Skip to main content Skip to navigation

WMS Events Calendar

Please see this page for MB ChB events.

Tuesday, December 03, 2019

Select tags to filter on
Mon, Dec 02 Today Wed, Dec 04 Jump to any date

Search calendar

Enter a search term into the box below to search for all events matching those terms.

Start typing a search term to generate results.

How do I use this calendar?

You can click on an event to display further information about it.

The toolbar above the calendar has buttons to view different events. Use the left and right arrow icons to view events in the past and future. The button inbetween returns you to today's view. The button to the right of this shows a mini-calendar to let you quickly jump to any date.

The dropdown box on the right allows you to see a different view of the calendar, such as an agenda or a termly view.

If this calendar has tags, you can use the labelled checkboxes at the top of the page to select just the tags you wish to view, and then click "Show selected". The calendar will be redisplayed with just the events related to these tags, making it easier to find what you're looking for.

 
-
Export as iCalendar
SLS/WMS Micro Seminar: Disulfide bond formation underpins antimicrobial resistance in Enterobacteria, Dr Despoina Mavridou, Imperial College London
MBU/A151, Medical School Building

Abstract: Extracytoplasmic proteins assume their native structure with the help of chaperones and folding catalysts en route to their final location. Disulfide bond formation plays an integral part in this process, contributing to protein stability and function. Despite their simple chemistry, disulfide bonds are introduced into substrate proteins by dedicated folding pathways in most organisms. In the periplasm of Gram-negative bacteria this is performed by the DSB system, and more specifically by the oxidase DsbA. Although the function of the DSB proteins is well characterized and their role in bacterial pathogenesis has been discussed, their contribution to antimicrobial resistance (AMR) has never been explored. We have demonstrated that disulfide bond formation is necessary for the function of key antimicrobial resistance determinants in the cell envelope of Enterobacteria. More specifically, we have found that deletion of DsbA abrogates or severely affects the breakdown of β-lactam antibiotics by β-lactamases, resistance to polymyxins due to the activity of mobile colistin resistance (MCR) enzymes and intrinsic resistance to multiple antibiotics arising from the action of Resistance-Nodulation-Division (RND) efflux pumps. Such diverse resistance determinants are impaired because the absence of DsbA compromises stability and folding of β-lactamases and MCR enzymes, whilst also leading to altered periplasmic proteostasis indirectly impacting efflux pump function. Importantly, the DSB system is a tractable AMR target, as chemical inhibition of disulfide bond formation sensitizes multidrug-resistant clinical isolates to several classes of existing antibiotics. We are currently focused on the discovery of improved DsbA inhibitors since their generation could lead to the development of next-generation antibiotic adjuvants that would function as broad-acting resistance breakers.

-
Export as iCalendar
Deep Learning for Precision Oncology
MB3.17, Computer Science

Speaker: Jakob Nikolas Kather (University Hospital Aachen & German Cancer Center Heidelberg, Germany)

Abstract: Precision oncology requires molecular and genetic testing of tumor tissue. For many tests, widespread implementation into clinical practice is limited because these biomarkers are costly, require significant expertise and are limited by tissue availability. However, virtually every cancer patient gets a biopsy as part of the diagnostic workup and this tissue is routinely stained with hematoxylin and eosin (HE). We have developed a deep learning-based technology to predict molecular features, prognosis and markers for treatment response directly from routine histology. This talk will summarize the state of the art in deep learning histopathology, demonstrate emerging use cases and discuss the clinical implications of deep learning based molecular testing of solid tumors.

 

Short Bio: Jakob Nikolas Kather is a clinician-scientist at University Hospital Aachen and the German Cancer Center Heidelberg, Germany. He leads a junior research group focused on deep-learning based prediction of treatment response in gastrointestinal cancer.

Placeholder