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Abstract

We consider a stochastic asset market model with endogenous asset prices and

obtain necessary and sufficient conditions for an agent’s strategy to be survival,

which means that its share of the total market wealth remains bounded away from

zero over an infinite time horizon regardless of the strategies used by other agents.

This extends previously known results that focus on construction of particular sur-

vival strategies or only necessary conditions for survival.

Keywords: evolutionary mathematical finance, survival strategies, martingales.

1. Introduction

The aim of this paper is to provide a thorough analysis of survival investment strategies

in an evolutionary model of a financial market with endogenous asset prices. A strategy

is called survival if it allows an agent to maintain a share of the total market wealth

which is strictly positive and bounded away from zero over an infinite time horizon

in any strategy profile, regardless of strategies used by other agents. The interest in

studying survival strategies arises from the fact that the presence of agents who use

such strategies allows to determine asymptotic characteristics of the market such as

asset prices and wealth distribution.

This work continues the strand of the literature emerged in the seminal paper of

Blume and Easley (1992) and then further developed by Amir et al. (2005, 2013),

Evstigneev et al. (2002), Hens and Schenk-Hoppé (2005) and others. The majority

of papers in this direction either construct particular survival strategies in models of

various generality or provide necessary conditions for survival. The main contribution

of our work consists in that we obtain also sufficient conditions. Furthermore, under

mild additional assumptions on the model structure we show that these conditions turn

out to be necessary and sufficient.
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We will work within the model of Amir et al. (2013), which is the most general

model of a discrete-time market with short-lived assets which have exogenously specified

payoffs and endogenous prices. The market in the model consists of a finite number

of agents and a finite number of assets. The assets yield random payoffs distributed

among the agents proportionally to the owned shares of the assets. The asset prices in

the model are determined endogenously through a short-run equilibrium of supply and

demand. Dynamic equilibrium is formed consecutively in each time period in the course

of interaction of investment strategies of competing market participants. Assets in the

model are called short-lived because it is assumed that at the beginning of each time

period they are “reborn” (replaced with their copies). This is a simplified model of a

real-world asset market, yet it is frequently used in the literature to study qualitative

properties of survival strategies and related questions.

There are two main contributions of the paper. First, we obtain a sufficient condition

for survival and show that this condition is necessary if conditional expectations of next-

period assets payoffs are strictly positive (this is a very mild modelling assumption). It

turns out, that in order to survive, a strategy must be asymptotically close to a certain

strategy λ∗ that invests in the assets proportionally to the conditional expectations of

their relative payoffs. Here we also prove that if at least one agent uses a survival

strategy, then the relative asset prices in the model converge to λ∗ as time t → ∞. A

novelty of the present paper consists in that we introduce the notion of survival on a

set of random outcomes, which generalizes the usual notion of survival with probability

1. Strategies surviving on a set with probability strictly between 0 and 1 may arise, for

example, in models with structural breaks; see the example provided in Section 3.

Our second contribution pertains to a particular case of the general model in which

the asset payoffs are functionally dependent on an ergodic Markov sequence. Such a

sequence may represent factors affecting the market. We show that in any strategy

profile which contains agents using survival strategies, only those agents survive, while

the relative wealth of the other agents asymptotically vanishes. Thus, survival strategies

turn out to be “winning” strategies.

Let us briefly mention how this note is related to other works in the literature. A

review of papers which investigate survival strategies in models where agents’ strategies

are modelled directly is provided in Evstigneev et al. (2016). Some more recent results

can be found in Amir et al. (2021), Drokin and Zhitlukhin (2020), Evstigneev et al.

(2020, 2023), Zhitlukhin (2023a,b). Another large body of literature consists of results

on market selection of investment strategies by market forces in the framework of general

equilibrium, see, e.g, Alós-Ferrer and Ania (2005), Blume and Easley (2006), Coury and

Sciubba (2012), Sandroni (2000), Yan (2008) and references therein. For results which

establish links with population genetics, see Lo et al. (2018), Orr (2018). Practical

applications for long-term portfolio management can be found in Schnetzer and Hens

(2022). It is also worth mentioning that survival strategies can be viewed as unbeatable
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strategies. For recent progress on unbeatable strategies and their relation to the models

at hand, see Amir et al. (2023).

This paper is organized as follows. In Section 2, we describe the model. In Section

3, we state the definition of a survival strategy and prove the main theorem containing

sufficient and necessary conditions for survival. Section 4 is devoted to analysis of the

Markov model. The appendix contains known results needed in the proofs.

2. The model

We consider a discrete-time market where K ≥ 2 assets are traded among N ≥ 2

agents. The market is influenced by random factors modelled by a probability space

with a discrete-time filtration (Ft)t≥0.

The assets live for one period and are identically reborn at the beginning of each

period. The asset prices are determined endogenously through a short-run equilibrium

of supply and demand. The supply (the total volume) of each asset is constant and

without loss of generality is normalized to 1. The assets yield random Ft-measurable

payoffs Xt,k which are distributed among the agents at moments of time t = 1, 2, . . . We

assume that the payoffs are non-negative and satisfy the condition

P(Xt,k > 0) > 0,
K∑
k=1

Xt,k > 0 a.s. (1)

for all t and k.

Agent i = 1, . . . , N in this market is characterized by his/her strategy and non-

random wealth wi
0 > 0 (initial endowment) with which this agent enters the market at

time t = 0. The wealth wi
t at further moments of time is random and determined by

the dynamics described below.

At every moment of time t ≥ 0, each agent chooses investment proportions λi
t =

(λi
t,1, . . . , λ

i
t,K), according to which he/she allocates the available budget (wealth wi

t) for

purchasing assets at time t, i.e. the budget λi
t,kw

i
t is allocated by agent i for purchasing

asset k. The vectors of investment proportions λi
t are Ft-measurable, non-negative (short

sales are not allowed), and have the sum of their components equal to 1, so λi
t assumes

values in the set

∆K := {(a1, . . . , aK) ∈ RK
+ : a1 + . . .+ aK = 1}.

The sequence λi = (λi
t)t≥0 represents the strategy of agent i. Note that we model

strategies as functions of a random outcome only, i.e. λi
t = λi

t(ω), ω ∈ Ω, yet in the

reality agents may employ strategies which take into account actions of other market

participants. However, in the context of questions we consider, our modelling assumption

does not reduce the generality of the obtained results, see Remark 4 below for details.
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By pt = (pt,1, . . . , pt,K), we denote the vector of asset prices at time t ≥ 0. The prices

are formed in equilibrium over each time period as follows. The portfolio of agent i at

time t is specified by a vector xit = (xit,1, . . . , x
i
t,K), where xit,k is the amount of asset k

in the portfolio. The scalar product ⟨pt, xit⟩ =
∑K

k=1 pt,kx
i
t,k expresses the value of agent

i’s portfolio.

At time t = 0, the agents’ budgets are given by their initial endowments wi
0. Agent

i’s budget (wealth) at time t ≥ 1 is given by

wi
t = ⟨xit−1, Xt⟩ =

K∑
k=1

xit−1,kXt,k, (2)

i.e. it is constituted of the payoff of the portfolio xit−1 that was purchased at time t− 1.

If agent i allocates a fraction λi
t,k of his/her wealth for purchasing asset k at time t,

then the number of units of this asset that can be bought is

xit,k =
λi
t,kw

i
t

pt,k
. (3)

Assume that the market is always in equilibrium: the total asset supply is equal to the

total demand (recall that the former is normalized to 1). This implies that for all t ≥ 0

and k = 1, . . . ,K we have

1 =
N∑
i=1

xit,k =
N∑
i=1

λi
t,kw

i
t

pt,k
.

As a result, the equilibrium (market clearing) asset prices are given by

pt,k =
N∑
i=1

λi
t,kw

i
t. (4)

Consequently, as follows from (2)–(4), given a vector of initial endowments w0 =

(w1
0, . . . , w

N
0 ) and a strategy profile Λ = (λ1, . . . , λN ), the dynamics of agents’ wealth in

the model is described by the relation

wi
t+1 =

K∑
k=1

λi
t,kw

i
t∑N

j=1 λ
j
t,kw

j
t

Xt+1,k. (5)

Formulas (2), (3), (5) make sense only if the asset prices pt,k defined by (4) are

non-zero. In view of that, we shall say that a strategy profile is admissible, if pt,k > 0

for all t and k. One can see that the property of admissibility does not depend on the

vector of initial endowments provided that all wi
0 > 0.

The following proposition provides a simple sufficient condition of admissibility of a

strategy profile.

Proposition 1. Assume condition (1) holds. Then a strategy profile is admissible if
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it contains at least one agent who uses a strategy with all investment proportions being

strictly positive with probability 1. In that case, the wealth of this agent always remains

strictly positive, and the total market wealth Wt =
∑N

i=1w
i
t satisfies the relation Wt =∑K

k=1Xt,k for all t ≥ 1.

The proof is straightforward and we omit it. In what follows, we will always assume

that strategy profiles under consideration satisfy the conditions of this proposition.

3. Survival strategies

Let Wt =
∑N

i=1w
i
t denote the total market wealth. We will be interested in the behavior

of the relative wealth (or the market shares) of the agents, which is defined by

rit :=
wi
t

Wt
.

The following definition introduces the main concept of the paper. Hereinafter, by F
we denote the σ-algebra of the underlying probability space.

Definition 1. We call a strategy λ survival on a set of random outcomes Γ ∈ F , if for

any vector of initial endowments w0 and any strategy profile Λ = (λ1, . . . , λN ) consisting

of the given strategy λi = λ and arbitrary strategies λj of agents j ̸= i, it holds that

inf
t≥0

rit > 0 a.s. on Γ.

A strategy is called a.s.-survival (survival with probability 1 ) if the above relation holds

on a set of probability 1.

Remark 1. We say that some relation holds a.s. on a set Γ ∈ F , if the set of random

outcomes ω ∈ Γ where it does not hold has probability 0.

In the model at hand, an a.s.-survival strategy can be constructed explicitly. Let

Rt = (Rt,1, . . . , Rt,K) and µt = (µt,1, . . . , µt,K) denote the vector of relative asset payoffs

and the vector of their conditional expectations, respectively, i.e.

Rt+1,k =
Xt+1,k∑K
j=1Xt+1,j

, µt,k = E(Rt+1,k | Ft).

Then from the paper of Amir et al. (2013), it is known that the strategy λ∗
t = µt is

a.s.-survival. Note that µt,k > 0 in view of condition (1).

Our first main result characterizes other survival strategies in the model.

Theorem 1. 1) Suppose a strategy λ has strictly positive components (λt,k > 0 a.s. for

all k = 1, . . . ,K, t ≥ 0). Then λ survives on the set

Γ =

{
ω :

∞∑
t=0

K∑
k=1

µt,k ln
µt,k

λt,k
< ∞

}
. (6)
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Moreover, if there exists a constant ε > 0 such that µt,k ≥ ε for all t ≥ 0, k = 1, . . . ,K,

then λ survives on the set1

Γ′ =

{
ω :

∞∑
t=0

∥µt − λt∥2 < ∞

}
.

2) Fix a strategy profile and a vector of initial endowments. Let λ̄t denote the rep-

resentative strategy of the agents defined by

λ̄t,k =

N∑
i=1

λi
t,kr

i
t.

Suppose that in this strategy profile some agent uses a strategy λ with strictly positive

components. Then it holds that

∞∑
t=0

∥µt − λ̄t∥2 < ∞ a.s. on Γ,

where Γ is the set defined in (6). In particular, limt→∞(µt − λ̄t) = 0 a.s. on Γ.

3) For any strategy λ surviving on a set Γ, it holds that

∞∑
t=0

∥µt − λt∥2 < ∞ a.s. on Γ. (7)

Moreover, if µt,k ≥ ε > 0 a.s. on a set Γ for all t ≥ 0 and k = 1, . . . ,K, then condition

(7) is necessary and sufficient for a strategy λ with strictly positive components to survive

on Γ.

A discussion of the claims of the theorem will be provided after its proof. The proof

will be based on some well-known results, which for convenience are relegated to the

appendix.

Proof of Theorem 1. 1) Assume agent i = 1 uses a strategy λ with strictly positive

components. Define the following random sequences Ut and Zt, t ≥ 0:

Ut =
t∑

s=0

K∑
k=1

µs,k ln
µs,k

λs,k
,

Z0 = r10, Zt = ln r1t + Ut−1, t ≥ 1.

Gibb’s inequality implies that Ut ≥ 0. Observe that the set Γ in formula (6) is nothing

but the set of convergence of Ut.

Let us prove that Zt is a local submartingale. For this end, it will be enough to show

that E(Z+
t+1 | Ft) < ∞ and E(Zt+1 − Zt | Ft) ≥ 0. The first inequality is clear, since

1Here and below, if ξ = ξ(ω) is a random vector, then by ∥ξ∥ = ∥ξ(ω)∥ we denote its random norm.
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Zt+1 ≤ Ut. To show the second one, observe that

ln r1t+1 − ln r1t = ln

(
K∑
k=1

λt,k

λ̄t,k
Rt+1,k

)
≥

K∑
k=1

Rt+1,k ln
λt,k

λ̄t,k
,

where we used the convexity of the logarithm and treated Rt+1,k as coefficients of the

convex combination of the numbers λt,k/λ̄t,k. This implies the bound

E(ln r1t+1 − ln r1t | Ft) ≥
K∑
k=1

µt,k ln
λt,k

λ̄t,k
.

From the definition of Zt, we find

E(Zt+1 − Zt | Ft) ≥
K∑
k=1

µt,k ln
µt,k

λ̄t,k
≥ 0. (8)

Consequently, Z is a local submartingale.

Since Zt ≤ Ut−1 and Ut converges on the set Γ, the limit limt→∞ Zt exists on Γ (see

the appendix for details on convergence of martingales). As a result, ρ = limt→∞ ln r1t

also exists on Γ, which implies that limt→∞ r1t = eρ > 0, hence λ survives on Γ.

To prove that λ survives on Γ′ provided that the condition µt,k ≥ ε > 0 holds true,

we can use the following bounds which follow from reverse Pinsker’s inequality (the

notation | · | below stands for the ℓ1-norm of a vector):

K∑
k=1

µt,k ln
µt,k

λt,k
≤ |µt − λt|2

2mink λt,k
= O(∥µt − λt∥2) as t → ∞ on Γ′,

where we used that ∥µt − λt∥ → 0 on Γ′, so mink λt,k is asymptotically bounded away

from zero. Then Γ′ ⊆ Γ, which implies the survival property on Γ′.

2) Using Pinsker’s inequality, we can improve the second inequality in equation (8)

as follows:

E(Zt+1 − Zt | Ft) ≥
1

2
|µt − λ̄t|2.

Consequently, the compensator At of the submartingale Zt is bounded from below:

At ≥
1

2

t−1∑
s=0

|µs − λ̄s|2.

Because Zt is bounded from above by Ut−1 and the latter sequence converges on Γ, the

compensator At also converges on Γ, which yields the second claim of the theorem.

3) If a strategy λ survives on a set Γ, then it must also survive on this set if placed

in the profile Λ = (λ∗, λ), where λ∗
t = µt. For this strategy profile, we have µt − λ̄t =
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(1− r1t )(µt − λt). Then, according to the second claim of the theorem, it holds that

∞∑
t=0

(1− r1t )
2∥µt − λt∥2 < ∞ a.s.,

because λ∗ is an a.s.-survival strategy. But since λ survives as well, the relative wealth

r1t is asymptotically bounded away from 1 on the set Γ, which implies the convergence

of the series
∑∞

t=0 ∥µt − λt∥2 on Γ.

If µt,k ≥ ε > 0 a.s. on Γ, then the sufficiency of condition (7) for survival on Γ follows

from the first claim of the theorem.

Remark 2. In view of Proposition 1, one can see that the representative strategy λ̄t

coincides with the relative asset prices

λ̄t,k = p̄t,k :=
pt,k∑K
j=1 pt,j

.

As a result, the second claim of Theorem 1 shows that the relative asset prices converge

to µt on Γ.

Remark 3. In the literature, the notion of survival is typically formulated as survival

with probability 1. Let us provide a natural example of a strategy surviving on a set

with probability strictly between 0 and 1.

Suppose the asset payoffs are given by the sequence of random vectors

Xt = X
(1)
t I(t < θ) +X

(2)
t I(t ≥ θ),

where X
(1)
t and X

(2)
t are sequences of i.i.d. random vectors and θ is a random moment

of time with values in Z+ ∪ {∞} representing a structural break (a changepoint) in the

sequence of payoffs. The random event {ω : θ = ∞} corresponds to the absence of a

structural break and may have positive probability. If the mean vectors µ(1) = EX
(1)
t

and µ(2) = EX
(2)
t are different, then the strategy λt = µ(1) survives on Γ = {ω : θ = ∞},

while it does not survive on the complement of Γ if at least one agent in the strategy

profile uses the strategy λ′
t = µ(2) (the latter claim follows from Theorem 2 in the next

section).

Remark 4. Let us explain how Theorem 1 can be extended to allow more general

strategies. Consider strategies that depend on past actions of agents and initial endow-

ments and can be written as Ft ⊗ B(RN
+ ) ⊗ B((∆K)N ) ⊗ . . . ⊗ B((∆K)N )-measurable

functions λt = λt(ω,w0, h0, . . . , ht−1). The argument w0 = (w1
0, . . . , w

N
0 ) stands for the

vector of initial endowments, and hs = (λik)i,k, where i = 1, . . . , N , k = 1, . . . ,K, for

the investment proportions chosen by the agents at time s. These functions assume

values in ∆K , so that λi
t is the proportion of wealth invested in asset i.
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Given a vector of initial endowments and a strategy profile Λ = (λ1, . . . ,λN ), we

can generate recursively the sequence of Ft-measurable functions

λi
t(ω) = λi

t(ω,w0, h0(ω), . . . , ht−1(ω)), (9)

where hs(ω) = (λik
s (ω))i,k. The functions λi

t represent the investment proportions that

are chosen by the agents in this particular strategy profile. Then we define the wealth

dynamics by the same formula (5) as above and say that a strategy is survival, if

inft≥0 r
i
t > 0 a.s. in any strategy profile in which agent i uses this strategy.

Let us call a strategy history-independent, if each λt is a function of ω only. Then

it is easy to see that if a history-independent strategy is survival in the the class of all

history-independent strategies (as in Definition 1), then it is also survival in the class of

all strategies.

As a result, Theorem 1 gives necessary and sufficient conditions for a history-

independent strategy to be survival. Moreover, it implies that if a strategy profile

contains a history-independent survival strategy, then the representative strategy λ̄t

converges to µt regardless of whether other strategies depend on the history or not.

4. Results for the Markov model

In this section, under the following additional assumption, we will show that λ∗ is not

only a survival, but a “winning” strategy.

Assumption 1. Let the sequence of relative payoffs Rt satisfy the following conditions.

(a) There exists an ergodic stationary Markov sequence s = (st)t≥0 with values in

some measurable space S such that Rt functionally depend on st, i.e. Rt = R(st),

where R : S → ∆K is a non-random measurable function;

(b) E(lnµk(st))
2 < ∞ for each k = 1, . . . ,K, where µk(s) = E(Rt+1,k | st = s);

(c) Rt+1,k, k = 1, . . . ,K, are not conditionally linearly dependent, i.e. no linear combi-

nation of them with σ(st)-measurable coefficients is a null random variable, except

when all the coefficients are a.s. null.

The sequence st can be interpreted as a sequence of factors which affect the market

in the model, or a sequence of “states of the world.”

According to the previous section, the strategy λ∗
t = µ(st) is a.s.-survival. The goal

of the next theorem is to prove a stronger result. Suppose a strategy profile consists of

strategies of the form λt = λ(st), where λ are non-random measurable functions. We

will show that if at least one agent uses the strategy λ∗, then the relative wealth of any

agent with a different strategy vanishes asymptotically and, hence, the total relative

wealth of agents who use λ∗ converges to 1 as t → ∞.

9



Theorem 2. Let Assumption 1 be satisfied. Consider a strategy profile Λ = (λ1, . . . , λN ),

in which every agent uses a strategy of the form λi
t = λi(st), where λi are non-random

functions. Assume that λi
k(st) ≥ ε(st) > 0 a.s. for all i, k with a function ε(s) satisfying

the condition E(ln ε(st))
2 < ∞.

If at least one agent uses the strategy λ∗
t = µ(st) and P(λi(st) ̸= µ(st)) > 0 for some

agent i, then limt→∞ rit = 0 a.s.

Remark 5. For the particular case of the model at hand where st is a sequence of i.i.d.

variables, the domination property of the strategy λ∗ (i.e. that its relative wealth tends

to 1) was proved by Evstigneev et al. (2002). In that case, λ∗ is a constant strategy.

The domination property in a Markov model was proved by Amir et al. (2005) under

an assumption that the representative strategy of the other agents (called the CAPM

rule in that paper) differs from λ∗. Compared to that, our theorem relies on the weaker

assumption, which concerns only individual strategies.

Proof. Without loss of generality, we may assume that the underlying filtration (Ft)t≥0

is generated by the sequence st.

Let agent 1 use the strategy λ∗. Then limt→∞ r1t > 0 a.s., and it will be enough to

show that limt→∞ r1t /r
i
t = ∞ a.s. for any agent i who uses a strategy different from λ∗.

For that end, we will prove the inequality

lim inf
t→∞

1

t
ln

r1t
rit

> 0 a.s.

Denote Dt = ln(r1t /r
i
t)− ln(r1t−1/r

i
t−1). Then we have the obvious representation

1

t
ln

r1t
rit

=
1

t
ln

r10
ri0

+
1

t

t−1∑
u=0

(Du+1 − E(Du+1 | Fu)) +
1

t

t−1∑
u=0

E(Du+1 | Fu). (10)

We will show that the limit of the second term in the right-hand side is zero, and the

limit inferior of the third term is strictly positive.

Let us begin with the second term. We have

Dt+1 = ln

(
K∑
k=1

µk(st)

λ̄t,k
Rt+1,k

)
− ln

(
K∑
k=1

λi
k(st)

λ̄t,k
Rt+1,k

)
. (11)

Observe that Dt+1 ≤ −2 ln ε(st), which follows from the bounds µk(st) ≤ 1 and λ̄t,k ≥
ε(st) applied to the first logarithm, and the bounds λi

k(st) ≥ ε(st) and λ̄t,k ≤ 1 applied

to the second logarithm. In the same way, we obtain the inequality Dt+1 ≥ 2 ln ε(st).

Consequently, since we assume that (ln ε(st))
2 is integrable, the sequence ξt =∑t−1

u=0(Du+1 − E(Du+1 | Fu)) is a square integrable martingale. For its quadratic char-
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acteristic, we have

⟨ξ⟩t =
t−1∑
u=0

E((Du+1 − E(Du+1 | Fu))
2 | Fu) ≤

t−1∑
u=0

E(D2
u+1 | Fu) ≤ 4

t−1∑
u=0

(ln ε(su))
2.

From this estimate and Birkhoff’s ergodic theorem, it follows that lim supt→∞⟨ξ⟩t/t <
∞. Then Doob’s convergence theorem and the strong law of large numbers for square

integrable martingales imply that limt→∞ ξt/t = 0 a.s.

Now consider the third term in the right-hand side of (10). In order to prove that

its limit inferior is strictly positive, we will show that there exists a random sequence Vt

and a function g(s) such that limt→∞ Vt = 0 a.s., Eg(st) > 0, and for all t ≥ 1

E(Dt+1 | Ft) ≥ Vt + g(st). (12)

If these properties hold true, then the rest of the proof will follow from the convergence

of the Ces̀aro mean (applied to Vt) and the ergodic theorem (applied to g(st)).

Using the concavity of the logarithm and Pinsker’s inequality in (11), one can see

that the conditional expectation of the first logarithm is non-negative, and therefore

E(Dt+1 | Ft) ≥ −E

(
ln

(
K∑
k=1

λi
k(st)

λ̄t,k
Rt+1,k

) ∣∣∣∣∣ Ft

)

≥ − ln

(
max

k=1,...,K

µk(st)

λ̄t,k

)
− E

(
ln

(
K∑
k=1

λi
k(st)

µk(st)
Rt+1,k

) ∣∣∣∣∣ Ft

)
.

This implies that inequality (12) holds for the sequence

Vt = − ln

(
max

k=1,...,K

µk(st)

λ̄t,k

)
and the function

g(s) = −E

(
ln

(
K∑
k=1

λi
k(s)

µk(s)
Rt+1,k

) ∣∣∣∣∣ st = s

)
.

By Theorem 1, we have limt→∞ ∥µ(st)− λ̄t∥ = 0 a.s. and hence limt→∞ Vt = 0. Let

us show that Eg(st) > 0.

Observe that Assumption 1(c) implies that for any t ≥ 0 and any σ(st)-measurable

random variables c1, . . . , cK such that P(ci ̸= cj) > 0 for at least one pair (i, j), the

random variable ζ =
∑K

k=1 ckRt+1,k is not constant. Indeed, if c0 :=
∑K

k=1 ckRt+1,k

is constant, then
∑K

k=1(ck − c0)Rt,k = 0 and, hence, all ck must be equal to c0 by

Assumption 1(c), which is a contradiction.
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Consequently, using Jensen’s inequality, we find

Eg(st) = −E ln

(
K∑
k=1

λi
k(st)

µk(st)
Rt+1,k

)
> − ln

(
E

K∑
k=1

λi
k(st)

µk(st)
Rt+1,k

)
= 0,

where the strict inequality takes place in view of the strict concavity of the logarithm

and that its argument is not constant. Thus, Eg(st) > 0, which finishes the proof.

5. Appendix

In this appendix, we briefly state some known results which were needed in the proofs.

Let |x| denote the ℓ1-norm of a vector x ∈ RK , i.e. |x| =
∑K

k=1 |xk|. Then for any

x, y ∈ ∆K such that xk, yk > 0 for all k = 1, . . . ,K, it holds that

1

2
|x− y|2 ≤

K∑
k=1

xk ln
xk

yk
≤ |x− y|2

2 min
k=1,...,K

yk
.

The first inequality is the well-known Pinsker’s inequality for the Kullback–Leibler dis-

tance (the middle part of the formula) and the total variation distance (12 |x− y|), if one
considers x and y as discrete probability distributions on a set of K elements (see, e.g.,

Cover and Thomas (2006), Lemma 11.6.1). The second inequality is known as reverse

Pinsker’s inequality (see, e.g., Sason and Verdú (2015)).

Gibbs’ inequality states that the Kullback–Leibler distance is non-negative, i.e. for

vectors x, y as in the above lemma it holds that

K∑
k=1

xk ln
xk

yk
≥ 0.

Moreover, the equality takes place if and only if x = y. Note that Gibbs’ inequality is

a simple corollary from Pinsker’s inequality.

Next we provide results from the theory of martingales. More details can be found

in Chapter 7 of Shiryaev (2019) or in Liptser and Shiryaev (1989).

Assume given a probability space with a discrete-time filtration (Ft)t≥0. Recall

that a local martingale (or a local submartingale) is an adapted sequence (Xt)t≥0 such

that E|X0| < ∞ and there exists a non-decreasing sequence of stopping times (τk)k≥0

such that limk→∞ τk = ∞ a.s. and the stopped sequence Xτk
t = Xτk∧t is a martingale

for each k (respectively, a submartingale). Equivalently, an adapted sequence X with

E|X0| < ∞ is a local martingale (local submartingale) if E(X+
t | Ft−1) < ∞ and

E(Xt | Ft−1) = Xt−1 for all t ≥ 1 (respectively, E(Xt | Ft−1) ≥ Xt−1).

Doob’s decomposition implies that any local submartingale can be uniquely decom-

posed as Xt = X0 + Mt + At, where M is a local martingale, A is a non-decreasing

predictable sequence (the compensator of X), M0 = A0 = 0.

12



As a corollary from Doob’s convergence theorem, it follows that if X is a local sub-

martingale with compensator A such that Xt ≤ Ut−1 for all t ≥ 0, where U is an

adapted random sequence, then on the set {ω : supt≥0 Ut < ∞} a.s. there exist finite

limits X∞ := limt→∞Xt and A∞ := limt→∞At.

The quadratic characteristic of a square integrable martingale X is the unique non-

decreasing predictable sequence ⟨X⟩t such that ⟨X⟩0 = 0 and X2
t −⟨X⟩t is a martingale.

In the explicit form,

⟨X⟩t =
t∑

s=1

E((Xs −Xs−1)
2 | Fs−1).

If X is a square integrable martingale, then the limit X∞ = limt→∞Xt exists on the set

{ω : limt→∞⟨X⟩t < ∞}.
The strong law of large numbers for square integrable martingales states that

lim
t→∞

Xt

⟨X⟩t
= 0 a.s. on the set {ω : lim

t→∞
⟨X⟩t = ∞}.
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