Skip to main content Skip to navigation

Latest News

Show all news items

Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice

In collaboration with groups at UMass Med School, Smith College and Morehouse University, we have developed a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations and liver cells. Our model allowed assessment of the rate of recovery from circadian misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.

Read the paper here.

Mon 17 Jan 2022, 08:00 | Tags: BMS BMS_newpub