝑥𝑥𝑣(𝑡, 𝑋̂𝑡)𝜎(𝑋̂𝑡, 𝛼̂𝑡)),

is solution to the adjoint BSDE (11).

2.6 Discussion

In the statement of a Pontryagin-type maximum principle there is an adjoint equation,
which is an ordinary differential equation (ODE) in the (finite-dimensional) determinis-
tic case and a stochastic differential equation (SDE) in the stochastic case. The system
consisting of the adjoint equation, the original state equation, and the maximum condi-
tion is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman’s
dynamic programming, there is a partial differential equation (PDE), of first order in the
(finite-dimensional) deterministic case and of second order in the stochastic case. This is
known as a Hamilton-Jacobi-Bellman (HJB) equation.

Note that one easily sees a strong analogy between optimal control and analytic me-
chanics. This is not surprising, however, since the classical calculus of variations, which is
the foundation of analytic mechanics, is indeed the origin of optimal control theory.

For more detailed comparison of DPP and Pontryagin’s maximum principle one can
refer to Yong and Zhou (1999).

3 Application 1: Merton problem

In this section we will illustrate how to solve the well-known Merton problem with
two previously defined approaches: HJB equation and Pontryagin’s stochastic maximum
principle. As far as we know, in the literature this problem is always solved via HJB
approach, and never via Pontryagin’s stochastic maximum principle.

We consider a financial market consisting of a riskless asset with strictly positive price
process 𝐵𝑡 representing the savings account, and a risky asset of price process 𝑆𝑡, repre-
senting stock. An agent may invest in this market at any time 𝑡, with a number of shares
𝛼𝑡 in the risky asset.

This process 𝛼𝑡 valued in 𝐴, subset of R𝑛, is the control. The portfolio allocation
problem is to choose optimally the proportions of capital to invest in each of two assets.
One of the classical modeling for describing the behavior and preferences of agents and
investors is the expected utility criterion (while second well-known approach is mean-
variance criterion). For a longer discussion on the preferences representation of agents, one
can refer to Föllmer and Schied Föllmer and Schied (2002). In this portfolio allocation
context, the criterion consists of maximizing the expected utility of terminal wealth on a
finite horizon 𝑇 < +∞: that is, finding sup𝛼 𝑢(𝑋𝑇 ).
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The problem originally studied by Merton in Merton (1969) is a particular case of the
model described above with a Black-Scholes model for the risky asset and a power utility
function.

3.1 Problem without consumption

We have a risky asset 𝑆𝑡 and a bank account 𝐵𝑡, with 𝜇 > 𝑟, since otherwise there is
no sense to invest in stock at all: {︃

𝑑𝑆𝑡
𝑆𝑡

= 𝜇𝑑𝑡+ 𝜎𝑑𝑊𝑡

𝑑𝐵𝑡
𝐵𝑡

= 𝑟𝑑𝑡

The space of controls is 𝑈 = R. We allow only for square-integrable controls since we
want the solution of SDE to exist:

𝒜 =

{︂
𝛼 : [0, 𝑇 ] → 𝑈 : E

∫︁ 𝑇

0
|𝛼𝑡|2𝑑𝑡 < ∞

}︂
.

Denote by 𝑋𝑡 the capital of the investor at time 𝑡. Investor allocates some fraction 𝛼𝑡

of his capital 𝑋𝑡 into the risky asset 𝑆𝑡 (so the amount of shares of risky asset that he
bought is 𝛼𝑡𝑋𝑡

𝑆𝑡
) and the rest (1− 𝛼𝑡)𝑋𝑡 amount of money he puts onto the bank account.

Hence the evolution of the investor’s capital 𝑋𝑡 is described by the following SDE:

𝑑𝑋𝑡 =
𝛼𝑡𝑋𝑡

𝑆𝑡
𝑑𝑆𝑡 +

(1− 𝛼𝑡)𝑋𝑡

𝐵𝑡
𝑑𝐵𝑡.

Plugging here the SDE for 𝑆𝑡, we obtain:

𝑑𝑋𝑡 = 𝑋𝑡𝛼𝑡(𝜇𝑑𝑡+ 𝜎𝑑𝑊𝑡) +𝑋𝑡(1− 𝛼𝑡)𝑟𝑑𝑡 = (𝛼𝑡𝜇+ (1− 𝛼𝑡)𝑟)𝑋𝑡𝑑𝑡+ 𝛼𝑡𝜎𝑋𝑡𝑑𝑊𝑡

The investor’s goal is to maximize the PnL at the last point:

𝐽(𝛼) = E𝑢(𝑋𝑇 )

Utility function 𝑢(𝑥) here (and in very many other problems) is 𝑢(𝑥) = 𝑥𝑝

𝑝 , 𝑝 ∈ (0, 1).
Note that Merton problem is also solvable for another utility function: 𝑢(𝑥) = ln(𝑥). And
it is not very surprising, since ln(𝑥) is the limit of 𝑥𝑝

𝑝 as 𝑝 → 0.
The value function that we want to find is

𝑣(𝑡, 𝑥) = sup
𝛼∈𝒜

E𝑢(𝑋𝑇 ).

3.1.1 Solution by HJB method

The goal functional in Merton problem is the special case of the functional 𝐽 that we
studied in Chapter 2. So we can write the HJB equation with boundary condition for 𝐽 :

{︃
𝑣′𝑡(𝑡, 𝑥) + min𝛼∈𝑈

{︀
𝑓(𝑡, 𝑥, 𝛼) +∇𝑣(𝑥, 𝑡)𝑏(𝑡, 𝑥, 𝛼𝑡) + 𝑡𝑟(12𝜎𝜎

𝑇 (𝑡, 𝑥, 𝛼𝑡)𝐷
2𝑣(𝑡, 𝑥))

}︀
= 0

𝑣(𝑇, 𝑥) = 𝑢(𝑥)

=⇒

{︃
𝑣′𝑡 + sup𝛼∈𝒜

{︀
(𝛼𝜇+ (1− 𝛼)𝑟)𝑥𝑣′𝑥 +

1
2𝛼

2𝜎2𝑥2𝑉 ′′
𝑥𝑥

}︀
= 0

𝑣(𝑇, 𝑥) = 𝑢(𝑥)
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First let’s calculate the supremum over 𝛼 and denote 𝑦 := 𝑣′𝑥, 𝑧 = 𝑣′′𝑥𝑥 for simplicity:

𝐻(𝑥, 𝑦, 𝑧) = sup
𝛼∈R

{︂
(𝛼𝜇+ (1− 𝛼)𝑟)𝑥𝑣′𝑥 +

1

2
𝛼2𝜎2𝑥2𝑣′′𝑥𝑥

}︂
This is a parabola over 𝛼, if 𝑧 < 0, maximum is attained at the top of parabola at

𝛼 = −(𝜇−𝑟)𝑦
𝜎2𝑥𝑧

, and if 𝑧 ≥ 0, maximum is +∞. In other words,

𝐻(𝑥, 𝑦, 𝑧) =

{︃
𝑟𝑥𝑦 − (𝜇−𝑟)2𝑦2

2𝜎2𝑧
, if 𝑧 < 0

+∞, if 𝑧 ≥ 0

Let’s assume for now that our solution satisfies 𝑧 < 0 (we will check this later) and plug
found 𝐻 into HJB equation: {︃

𝑣′𝑡 + 𝑟𝑥𝑦 − (𝜇−𝑟)2(𝑣′𝑥)
2

2𝜎2𝑣′′𝑥𝑥

𝑣(𝑇, 𝑥) = 𝑢(𝑥) := 𝑥𝑝

𝑝

Let’s look for the solution in the form 𝑣(𝑡, 𝑥) = 𝑓(𝑥)𝜑(𝑡).
From boundary condition we have 𝑣(𝑇, 𝑥) = 𝑓(𝑥)𝜑(𝑇 ) = 𝑢(𝑥) = 𝑥𝑝

𝑝 , hence 𝑓(𝑥) = 𝑥𝑝

𝑝 and
𝜑(𝑇 ) = 1. To find 𝜑(𝑡) we plug the form of 𝑣(𝑡, 𝑥) into the equation:

𝜑′(𝑡)
𝑥𝑝

𝑝
+ 𝑟𝑥𝜑(𝑡)𝑥𝑝−1 − (𝜇− 𝑟)2𝑥2𝑝−2

2𝜎2(𝑝− 1)𝑥𝑝−2
𝜑(𝑡) = 0

Hence {︃
𝜑′(𝑡) = 𝜑(𝑡)𝑝

(︁
(𝜇−𝑟)2

2𝜎2(𝑝−1)
− 𝑟
)︁

𝜑(𝑇 ) = 1

If we denote by 𝛾 :=
(𝜇− 𝑟)2

2𝜎2(𝑝− 1)
− 𝑟 , then we will have 𝜑(𝑡) = 𝑒𝛾(𝑡−𝑇 ) and hence

𝑣(𝑡, 𝑥) = 𝑒𝛾(𝑡−𝑇 )𝑥
𝑝

𝑝

Finally, we need to check that 𝑣′′𝑥𝑥 < 0: this is true due to the fact that 𝑝 ∈ (0, 1):

𝑣′′𝑥𝑥 = 𝑒𝛾(𝑡−𝑇 )(𝑝− 1)𝑥𝑝−2 < 0

And we also note that the optimal control is

𝛼̂𝑡 =
−(𝜇− 𝑟)𝑦

𝜎2𝑥𝑧
=

𝜇− 𝑟

𝜎2(1− 𝑝)
> 0

So surprisingly the optimal way of trading is to have a non-changing-in-time fraction
of capital invested in the risky asset regardless of the time and amount of capital!

Here we show the graph of utility of terminal wealth for 𝜇 = 0.3, 𝑟 = 0.2, 𝜎 = 0.5, 𝑇 =
10, 𝑝 = 0.5, 𝑆0 = 50, 𝐵0 = 1, 𝑋0 = 100.
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Figure 1: Utility of terminal wealth for 𝜇 = 0.3, 𝑟 = 0.2, 𝜎 = 0.5, 𝑇 = 10, 𝑝 = 0.5, 𝑆0 =
50, 𝐵0 = 1, 𝑋0 = 100

3.1.2 Solution by Pontryagin’s stochastic maximum method

The problem can be written as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽(𝛼.) = 𝐸𝑢(𝑋𝑇 ) → max𝛼

𝑑𝑋𝑡 = (𝛼𝑡𝜇+ (1− 𝛼𝑡)𝑟)𝑋𝑡𝑑𝑡+ 𝛼𝑡𝜎𝑋𝑡𝑑𝑊𝑡

𝑋0 = 𝑦 = 𝑐𝑜𝑛𝑠𝑡

𝑢(𝑋𝑇 ) =
𝑋𝑝

𝑇
𝑝 (0 < 𝑝 < 1 in order for utility function to be concave)

First we write down the Hamiltonian:

𝐻(𝑡, 𝑥, 𝑎, 𝑦, 𝑧) = 𝑏 · 𝑦 + 𝑇𝑟(𝜎𝑇 𝑧) + 𝑓 = (𝑎𝜇+ (1− 𝑎)𝑟)𝑥𝑦 + 𝜎𝑎𝑥𝑧 .

For optimality over 𝑥 we write the adjoint equation:

𝑑𝑦𝑡 = −𝜕𝐻

𝜕𝑥
𝑑𝑡+ 𝑧𝑡𝑑𝑊𝑡.

To write the adjoint equation in case of Merton problem, we need to compute 𝜕𝐻
𝜕𝑥 and 𝑧𝑡.

For 𝜕𝐻
𝜕𝑥 just differentiate 𝐻:

𝜕𝐻

𝜕𝑥
= (𝑎𝜇+ (1− 𝑎)𝑟)𝑦 + 𝜎𝑎𝑧

For 𝑧𝑡 we write Pontryagin’s stochastic maximum principle and ask for the derivative of
𝐻 over 𝛼 to be equal to zero:

𝜕𝐻

𝜕𝑎
= (𝜇− 𝑟)𝑥𝑦 + 𝜎𝑥𝑧 = 0
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=> 𝑧 =
−(𝜇− 𝑟)𝑦

𝜎

Now plug found 𝑧𝑡 and 𝜕𝐻
𝜕𝑥 into the adjoint equation:

𝑑𝑌𝑡 = −𝜕𝐻

𝜕𝑥
𝑑𝑡+ 𝑧𝑡𝑑𝑊𝑡 = − ((𝑎𝜇+ (1− 𝑎)𝑟)𝑌𝑡 − 𝜎𝑎𝑧𝑡) 𝑑𝑡+ 𝑧𝑡𝑑𝑊𝑡 =

= −
(︂
(𝑎𝜇+ (1− 𝑎)𝑟)𝑌𝑡 − 𝜎𝑎

−(𝜇− 𝑟)𝑌𝑡
𝜎

)︂
𝑑𝑡− (𝜇− 𝑟)𝑌𝑡

𝜎
𝑑𝑊𝑡 =

= −𝑟𝑌𝑡𝑑𝑡−
(𝜇− 𝑟)𝑌𝑡

𝜎
𝑑𝑊𝑡.

So 𝑌𝑡 is Geometrical Brownian Motion (GBM) with exact solution

𝑌𝑡 = 𝑌0 exp

{︂(︂
−𝑟 − (𝜇− 𝑟)2

2𝜎2

)︂
𝑡− (𝜇− 𝑟)

𝜎
𝑊𝑡

}︂
Note that from boundary condition we require that

𝑌𝑇 = 𝑢′(𝑋𝑇 ) = 𝑋𝑝−1
𝑇

But 𝑋𝑡 is also GBM with exact solution (we will look for 𝛼𝑡 ≡ 𝑎):

𝑋𝑡 = 𝑋0 exp

{︂(︂
𝑎𝜇+ (1− 𝑎)𝑟 − 𝑎2𝜎2

2

)︂
𝑡+ 𝑎𝜎𝑊𝑡

}︂
So from boundary condition 𝑌𝑇 = 𝑋𝑝−1

𝑇 we obtain:

𝑌0𝑒

{︂(︂
−𝑟− (𝜇−𝑟)2

2𝜎2

)︂
𝑇− (𝜇−𝑟)

𝜎
𝑊𝑇

}︂
= 𝑋0𝑒

{︁
(𝑝−1)

(︁
𝑎𝜇+(1−𝑎)𝑟−𝑎2𝜎2

2

)︁
𝑇+(𝑝−1)𝑎𝜎𝑊𝑇

}︁

=> −(𝜇− 𝑟)

𝜎
= 𝑎̂𝜎(𝑝− 1)

=> 𝑎̂ =
(𝜇− 𝑟)

𝜎2(1− 𝑝)

Note that the answer coincides with the one that we obtained by HJB equation ap-
proach.

3.2 Merton problem with consumption

We can slightly modify Merton problem: we allow the investor to consume the capital
with rate 𝑐𝑡, also chosen by investor. This means that at each point of the horizon [0, 𝑇 ]
investor consumes 𝑐𝑡𝑋𝑡 amount of money, which is counted (as in the previous example
without consumption) with utility functional 𝑢(𝑥) = 𝑥𝑝

𝑝 , 𝑝 ∈ (0, 1) for utility function to
be concave. We allow one more parameter, 𝛽, to regulate, how much or less valuable for
the investor is to consume at the terminal point of time 𝑇 rather than at times 𝑡 < 𝑇 .
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3.2.1 Solution by Pontryagin’s stochastic maximum principle

{︃
𝐽(𝑎.) = E

(︁∫︀ 𝑇
0

(𝑐𝑡𝑋𝑡)𝑝

𝑝 𝑑𝑡+ 𝛽
𝑋𝑝

𝑇
𝑝

)︁
𝑑𝑋𝑡 = (𝑎𝑡𝜇+ (1− 𝑎𝑡)𝑟 − 𝑐𝑡)𝑋𝑡𝑑𝑡+ 𝜎𝑎𝑡𝑋𝑡𝑑𝑊𝑡

Hamiltonian:

𝐻(𝑡, 𝑥, 𝑎, 𝑦, 𝑧, 𝑐) = (𝑎𝜇+ (1− 𝑎)𝑟 − 𝑐)𝑥𝑦 + 𝜎𝑎𝑥𝑦 +
(𝑐𝑥)𝑝

𝑝

We want to maximize 𝐻 over 𝑎, 𝑐:⎧⎪⎪⎨⎪⎪⎩
1)𝐻 ′

𝑎 = 0 : (𝜇− 𝑟)𝑥𝑦 + 𝜎𝑥𝑧 = 0 => 𝑧 = −(𝜇− 𝑟)𝑦

𝜎

2)𝐻 ′
𝑐 = 0 : −𝑥𝑦 + 𝑐𝑝−1𝑥𝑝 = 0 => 𝑐𝑝−1 =

𝑦

𝑥𝑝−1

Now write the equation for 𝑌𝑡:

𝑑𝑌𝑡 = −𝐻̂ ′
𝑥𝑑𝑡+ 𝑧𝑡𝑑𝑊𝑡

We can write down the derivatives of 𝐻:

𝐻̂ ′
𝑥 = (𝑎̂𝜇+ (1− 𝑎̂)𝑡− 𝑐)𝑦 + 𝜎𝑎̂𝑧 + 𝑐𝑝𝑥𝑝−1 =

= (𝑎̂𝜇+ (1− 𝑎̂)𝑡− 𝑐)𝑦 − (𝑚𝑢− 𝑟)𝑎̂𝑦 + 𝑐𝑝𝑥𝑝−1 = (𝑟 − 𝑐)𝑦 + 𝑐𝑦 = 𝑟𝑦

Hence
𝑑𝑌𝑡 = −𝑟𝑌𝑡𝑑𝑡−

(𝜇− 𝑟)𝑌𝑡
𝜎𝑡

𝑑𝑊𝑡

It is a GBM with the following solution:

𝑌𝑡 = 𝑌0 exp

{︂
−(𝜇− 𝑟)

𝜎
𝑊𝑡 −

(︂
𝑟 +

(𝜇− 𝑟)2

2𝜎2

)︂
𝑡

}︂
Now we will look for constant 𝑎𝑡 ≡ 𝑎, 𝑐𝑡 ≡ 𝑐, and in this case 𝑋𝑡 is also a GBM with

exact solution:
𝑋𝑡 = 𝑋0𝑒

{︁(︁
𝑎𝜇+(1−𝑎)𝑟−𝑐𝑎2𝜎2

2

)︁
𝑇+𝑎𝜎𝑊𝑇

}︁
And we want that 𝑌𝑇 = 𝑢′(𝑋𝑇 ) = 𝛽𝑋𝑝−1

𝑇 .
Hence we equate two solutions of GBM:

𝑌0𝑒

{︂
− (𝜇−𝑟)

𝜎
𝑊𝑇−

(︂
𝑟+

(𝜇−𝑟)2

2𝜎2

)︂
𝑇

}︂
= 𝛽𝑋𝑝−1

0 𝑒

{︁
(𝑝−1)

(︁
𝑎𝜇+(1−𝑎)𝑟−𝑐−𝑎2𝜎2

2

)︁
𝑇+(𝑝−1)𝑎𝜎𝑊𝑇

}︁

Hence
−(𝜇− 𝑟)

𝜎
= (𝑝− 1)𝜎𝑎

=> 𝑎̂ =
𝜇− 𝑟

(1− 𝑝)𝜎2

Interestingly enough, the optimal strategy is the same as in the problem without con-
sumption! And we can also find the optimal consumption:

𝑐 =
𝑦

1
𝑝−1

𝑥
= 𝛽.
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4 Application 2: problem of beating a target

In this chapter we analyze the optimal portfolio and investment policy for an investor
who is concerned about the performance of his wealth relative only to the performance
of a particular benchmark. Specifically, we consider the case where a chosen benchmark
evolves stochastically over time, and the investor’s objective is to exceed the performance
of this benchmark (in a sense to be made more precise later) by investing in other stochas-
tic processes. We take as our setting the continuous-time framework pioneered by Merton
in Merton (1971). The portfolio problem where the objective is to exceed the performance
of a selected target benchmark is sometimes referred to as active portfolio management,
see for example Sharpe et al. (1995). It is well known that many professional investors in
fact follow this benchmarking procedure: for example, many mutual funds take the Stan-
dard and Poors 500 Index as a benchmark, commodity funds seek to beat the Goldman
Sachs Commodity Index, so the problem of beating a moving target is very actual nowa-
days. This problem was studied by many authors and different aspects were considered,
see, for example, Browne (1991). In this work we will formulate the general framework
but will focus on building the machinery for explicitly solving the problem for constant
benchmark. Our work follows Chapter 4 of Wang (2024), but our extension of that model
is the introduction of non-zero risk-free rate into the market.

4.1 General problem setup with zero risk-free rate

We are given a probability space (Ω, 𝐹, 𝑃 ), supporting an (𝑁+1)-dimensional Brownian
motion 𝑊𝑡 = (𝑊 1

𝑡 , ...,𝑊
𝑁+1
𝑡 ). The probability space is endowed with the natural filtration

𝐹 = (𝐹𝑡), 𝑡 ≥ 0 generated by the Brownian motion 𝑊 , with 𝐹𝑡 := 𝜎{𝑊𝑠 : 0 ≤ 𝑠 ≤ 𝑡}.
Assume that there are 𝑁 risky assets whose prices at time t are denoted by {𝑆(𝑖)

𝑡 }𝑁𝑖=1, and
one riskless bond offering zero interest rate in the market, which serves as the numeraire.
The risky stock prices satisfy

𝑑𝑆𝑖
𝑡 = 𝜇𝑖

𝑡𝑆
𝑖
𝑡𝑑𝑡+

𝑁∑︁
𝑗=1

𝜎𝑖𝑗
𝑡 𝑆

𝑖
𝑡𝑑𝑊

𝑗
𝑡 , 𝑖 = 1, . . . , 𝑁.

By introducing column vectors 𝜇𝑡 = (𝜇1
𝑡 , ..., 𝜇

𝑛
𝑡 )

𝑇 , 𝑆𝑡 = (𝑆1
𝑡 , ..., 𝑆

𝑁
𝑡 )𝑇 , and matrix 𝜎𝑡 =

(𝜎𝑡)
𝑖𝑗 , we can write:

𝑑𝑆𝑡 = 𝑑𝑖𝑎𝑔(𝑆𝑡)(𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊𝑡)

We also introduce the unique market price of risk 𝜅𝑡 = 𝜎−1𝜇𝑡 by solving equation
𝜎𝑡𝜅𝑡 = 𝜇𝑡.

Trading strategies are described by means of progressively measurable vector processes
𝑓 = (𝑓𝑡)𝑡≥0 ∈ R𝑁 , where 𝑓𝑡 = (𝑓1

𝑡 , . . . , 𝑓
𝑁
𝑡 )𝑇 and 𝑓 𝑖

𝑡 denotes the fraction of wealth invested
in the i-th risky asset at time t for 𝑖 = 1, . . . , 𝑁 , the remainder

∑︀𝑁
𝑖=1 𝑓

𝑖
𝑡 is invested in the

riskless asset. Let 𝑋𝑓 = (𝑋𝑓
𝑡 )𝑡≥0 denote the wealth of the investor following policy 𝑓

with initial wealth 𝑋0 = 𝑥 > 0, which is governed by the controlled stochastic differential
equation

𝑑𝑋𝑓
𝑡 = 𝑋𝑓

𝑡

(︃
𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡

𝑑𝑆𝑖
𝑡

𝑆𝑖
𝑡

)︃
= 𝑋𝑓

𝑡

⎛⎝ 𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡𝜇

𝑖
𝑡𝑑𝑡+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓 𝑖
𝑡𝜎

𝑖𝑗
𝑡 𝑑𝑊

𝑗
𝑡

⎞⎠ =

= 𝑋𝑓
𝑡 (𝑓

𝑇
𝑡 𝜇𝑡𝑑𝑡+ 𝑓𝑇

𝑡 𝜎𝑡𝑑𝑊𝑡) = 𝑋𝑓
𝑡 𝑓

𝑇
𝑡 𝜎𝑡(𝜅𝑡𝑑𝑡+ 𝑑𝑊𝑡)
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where 𝑑𝑊𝑡 =
(︀
𝑊 1

𝑡 , . . . ,𝑊
𝑁
𝑡

)︀𝑇
.

The price of the goal (𝑌𝑡)𝑡≥0 is assumed to evolve according to a log-normal process,
which is only partially correlated with the wealth process 𝑋𝑓 , and is given by:

𝑑𝑌𝑡 = 𝛼𝑌𝑡𝑑𝑡+
𝑁∑︁
𝑖=1

𝑏𝑖𝑌𝑖𝑑𝑊
𝑖
𝑡 + 𝛽𝑌𝑡𝑑𝑊

𝑁+1
𝑡 = 𝛼𝑌𝑡𝑑𝑡+ 𝑌𝑡𝑏

𝑇𝑑𝑊𝑡 + 𝛽𝑌𝑡𝑑𝑊
𝑁+1
𝑡

We herein work with the ratio process 𝑍𝑓
𝑡 := 𝑋𝑓

𝑡 /𝑌𝑡, which is also a controlled diffusion
process and evolves according to SDE (obtained by applying Ito formula to 𝑓(𝑥, 𝑦) = 𝑥

𝑦 ):

𝑑𝑍𝑓
𝑡 = 𝑍𝑓

𝑡 (𝜂 + 𝑓𝑇
𝑡 𝜇̂𝑡)𝑑𝑡+ 𝑍𝑓

𝑡 (𝑓
𝑇
𝑡 𝜎𝑡 − 𝑏𝑇 )𝑑𝑊𝑡 − 𝑍𝑓

𝑡 𝛽𝑑𝑊
𝑁+1
𝑡

with 𝜂 = −𝛼+ 𝑏𝑡𝑏+ 𝛽2 and 𝜇̂𝑡 = 𝜇𝑡 − 𝜎𝑡𝑏.
We denote the discount function by 𝜌 : R+ → (0, 1]. By assumption, it is a continuously

differentiable and strictly decreasing function satisfying 𝜌(0) = 1 and lim𝑡→∞ 𝜌(𝑡) = 0.
This function, which maps the date 𝑡 to the discount factor 𝜌(𝑡), captures the agent’s
preferences concerning the timing of goal achievement, called time risk preferences.

Consider in our problem a fixed terminal time 𝑇 ∈ (0,+∞] that is allowed to take
the extended real numbers, and a real continuous function 𝑢(𝑧) : (0, 1] → (0, 1] that
is increasing, concave, and satisfies lim𝑧→0 𝑢(𝑧) = 0 and 𝑢(1) = 1. Given any initial
data (𝑠, 𝑍𝑠 = 𝑧) ∈ [0, 𝑇 ) × (0, 1), we control up to the smaller of 𝑇 and the exit time
of process 𝑍𝑓

𝑡 , 𝑡 > 𝑠 from the fixed domain 𝑂 = (0, 1). Let 𝑇 𝑓
𝑠 = min(𝜏 𝑓𝑠 , 𝑇 ), where

𝜏 𝑓𝑠 := inf{𝑡 > 𝑠 : 𝑍𝑓
𝑡 /∈ 𝑂}.

The reward functional is defined by

𝐽(𝑠, 𝑧, 𝑓) := E𝑠,𝑧

[︁
1{𝜏𝑓𝑠 ≤𝑇}𝜌(𝜏

𝑓
𝑠 ) + 1{𝜏𝑓𝑠 >𝑇}𝜌(𝑇 )𝑢(𝑍

𝑓
𝑇 )
]︁
= E𝑠,𝑧

[︁
𝜌(𝑇 𝑓

𝑠 ) + 𝜌(𝑇 )𝑢(𝑍𝑓

𝑇 𝑓
𝑠
)
]︁
−𝜌(𝑇 ),

measuring the expected discounted rewards at the target-debut time before terminal hori-
zon 𝑇 , starting from state 𝑍𝑠 = 𝑧 at time 𝑠 if control process 𝑓 is implemented.

We observe time inconsistency in optimization problems with this objective functional,
due to the dependence of 𝜏 𝑓𝑠 on the initial time point 𝑠. To address this issue, we reformulate
the reward functional by first introducing a 2-dimensional degenerate diffusion process
𝑁𝑓

𝑟 = (𝑀𝑟, 𝑍
𝑓
𝑟 ) for 𝑟 ≥ 0, 𝑁0 = (𝑠, 𝑧), that evolves according to{︃

𝑑𝑍𝑓
𝑡 = 𝑍𝑓

𝑡 (𝜂 + (𝑓𝑟 ∘ 𝜃𝑠)𝑇 (𝜇̂𝑟 ∘ 𝜃𝑠))𝑑𝑟 + 𝑍𝑓
𝑟 ((𝑓𝑟 ∘ 𝜃𝑠)𝑇 (𝜎𝑟 ∘ 𝜃𝑠)𝑇 (𝜎𝑟 ∘ 𝜃𝑠)− 𝑏𝑇 )𝑑𝑊𝑟 − 𝑍𝑓

𝑟 𝛽𝑑𝑁+1
𝑟

𝑑𝑀𝑟 = 𝑑𝑟

where shift operator 𝜃 is defined as follows: for any fixed 𝑠 ∈ R+, let 𝑍𝑡 ∘ 𝜃𝑠 := 𝑍𝑡+𝑠

for 𝑡 ∈ R+, and 𝜏 𝑓0 ∘ 𝜃𝑠 = inf 𝑡 ≥ 0 : 𝑍𝑡 ∘ 𝜃𝑠 /∈ 𝑂. Then we have 𝜏 𝑓𝑠 = 𝜏 𝑓0 ∘ 𝜃𝑠 + 𝑠. Let
𝐺 = [0, 𝑇 )× (0, 1) and 𝜏 𝑓𝐺 := inf{𝑡 ≥ 0 : 𝑁𝑓

𝑡 /∈ 𝐺} ≤ 𝑇 .
The new reward functional is the following:

𝐽(𝑁0, 𝑓) = E𝑁0

[︃∫︁ 𝜏𝑓𝐺

0
𝜌(𝑀𝑟)

′𝑑𝑟 + 𝜌(𝑇 )𝑢(𝑍
𝜏𝑓𝐺
)− 𝜌(𝑇 )

]︃

The reward functional 𝐽(𝑁0, 𝑓) in terms of (𝑁𝑟)𝑟≥0 with 𝑁0 = (𝑠, 𝑧) can be expressed
by

𝐽(𝑁0, 𝑓) = E𝑠,𝑧

[︃∫︁ 𝑇 𝑓
𝑠

𝑠
𝜌(𝑟)′𝑑𝑟 + 𝜌(𝑇 )𝑢(𝑍𝑓

𝑇 𝑓
𝑠
)

]︃
+ 𝜌(𝑠)− 𝜌(𝑇 ) = 𝐽(𝑁0, 𝑓) + 𝜌(𝑠)
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With this transformation, our focus now becomes studying a standard time-homogeneous
stochastic control problem with degenerate controlled states. Specifically, we aim to find
for any 𝑁0 ∈ 𝐺, the value of 𝑉 (𝑁0) = sup𝑓 𝐽(𝑁0, 𝑓) and the corresponding optimal con-
trol 𝑓*. Subsequently, we can apply the standard machinery to derive the HJB equation
satisfied by 𝑉 (𝑁0) in this time-homogeneous problem, and ensure that the correspond-
ing verification theorem holds. The value function of the original problem can be then
determined by the relationship 𝑉 (𝑁0) = 𝑉 (𝑁0) + 𝜌(𝑠).

Let 𝐶1,2(𝐺) denote the set of real-valued functions that are continuous on the fixed
domain 𝐺 and have continuous first-order partial derivatives with respect to s, as well as
continuous first- and second-order partial derivatives with respect to 𝑧. Given admissible
control processes 𝑓 , and functions 𝑣(𝑁0) ∈ 𝐶1,2(𝐺) with 𝑁0 = (𝑠, 𝑧), the infinitesimal
generator is defined by

ℒ𝑓𝑣(𝑁0) = 𝑣′𝑠(𝑁0) +
1

2

[︀
(𝑓𝑇𝜎 − 𝑏𝑇 )(𝑓𝑇𝜎 − 𝑏𝑇 )𝑇 + 𝛽2

]︀
𝑧2𝑣′′𝑧𝑧(𝑁0) + (𝑓𝑇 𝜇̂+ 𝜂)𝑧𝑣′𝑧(𝑁0).

By the dynamics of the ratio process 𝑍𝑓
𝑡 and (Theorem 11.2.1 in Oksendal (2013)),

one can write down the corresponding HJB equation, i.e., the value function 𝑉 (𝑁0) =
𝑉 (𝑠, 𝑧) = 𝑣𝑎(𝑠, 𝑧), where 𝑣𝑎(𝑠, 𝑧) satisfies

sup
𝑓

{︁
ℒ𝑓𝑣𝑎(𝑠, 𝑧)

}︁
+ 𝜌′(𝑠) = 0,

or equivalently,

𝑣𝑎𝑠 + sup
𝑓

{︂
1

2

[︀
(𝑓𝑇𝜎 − 𝑏𝑇 )(𝑓𝑇𝜎 − 𝑏𝑇 )𝑇 + 𝛽2

]︀
𝑧2𝑣𝑎𝑧𝑧 + (𝑓𝑇 𝜇̂+ 𝜂)𝑧𝑣𝑎𝑧

}︂
+ 𝜌′(𝑠) = 0.

This equation is to be considered in the set 𝐺 with boundary data 𝑣𝑎(𝑠, 1) = 0, since
𝑣𝑎(𝑠, 𝑧) = 𝑣(𝑠, 𝑧)+ 𝜌(𝑠). Additionally, in the case of a finite terminal horizon 𝑇 , one needs
to further impose boundary condition on 𝑠 = 𝑇 , namely, 𝑣𝑎(𝑇, 𝑧) = 𝜌(𝑇 )(𝑢(𝑧)− 1).

We may then use standard calculus for optimization with respect to 𝑓 to obtain optimal
policy 𝑓* in terms of the value function, in a feedback form,

𝑓*(𝑠, 𝑧) = ((𝜎𝑠)
−1)𝑇 𝑏− Σ−1

𝑠 𝜇̂𝑠
𝑣𝑎𝑧 (𝑠, 𝑧)

𝑧𝑣𝑎𝑧𝑧(𝑠, 𝑧)
, where Σ𝑠 = 𝜎𝑠𝜎

𝑇
𝑠 .

Next, we substitute the feedback form of 𝑓* back into HJB equation, and obtain

⎧⎪⎨⎪⎩
𝑣𝑎𝑠 (𝑠, 𝑧)− 𝜆(𝑠) (𝑣

𝑎
𝑧 (𝑠,𝑧))

2

𝑣𝑎𝑧𝑧(𝑠,𝑧)
+ 𝛿(𝑠)𝑧𝑣𝑧(𝑠, 𝑧) +

1
2𝛽

2𝑧2𝑣𝑎𝑧𝑧(𝑠, 𝑧) + 𝜌′(𝑠) = 0; (𝑠, 𝑧) ∈ [0, 𝑇 )× (0, 1)

𝑣𝑎(𝑠, 1) = 0

𝑣𝑎(𝑇, 𝑧) = 𝜌(𝑇 )(𝑢(𝑧)− 1) if 𝑇 < +∞

where 𝜆(𝑠) = 0.5𝜇̂𝑇
𝑠 Σ

−1
𝑠 𝜇̂𝑆 and 𝛿(𝑠) = −𝛼+ 𝛽2 + 𝑏𝑇𝜎−1

𝑠 𝜇𝑠.
Furthermore, if we denote the optimal value function 𝑉 (𝑠, 𝑧) of the original problem

by 𝑣(𝑠, 𝑧), then according to the relationship between 𝑉 and 𝑉 , last equation can be
equivalently transformed to

⎧⎪⎨⎪⎩
𝑣𝑠(𝑠, 𝑧)− 𝜆(𝑠) (𝑣𝑧(𝑠,𝑧))

2

𝑣𝑧𝑧(𝑠,𝑧)
+ 𝛿(𝑠)𝑧𝑣𝑧(𝑠, 𝑧) +

1
2𝛽

2𝑧2𝑣𝑧𝑧(𝑠, 𝑧) = 0; (𝑠, 𝑧) ∈ [0, 𝑇 )× (0, 1)

𝑣(𝑠, 1) = 𝜌(𝑠)

𝑣(𝑇, 𝑧) = 𝜌(𝑇 )𝑢(𝑧) if 𝑇 < +∞
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4.2 Infinite time horizon and constant benchmark

Now we study the case where
1) horizon is infinite and
2) the benchmark is a constant, that is 𝑌𝑡 ≡ 𝑌0 > 𝑋0.

Then the ration process 𝑍𝑓
𝑡 := 𝑋𝑓

𝑡 /𝑌0 reduces to

𝑑𝑍𝑓
𝑡 = 𝑍𝑓

𝑡 𝑓
𝑇
𝑡 𝜇𝑡𝑑𝑡+ 𝑍𝑓

𝑡 𝑓
𝑇
𝑡 𝜎𝑡𝑑𝑊𝑡 = 𝑍𝑓

𝑡 𝑓
𝑇
𝑡 𝜎𝑡(𝜅𝑡𝑑𝑡+ 𝑑𝑊𝑡)

and the corresponding HJB equation reduces to{︃
𝑣𝑠(𝑠, 𝑧)− 𝜆(𝑠) 𝑣2𝑧(𝑠,𝑧)

𝑣𝑧𝑧(𝑠,𝑧)
= 0, 𝑧 ∈ (0, 1)

𝑣(𝑠, 1) = 𝜌(𝑠)
(14)

For computational purposes, we first solve this equation for 0 < 𝑧 < 1 with boundary data
𝑣(𝑠, 1) = 𝜌(𝑠), where 𝜌 : R+ → R− is a continuously differentiable and strictly decreasing
function with 𝜌(0) = 0. Later, we will restrict our attention to bounded functions and
proceed with normalization, ensuring that the boundary data 𝜌(𝑠) imposed at 𝑧 = 1 for
the original problem falls within the range (0, 1], with 𝜌(0) = 1. As outlined in Misuela
and Zariphopoulou (2010), there exists a one-to-one correspondence (modulo normalization
constants) between strictly increasing functions ℎ(𝑠, 𝑧) satisfying

ℎ𝑠(𝑠, 𝑧) +
1

2
ℎ𝑧𝑧(𝑠, 𝑧) = 0 (15)

and strictly increasing solutions to (14) with 𝜆(𝑠) = 1
2 :

𝑣𝑠(𝑠, 𝑧)−
1

2

𝑣2𝑧(𝑠, 𝑧)

𝑣𝑧𝑧(𝑠, 𝑧)
= 0

Lemma 1. (Form of solutions to equation (15))
If measure 𝜈 ∈ ℬ+, then

ℎ(𝑠, 𝑧) =

∫︁
R

𝑒𝑦𝑧−
1
2
𝑦2𝑠 − 1

𝑦
𝜈(𝑑𝑦) + 𝐶 (16)

is a strictly increasing solution of (15):

ℎ𝑠(𝑠, 𝑧) +
1

2
ℎ𝑧𝑧(𝑠, 𝑧) = 0

Lemma 2. (Expression of v in terms of h)
Let Θ(𝑠) be the antiderivative of 𝜆(𝑠). The function 𝑣(𝑠, 𝑧), (𝑠, 𝑧) ∈ R+ × (0, 1] is an

increasing and strictly concave solution to equation (14) with boundary data 𝑣(𝑠, 1) = 𝜌(𝑠)
if and only if 𝑣 and the first derivative of 𝜌 admit representation respectively given by{︃

𝑣(𝑠, 𝑧) = −1
2

∫︀ 2Θ(𝑠)
0 𝑒−ℎ(−1)(𝑡,𝑧)+ 𝑡

2ℎ𝑧
(︀
𝑡, ℎ(−1)(𝑡, 𝑧)

)︀
𝑑𝑡+

∫︀ 𝑧
1 𝑒−ℎ(−1)(0,𝑥)𝑑𝑥

𝜌′(𝑠) = −𝜆(𝑠)𝑒−ℎ(−1)(𝑠Θ(𝑠),1)+Θ(𝑠)ℎ𝑧
(︀
𝑡, ℎ(−1)(2Θ(𝑠), 1)

)︀ (17)

The associated boundary data 𝜌′, along with its first-order derivative given by equation
(17), is expressed as:

𝜌(𝑠) = 𝑣(𝑠, 1) = −𝜆(𝑠)

∫︁ 2Θ(𝑠)

0
𝑒−ℎ(−1)(𝑡,1)+ 𝑡

2ℎ𝑧

(︁
𝑡, ℎ(−1)(𝑡, 1)

)︁
𝑑𝑡 (18)
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Figure 2: Exponential discount function 𝜌(𝑠) = 𝑒−𝜆(𝛾−1)𝑠

with 𝜌(0) = 0;
The optimal strategy given a constant benchmark can be further written, in terms of

function ℎ, by

𝑓*(𝑠, 𝑧) = −Σ−1𝜇̂𝑠

(︂
𝑣𝑧(𝑠, 𝑧)

𝑧𝑣𝑧(𝑠, 𝑧)

)︂
= Σ−1𝜇̂𝑠

ℎ𝑧
(︀
2Θ(𝑠), ℎ(−1)(2Θ(𝑠), 𝑧)

)︀
𝑧

Lemma 3. (How for 𝜌 to fulfill equation (17))
A function 𝜌 : R+ → R− admits the representation (17) for some measure 𝜈 with ℎ

given by (16) if and only if there exists function 𝑤̂ : R− ×𝑅 → R satisfying⎧⎪⎨⎪⎩
𝑤̂𝑡(𝑡, 𝑧) = 𝑧2𝑤̂𝑧𝑧(𝑡, 𝑧)

𝑤̂𝑧(−Θ(𝑠), 𝑤̂(−1)(−Θ(𝑠), 1)) = −𝜌′(𝑠)
𝜆(𝑠)

𝑤̂𝑧(𝑡, 𝑤̂
(−1)(𝑡, 𝑧)) > 0

(19)

Finally, we need to make the normalization of 𝜌 into 𝜌: 𝜌(𝑠) = − 𝜌(𝑠)
𝜌(+∞) + 1.

4.3 Example 1: exponential discounting

Consider the discount function 𝜌(𝑠) = 𝑒−𝜆(𝛾−1)𝑠, 𝛾 > 1.
First let’s summarize the steps to obtain the optimal strategy, and then (in Appendix)

we will do these steps explicitly to demonstrate the machinery we have built.
First, such function 𝜌(𝑠) corresponds to 𝜌(𝑠) defined by

𝜌(𝑠) =
𝛾

𝛾−1
𝛾

𝛾 − 1
𝑒−𝜆(𝛾−1)𝑠 − 𝛾

𝛾−1
𝛾

𝛾 − 1

Second, this 𝜌 can be expressed as a solution of (18) with ℎ(𝑠, 𝑧) = 1
𝛾 𝑒

𝛾𝑧− 1
2
𝛾2𝑠, that

can be obtained from (16) by taking Dirac measure 𝜈 = 𝛿𝛾 .
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We can also check that, as said in Lemma 3, our 𝜌 admits the solution of equation (19)
by the function 𝑤̂(𝑡, 𝑧) = 𝑒𝛾(𝛾−1)𝑡

𝛾 𝑧𝛾 .
Therefore, having ℎ, we obtain by (17) (after finding 𝜌 and normalizing it) that equation

(14) with boundary condition 𝑣(𝑠, 1) = 𝜌(𝑠) can be solved by

𝑣(𝑠, 𝑧) = 𝑧
𝛾−1
𝛾 𝑒−𝜆(𝛾−1)𝑠

The optimal strategy is given by

𝑓*(𝑠, 𝑧) = Σ−1
𝑠 𝜇𝑠𝛾.

4.4 Discussion

In other words, we have provided the explicit formula for optimal strategy in case of
constant target and exponential discount function (which is the most common discount
function in finance and insurance). This result therefore may have a direct application to
the real world as a recommendation to a pension fund that is aiming to beat the target
inflation rate.
The full derivation of this result can be seen in Appendix.

4.5 One extension: evolution of capital with presence of risk-free rate

In this section we will extend the model from Chapter 4 from Wang (2024) by introduc-
ing the bank account 𝐵𝑡, that grows with risk-free rate 𝑟: 𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡. That means that
the investor allocates the money, that he didn’t spent on risky assets, into bank account.
In other words, he invests fraction 1 −

∑︀𝑁
𝑖=1 𝑓

𝑖
𝑡 of his capital into bank account 𝐵𝑡. Note

that that we require 𝜇𝑖 > 𝑟, otherwise there is no reason to invest in risky asset at all.
Then the evolution of capital will be:

𝑑𝑋𝑓
𝑡 = 𝑋𝑓

𝑡

(︃
𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡

𝑑𝑆𝑖
𝑡

𝑆𝑖
𝑡

)︃
+𝑋𝑓

𝑡 (1−
𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡 )
𝑑𝐵𝑖

𝑡

𝐵𝑖
𝑡

=

= 𝑋𝑓
𝑡

⎛⎝ 𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡𝜇

𝑖
𝑡𝑑𝑡+ (1−

𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡 )𝑟𝑑𝑡+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓 𝑖
𝑡𝜎

𝑖𝑗
𝑡 𝑑𝑊

𝑗
𝑡

⎞⎠ =

= 𝑋𝑓
𝑡 (𝑓

𝑇
𝑡 𝜇𝑡𝑑𝑡+ (1−

𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡 )𝑟𝑑𝑡+ 𝑓𝑇

𝑡 𝜎𝑡𝑑𝑊𝑡)

Now for 𝑍𝑡 :=
𝑋𝑓

𝑡
𝑌𝑡

we have: 𝑓 ′
𝑥 = 1

𝑦 , 𝑓
′
𝑦 = −𝑥

𝑦 , 𝑓
′′
𝑥𝑥 = 0; 𝑓 ′′

𝑥𝑦 = − 1
𝑦2
, 𝑓 ′′

𝑦𝑦 = 2𝑥
𝑦3

=> 𝑑𝑓

(︃
𝑋𝑓

𝑡

𝑌𝑡

)︃
=

𝑋𝑓
𝑡

𝑌𝑡

(︃
(𝑓𝑇

𝑡 𝜇𝑡 + (1−
𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡 )𝑟)𝑑𝑡+ 𝑓𝑇

𝑡 𝜎𝑡𝑑𝑊𝑡

)︃
=

= −𝑋𝑓
𝑡

𝑌 2
𝑡

𝑌𝑡

(︁
𝛼𝑑𝑡+ 𝑏𝑇𝑑𝑊𝑡 + 𝛽𝑑𝑊𝑁+1

𝑡

)︁
+ 0− 1

𝑌 2
𝑡

𝑋𝑓
𝑡 𝑌𝑡𝑓

𝑇
𝑡 𝜎𝑡𝑏𝑑𝑡+

𝑋𝑓
𝑡

𝑌 3
𝑡

𝑌 2
𝑡

(︀
𝑏𝑏𝑇 + 𝛽2

)︀
=

= 𝑍𝑡

(︃
𝑓𝑇
𝑡 𝜇𝑡 + (1−

𝑁∑︁
𝑖=1

𝑓 𝑖
𝑡 )𝑟𝑑𝑡+ 𝑓𝑇

𝑡 𝜎𝑡𝑑𝑊𝑡

)︃
− 𝑍𝑡

(︁
𝛼𝑑𝑡+ 𝑏𝑇𝑑𝑊𝑡 + 𝛽𝑑𝑊𝑁+1

𝑡

)︁
−

−𝑍𝑡𝑓
𝑇
𝑡 𝜎𝑡𝑏𝑡𝑑𝑡+ 𝑍𝑡(𝑏𝑏

𝑇 + 𝛽2)𝑑𝑡 =
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= 𝑍𝑡

(︀
(𝑟 − 𝛼+ 𝑏𝑏𝑇 + 𝛽2) + 𝑓𝑇

𝑡 (𝜇𝑡 − 𝜎𝑡𝑏− 1𝑟)
)︀
𝑑𝑡+ 𝑍𝑡

(︀
𝑓𝑇
𝑡 𝜎𝑡 − 𝑏𝑇

)︀
𝑑𝑤𝑡 − 𝑍𝑡𝛽𝑠𝑊

𝑁+1
𝑡 =

= 𝑍𝑓
𝑡 (𝜂 + 𝑓𝑇

𝑡 𝜇̂𝑡)𝑑𝑡+ 𝑍𝑓
𝑡 (𝑓

𝑇
𝑡 𝜎𝑡 − 𝑏𝑇 )𝑑𝑊𝑡 − 𝑍𝑓

𝑡 𝛽𝑑𝑊
𝑁+1
𝑡

with 𝜂 = 𝑟 − 𝛼+ 𝑏𝑇 𝑏+ 𝛽2 and 𝜇̂𝑡 = 𝜇𝑡 − 𝜎𝑡𝑏− 1𝑟.
According to our theorem, the optimal strategy in this case is:

𝑓*(𝑠, 𝑧) = ((𝜎𝑠)
−1)𝑇 𝑏− Σ−1

𝑠 𝜇̂𝑠
𝑣𝑎𝑧 (𝑠, 𝑧)

𝑧𝑣𝑎𝑧𝑧(𝑠, 𝑧)
, where Σ𝑠 = 𝜎𝑠𝜎

𝑇
𝑠 .

4.6 Discussion

The question of interest in this problem setting is the following: are there any discount
functions 𝜌(𝑠), 𝜌(0) = 1, lim𝑡→+∞ 𝜌(𝑡) = 0 that lead to 𝑓* ≡ 0, meaning that the optimal
portfolio will consist only of riskless asset, with no investment in risky asset. In case of
utility function theory, the answer is no. In our case of discount function theory, the answer
is again no, at least in the case of constant 𝜇𝑠, 𝜎𝑠.

First, if target is constant, which means 𝑏 = 0, 𝛼 = 0, 𝛽 = 0, then 𝑓*(𝑠, 𝑧) =

Σ−1
𝑠 𝜇̂𝑠

𝑣𝑎𝑧 (𝑠,𝑧)
𝑧𝑣𝑎𝑧𝑧(𝑠,𝑧)

can be identically zero if and only if 𝑣𝑧(𝑠, 𝑧) ≡ 0 and 𝑧𝑣′′𝑧𝑧(𝑠, 𝑧) ̸= 0, which
can’t hold simultaneously.

Second, if target is not constant, in one-dimensional case we have:

𝑓*(𝑠, 𝑧) =
𝑏

𝜎𝑠
− 𝜇̂𝑠

𝜎2
𝑠

𝑣′𝑧
𝑧𝑣′′𝑧𝑧

= 0

𝑣′𝑧 = 𝑏
𝜎𝑠
𝜇̂𝑠

𝑧𝑣′′𝑧𝑧

Denoting 𝑤 := 𝑣′𝑧, we obtain and solve the equation for 𝑤:

𝑤 =
𝜎𝑠
𝜇̂𝑠

𝑧𝑤′
𝑧

𝑤 = 𝐶𝑒
𝑏𝜎𝑠
𝜇𝑠

𝑧
, for some constant 𝐶.

𝑣 = 𝐶𝑒
𝑏𝜎𝑠
𝜇𝑠

𝑧
, for some constant 𝐶.

Then 𝜌(𝑠) = 𝑣(𝑠, 1) = 𝐶𝑒
𝑏𝜎𝑠
𝜇𝑠 . It is evident that in case of constant 𝜇𝑠, 𝜎𝑠 no choice

of constant 𝐶 can normalize this 𝜌(𝑠) to satisfy the required conditions for 𝜌(𝑠): 𝜌(0) =
1, lim𝑡→+∞ 𝜌(𝑠) = 0. Hence we conclude that in case of constant 𝜇𝑠, 𝜎𝑠 there are no discount
functions that lead to optimal strategy that will not invest some fraction of capital into
the risky asset. The case of non-constant 𝜇𝑠, 𝜎𝑠 needs further investigation.

Finally, we want to emphasize the obtained result in connection to stock market partic-
ipation puzzle. The stock market participation puzzle refers to the fact that many people
do not participate in the stock market, despite the potential benefits of investing in stocks
for long-term financial growth.

The canonical Portfolio Model of Markowitz (1952) implies that all households should
be holding some part of their investments in risky securities unless they are infinitely risk
averse and/or expected equity risk premium is not present in the market (i.e. excess return
over the risk-free asset is zero or negative). However, empirical evidence suggests that in
the long-term investments in stocks earn positive equity premium and investors do not have
unreasonably high level of risk aversion. And yet individuals are underinvesting in stocks in
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general and investment funds in particular. For example, in the United States, only about
half of individuals own stock either directly or indirectly. Furthermore, participation rates
are even lower outside the United States. This phenomenon is named as “the stock market
participation puzzle” (see Mankiw and Zeldes (1991)). As we see, our last result as well
suggests that all people with all discount-functions should invest some part of their capital
in stock, but this behaviour does not coincide with the reality. The reasons for this puzzle
are complicated and deserve a separate discussion.

5 Conclusion

In this project we considered two connected themes in the area of portfolio management.
First of all, in Chapter 2 we studied two principal and most commonly used approaches

for solving stochastic optimal control problems: HJB equations approach and Pontryagin’s
stochastic maximum principle approach.

Then, in Chapter 3 we applied Pontryagin’s stochastic maximum principle to tackle the
famous Merton problem introduced in Merton (1969), that, as far as we know, has never
been solved this way. We obtained the same optimal control, as in HJB approach, and,
interestingly enough, this optimal control is constant, that is, the investor should invest
the same fraction of his capital in the risky asset at any time of the investment horizon.

Finally, in Chapter 3 we extended the theory of time risk-preferences with different
discount functions from Chapter 4 of Wang (2024) by introducing risk-free rate into the
model. We presented the machinery for tackling the problem in general case and in the
case of exponential discounting (which is the most common discounting function both in
financial and insurance industries) we gave the exact formula for optimal strategy. This
result is of a great interest for both financial and insurance industries, since insurance
companies and pension funds in their everyday work follow a benchmarking procedure, for
example by trying to beat inflation, exchange rates, or other indices. We also showed that
in case of presence of risk-free rate and constant 𝜇𝑠, 𝜎𝑠 there are no discount functions
that lead to the optimal strategy not investing in the risky asset at all. This result is
a bit counter-intuitive, since in real world we observe that the majority of households
prefer to invest only in the bank account. This paradox is referred to as “the stock market
participation puzzle”.

For more applications and other variations of stochastic target problems one may refer
to Chapter 8 of Touzi (2013).

6 Appendix

Here we carry all the steps of obtaining the value function in case of exponential
discounting in order to demonstrate, how works our proposed technique. According to
(15),

ℎ(𝑠, 𝑧) =

∫︁
R

𝑒𝑦𝑧−
𝑦2𝑠
2 − 1

𝛾
𝜈(𝑑𝑦) + 𝐶

We want to take Dirac measure, sitting at point gamma: 𝜈 := 𝛿𝛾 .
Then

ℎ(𝑠, 𝑧) =
𝑒𝛾𝑧−

𝛾2𝑠
2

𝛾
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Then, according to (17),

𝜌′(𝑠) = −𝜆(𝑠)𝑒−ℎ(−1)(Θ(𝑠),1)+Θ(𝑠)ℎ𝑧

(︁
𝑡, ℎ(−1)(2Θ(𝑠), 1)

)︁
So to obtain 𝜌′(𝑠), we need to compute ℎ′𝑧, ℎ(−1) and Θ(𝑠).
We have spatial derivative of ℎ:

ℎ′𝑧(𝑠, 𝑧) = 𝑒𝛾𝑧−
𝛾2𝑠
2

And spatial inverse of h:

ℎ(𝑠, 𝑧) =
𝑒𝛾𝑧−

𝛾2𝑠
2

𝛾

=> ln(𝛾ℎ(𝑠, 𝑧)) = 𝛾𝑧 − 𝛾2𝑠

2

=> 𝑧 =
ln(𝛾ℎ(𝑠, 𝑧)) + 𝛾2𝑠

2

𝛾

=> ℎ(−1)(𝑠, 𝑢) =
ln(𝛾𝑢) + 𝛾2𝑠

2

𝛾

We also need antiderivative of 𝜆:

𝜆(𝑠) =
1

2
=> Θ(𝑠) =

∫︁ 𝑠

0
𝜆(𝑠)𝑑𝑠 =

𝑠

2

Now we can compute the three components in the formula of 𝜌(𝑠):

ℎ(−1)(2Θ(𝑠), 1)) =
ln(𝛾𝑢)− 𝛾2𝑠

2

𝛾
(𝑠 = 𝑠, 𝑢 = 1) =

ln 𝛾 − 𝛾2𝑠
2

𝛾

And

ℎ′𝑧

(︁
𝑡, ℎ(−1)(2Θ(𝑠), 1)

)︁
= 𝑒𝛾𝑧−

𝛾2𝑠
2

(︃
𝑠 = 𝑡, 𝑧 =

ln 𝛾 − 𝛾2𝑠
2

𝛾

)︃
= 𝑒ln 𝛾 = 𝛾

And

𝑒−ℎ(−1)(Θ(𝑠),1)+Θ(𝑠) = 𝑒
− ln 𝛾− 𝛾2𝑠

2 + 𝑠
2

𝛾 = 𝑒
− ln 𝛾− 𝛾(𝛾−1)𝑠

2
𝛾 = 𝑒

− ln 𝛾
𝛾 𝑒−

(𝛾−1)
2 =

(︂
1

𝛾

)︂ 1
𝛾

𝑒−
(𝛾−1)

2 = 𝛾
− 1

𝛾 𝑒−
(𝛾−1)𝑠

2

So finally we can compute the derivative of 𝜌(𝑠):

𝜌′(𝑠) = −𝜆(𝑠)𝑒−ℎ(−1)(Θ(𝑠),1)+Θ(𝑠)ℎ𝑧

(︁
𝑡, ℎ(−1)(2Θ(𝑠), 1)

)︁
= −1

2
𝛾
− 1

𝛾 𝑒−
(𝛾−1)𝑠

2 ·𝛾 = −1

2
𝛾

𝛾−1
𝛾 𝑒−

(𝛾−1)𝑠
2

Integrating this function, we obtain 𝜌(𝑠):

𝜌(𝑠) =
𝛾

𝛾−1
𝛾

𝛾 − 1
𝑒−𝜆(𝛾−1)𝑠 − 𝛾

𝛾−1
𝛾

𝛾 − 1
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The derivative of this function is (taking into account that 𝜆(𝑠) = 1
2 :

𝜌′(𝑠) = −𝜆(𝑠)𝛾
𝛾−1
𝛾 𝑒−𝜆(𝛾−1)𝑠 = −1

2
𝛾

𝛾−1
𝛾 𝑒−

(𝛾−1)𝑠
2

So we have verified that if we take as 𝜈 Dirac measure 𝛿𝛾 , then we have

ℎ(𝑠, 𝑧) =
𝑒𝛾𝑧−

𝛾2𝑠
2

𝛾

and
𝜌′(𝑠) = −1

2
𝛾

𝛾−1
𝛾 𝑒−

(𝛾−1)𝑠
2

and hence

𝜌(𝑠) =
𝛾

𝛾−1
𝛾

𝛾 − 1
𝑒−𝜆(𝛾−1)𝑠 − 𝛾

𝛾−1
𝛾

𝛾 − 1

and hence
𝜌(𝑠) = − 𝜌(𝑠)

𝜌(+∞)
+ 1 = 𝑒−𝜆(𝛾−1)𝑠

And now, after obtaining 𝜌′(𝑠), in order to obtain 𝑣, we need to solve⎧⎪⎨⎪⎩
𝑤̂𝑡(𝑡, 𝑧) = 𝑧2𝑤̂𝑧𝑧(𝑡, 𝑧)

𝑤̂𝑧(−Θ(𝑠), 𝑤̂(−1)(−Θ(𝑠), 1)) = −𝜌′(𝑠)
𝜆(𝑠)

𝑤̂𝑧(𝑡, 𝑤̂
(−1)(𝑡, 𝑧)) > 0

(20)

The solution is claimed to be

𝑤(𝑡, 𝑧) =
𝑒𝛾(𝛾−1)𝑡

𝛾
𝑧𝛾

It clearly satisfies 𝑤′
𝑡 = 𝑧2𝑤′′

𝑧𝑧

And
𝑤′
𝑧(𝑡, 𝑧) = 𝑒𝛾(𝛾−1)𝑡𝑧𝛾−1

Boundary condition is:

−𝜌′(𝑠)

𝜆(𝑠)
= 𝛾

𝛾−1
𝛾 𝑒−

(𝛾−1)𝑠
2

Let’s obtain the formula for 𝑤−1:

𝑤(𝑡, 𝑧) =
𝑒𝛾(𝛾−1)𝑡

𝛾
𝑧𝛾

=> 𝑧𝛾 = 𝑒−𝛾(𝛾−1)𝑡𝛾𝑤(𝑡, 𝑧)

=> 𝑧 = 𝑒−(𝛾−1)𝑡𝛾
1
𝛾𝑤(𝑡, 𝑧)

1
𝛾

=> 𝑤(−1)(𝑡, 𝑤) = 𝑒−(𝛾−1)𝑡𝛾
1
𝛾𝑤

1
𝛾

=> 𝑤(−1)(−Θ(𝑠), 1) = 𝑒
(𝛾−1)𝑠

2 𝛾
1
𝛾

=> 𝑤′
𝑧(−Θ(𝑠), 𝑤(−1)(−Θ(𝑠), 1)) = 𝑤′

𝑧(−
1

2
, 𝑒

(𝛾−1)𝑠
2 𝛾

1
𝛾 ) =
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= 𝑒𝛾(𝛾−1)·(− 𝑠
2) ·

(︁
𝑒

(𝛾−1)𝑠
2 𝛾

1
𝛾

)︁(𝛾−1)
=

= 𝑒−
𝑠𝛾(𝛾−1)

2 𝑒
𝑠(𝛾−1)2

2 𝛾
𝛾−1
𝛾 = 𝑒−

𝑠(𝛾−1)(𝛾−(𝛾−1))
2 𝛾

𝛾−1
𝛾 = 𝑒−

(𝛾−1)𝑠
2 𝛾

𝛾−1
𝛾

This coincides with needed boundary condition −𝜌′(𝑠)
𝜆(𝑠) .

Now we have checked that our 𝜌(𝑠) admits representation via 𝑤 and hence this 𝜌(𝑠) is
good and we can use this 𝜌(𝑠) (and its corresponding ℎ) to calculate 𝑣(𝑠, 𝑧):

𝑣(𝑠, 𝑧) = −1

2

∫︁ 2Θ(𝑠)

0
𝑒−ℎ(−1)(𝑡,𝑧)+ 𝑡

2ℎ𝑧

(︁
𝑡, ℎ(−1)(𝑡, 𝑧)

)︁
𝑑𝑡+

∫︁ 𝑧

1
𝑒−ℎ(−1)(0,𝑥)𝑑𝑥

We have previously computed that for our 𝜌:

ℎ(−1)(𝑠, 𝑢) =
ln(𝛾𝑢) + 𝛾2𝑠

2

𝛾

and

ℎ′𝑧(𝑠, 𝑧) = 𝑒𝛾𝑧−
𝛾2𝑠
2

So

ℎ′𝑧(𝑡, ℎ
(−1)(𝑡, 𝑧)) = 𝑒𝛾𝑧−

𝛾2𝑠
2

(︃
𝑠 = 𝑡, 𝑧 =

ln(𝛾𝑧) + 𝛾2𝑡
2

𝛾

)︃
= 𝑒ln(𝛾𝑧)+

𝛾2𝑡
2

− 𝛾2𝑡
2 = 𝛾𝑧

Now compute 𝑣(𝑠, 𝑧):

1)− 1

2

∫︁ 𝑠

0
𝑒−ℎ(−1)(𝑡,𝑧)+ 𝑡

2ℎ𝑧

(︁
𝑡, ℎ(−1)(𝑡, 𝑧)

)︁
𝑑𝑡 = −1

2

∫︁ 𝑠

0
𝑒

ln(𝛾𝑧)
𝛾

− 𝛾𝑡
2
+ 𝑡

2 (𝛾𝑧)𝑑𝑡 =

= −1

2
(𝛾𝑧)

(︂
1

𝛾𝑧

)︂ 1
𝛾
∫︁ 𝑠

0
𝑒

𝑡(1−𝛾)
2 𝑑𝑡 = −1

2
(𝛾𝑧)

(︂
1

𝛾𝑧

)︂ 1
𝛾 2

1− 𝛾
(𝑒

𝑠(1−𝛾)
2 − 1) =

=
𝛾

𝛾−1
𝛾

𝛾 − 1
𝑧

𝛾−1
𝛾 (𝑒

𝑠(1−𝛾)
2 − 1)

2)

∫︁ 𝑧

1
𝑒−ℎ(−1)(0,𝑥)𝑑𝑥 =

∫︁ 𝑧

1
𝑒
− ln(𝛾𝑥)

𝛾 𝑑𝑥 =

∫︁ 𝑧

1

(︂
1

𝛾𝑥

)︂ 1
𝛾

𝑑𝑥 =

= 𝛾
− 1

𝛾

∫︁ 𝑧

1
𝑥
− 1

𝛾 𝑑𝑥 = 𝛾
− 1

𝛾
𝑧
− 1

𝛾
+1 − 1

− 1
𝛾 + 1

=
𝛾

𝛾−1
𝛾

𝛾 − 1
(𝑧

𝛾−1
𝛾

−1
)

And finally

𝑣(𝑠, 𝑧) =
𝛾

𝛾−1
𝛾

𝛾 − 1
𝑧

𝛾−1
𝛾 (𝑒

𝑠(1−𝛾)
2 − 1) +

𝛾
𝛾−1
𝛾

𝛾 − 1
(𝑧

𝛾−1
𝛾

−1
) =

𝛾
𝛾−1
𝛾

𝛾 − 1
(𝑧

𝛾−1
𝛾 𝑒

𝑠(1−𝛾)
2 − 1)

Finally, going back to the initial problem by normalizing 𝜌(𝑠) to be bounded in [0, 1]
with 𝜌(0) = 0 and lim𝑡→+∞ 𝜌(𝑡) = 0 we obtain:

𝑣(𝑠, 𝑧) = 𝑧
𝛾−1
𝛾 𝑒−𝜆(𝛾−1)𝑠
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