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Daily rhythms in physiology significantly modulate drug pharmacokinetics and
pharmacodynamics according to the time-of-day, a finding that has led to the
concept of chronopharmacology. The importance of biological clocks for xeno-
biotic metabolism has gained increased attention with the discovery of the
molecular circadian clockwork. Mechanistic understanding of the cell-autono-
mous molecular circadian oscillator and the circadian timing system as a whole
has opened new conceptual and methodological lines of investigation to under-
stand first, the clock's impact on a specific drug's daily variations or the effects/
side effects of environmental substances, and second, how clock-controlled
pathways are coordinated within a given tissue or organism. Today, there is an
increased understanding of the circadian modulation of drug effects. Moreover,
several molecular strategies are being developed to treat disease-dependent
and drug-induced clock disruptions in humans.

The Role of the Circadian Timing System in Xenobiotics Detoxification
Recent scientific evidence highlights the critical role of circadian rhythms (see Glossary) for the
metabolism and effects of xenobiotics, including drugs as well as environmental toxicants
(Figure 1). Since 2011, there has been increased awareness on the regulation of circadian
rhythms in pharmacology or toxicology. Conceptual and methodological progress has enabled
the tracking of circadian patterns in cells, tissues, experimental animals, and human beings
[1–6]. These new insights have improved our understanding of the underlying molecular
mechanisms and systems level organisation of the regulatory circuits, which modulate cellular
metabolism and proliferation during the course of a 24-h day [7–9].

It has long been known that the circadian timing system (CTS) accounts for time-varying
effects of xenobiotics with up to 10-fold magnitude, according to the timing of exposure,
supporting the need for an increased understanding of chronopharmacology and chronotox-
icology [10–12]. Highly reproducible 24-h variation in drug toxicities has been documented in
mice or rats kept in regular alternations of 12 h of light and 12 h of darkness (LD 12:12), as well as
in constant darkness, thus unmasking possible direct effects of light on various endogenous and
metabolic rhythms, for example, cortisol [13]. However, animal species, strain, sex, age, fertility,
as well as yearly and other biological cycles can represent additional sources of variability.
Results from experimental chronopharmacology studies have led to investigate the relevance of
time of dosing on the effects drugs or treatments may have in humans. Drug chronopharma-
cology usually displays opposite 24-h patterns in nocturnal rodents when compared with
people, whose circadian physiology and molecular clock gene expression differ by nearly
12 h relative to the light–dark schedule [14]. Recent experimental data using targeted anticancer
agents have further determined that both circadian timing and drug dose play important roles in
the determination of systemic exposures and therefore of the pharmacological effects (Table 1).

Trends
The circadian timing system (CTS) sig-
nificantly modulates efficacy and toxicity
of many xenobiotics and therefore time-
of-day is an important variable to con-
sider for many drugs, marketed and
under development, as well as for expo-
sure to environmental toxicants.

Cell-autonomous circadian oscillations
in peripheral tissues have been shown
to play essential roles in time-of-day
variations and might present novel tar-
gets for pharmacotherapy.

Lifestyle, sex, age, genotype, disease,
and xenobiotic effects can shape and
alter CTS dynamics, including clock-
controlled metabolism pathways.

Recent small molecule drug screens
have identified several compounds that
target the circadian clockwork itself
and might be useful to treat circadian
desynchronisation due to disease or
other drug or toxicant effects.
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Clinical trials including randomised Phase III studies or meta-analyses of chronotherapy sched-
ules have resulted in up to 5-fold better drug tolerability and a doubling in drug efficacy as
compared with conventional non-time-stipulated treatment schedules [15] (Table 2). By con-
trast, a number of randomised comparisons between morning and evening dosing-times have
demonstrated similar rates of adverse events and/or efficacy for several medications [16–19].
This suggests that either the optimal timing was missed in the study design, excessive dose
levels were tested, or differences between patients led to an underestimation of the timing effect.
Indeed, experimental and clinical data have revealed broad interindividual CTS differences,
resulting in different chronotoxicity profiles [6,20]. Such differences can result from genetically
determined ‘chronotypes’ as well as from epigenetic changes, age, sex, lifestyle, disease, or
pharmacological treatment [21–24].

Today, circadian disruption has emerged as a novel concept, identifying a lack of proper
coordination between different components of the CTS as a contributing factor for developing
cancer, metabolic syndrome, and cardiovascular or infectious diseases [25–29]. Circadian
disruption has further been associated with occupational shift work [30]. It has also been linked
to poor disease outcomes, especially in cancer patients [31]. The identification of subjects with
different, yet functional CTS and subjects with disrupted circadian rhythms has fostered the idea
that circadian clocks could be therapeutically targeted [32]. This review focuses on the recent
progress that has been made in identifying the mechanisms underlying the interactions between
the CTS, disease, and pharmacotherapy.

Glossary
Chronotype: or the diurnal
preference of an individual is based
at least partially genetically
determined, but is plastic to a certain
degree. Previously, variation of
chronotype with age, sex, and
behaviour (e.g., shift work, habits)
has been described.
Circadian amplitude and phase:
are two parameters that characterise
the extent of variation and the timing
of a rhythm with an approximately
24-h period.
Circadian rhythm: a temperature
compensated biological rhythm with
a period of approximately 1 day (lat.
circa, about; dies, day), which
persists in constant conditions
without any time cues, that is, is
endogenous.
Circadian timing system (CTS): in
mammals, the circadian timing
system consists of three levels of
interacting mechanisms: (i) the cell-
autonomous molecular circadian
clock, (ii) the suprachiasmatic nuclei
(SCN), and (iii) physiological rhythms.
Core clock genes: are an integral
part of the core clock mechanism
and most of them physically interact
with one another (Box 1). In
mammals they are to some degree
redundant (e.g., Pers, Crys).
Knockout studies in mice suggest
that all of them are important for
proper clock function, at least in
some tissues. In comparison, clock-
controlled genes are genes with
significant circadian modulation in
their expression profile that do not
feedback on the clock mechanism
themselves. Typically, these genes
are driven by promoter elements
such as E- or D-box elements, but
might also contain further tissue-
specific regulatory elements that lead
to tissue-specific inducibility.
Non-photic signals: cues other
than the alternation of light and
darkness. Food, activity, and few
other so-called zeitgeber have been
shown to be able to influence the
circadian system and if rhythmically
presented synchronise the CTS.
Physiological rhythms: provide the
endogenous time cues needed for
the daily coordination and resetting of
cellular clocks in the peripheral
tissues of an organism.
Suprachiasmatic nuclei (SCN) or
central clock: this paired structure
in the ventral hypothalamus is
indispensable for generating most
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Figure 1. The Circadian Clockwork and its Interaction with Xenobiotic Metabolism. The cell-autonomous
circadian clockwork is the functional unit of the circadian timing system, determining its complex interaction with xenobiotic
metabolism. (Left) Simplified core circadian oscillator (Box 1) and one output relevant for xenobiotic metabolism through
control of aminolevulinic acid synthase 1 (ALAS1), constitutive androstane receptor (CAR), and cytochrome P450
oxidoreductase (POR) are shown. (Right) The circadian timing system (CTS) involves a central hypothalamic pacemaker
– the suprachiasmatic nuclei (SCN) – which coordinates clocks in all the cells in the body through the generation of an array
of physiological rhythms such as rest–activity, body temperature, and hormonal secretions. The SCN synchronises the
peripheral clocks relative to each other and to the environmental time cues provided by the day–night and social cycles (blue
box). Following exposure of an organism to a xenobiotic, the substance undergoes the classical absorption, distribution,
metabolism, and elimination (ADME) processes. All of these processes, which will ultimately determine the toxicity or
pharmacological effect of the xenobiotic, are regulated by peripheral and central clocks present in the gut, heart and blood
vessels, liver and pancreas, as well as kidney and colon. Xenobiotics can also reset the molecular clock or CTS through
direct interference with the molecular clock or by altering or disrupting physiological pathways.
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consolidated circadian physiological
and behavioural rhythms. They are
considered the central pacemaker
and receive light input from the retina
and synchronise the organism with
environmental day/night cycles. In
contrast, peripheral clocks are all
non-SCN tissues or organs.
Xenobiotic: a chemical compound
such as a drug, a toxicant, a
pesticide, or a carcinogen that is
foreign to a living organism.

Dosing-Time Dependencies of Xenobiotic Effects
Drug development aims to define a recommended dose for a potential new compound based on
the majority of individual subjects, irrespective of timing, sex, age, lifestyle, or comorbidities.
However, unanticipated or overwhelming adverse effects represent severe limitations, resulting
in both drug attrition [33,34] and postmarketing withdrawal of several otherwise effective
medications [35,36]. Moreover, some countries, such as the UK, are now terminating the
reimbursement of several medications (including anticancer drugs), despite demonstrated
efficacy and safety in randomised Phase III trials, or their approved use by American, European,
and other national/international regulatory authorities [37,38]. An alleged rationale is that the
toxicities of these new agents sometimes outweigh the slight benefits in efficacy at a population
level, thus making these new treatments too costly for the healthcare system. As a result,
medication safety represents a crucial challenge that needs to be prioritised and addressed with
new concepts and methods at all stages of drug development and postmarket approval. A large
body of evidence, from mice to patients, supports the notion that chronopharmacology could
indeed help minimise adverse [14_TD$DIFF]effects through the identification of optimally timed drug delivery.
An additional concern is the impact of circadian disruption (as observed in occupational shift
work) on an organism's response to detoxification of environmental xenobiotics.

In past decades, the majority of chronopharmacology and chronotoxicology research has
focused on the determination of xenobiotic exposure times leading to either highest or lowest
toxicity or efficacy in rodents [10,11]. Chronotoxicology or chronopharmacology measures have
been established for many substances and marketed drugs in laboratory animals and/or human
beings. Human chronopharmacology studies have further established dosing-time dependen-
cies for over 300 medications of all classes, including clinical validation of timing effects in
randomised Phase III trials for a few of them [15,39] (Table 2). Moreover, an improved mecha-
nistic understanding of the CTS in addition to obtaining better tools for continuously monitoring
the CTS at the molecular level and in real-time provides proof-of-principle data for in vitro
chronopharmacology testing (see later).

The Circadian Timing System (CTS)
The generation of circadian oscillations has been shown to occur at the level of the single cell.
The molecular mechanism of this cell-autonomous transcriptional/translational feedback loop
has been largely elucidated, although further levels of control are still being discovered (Box 1). In
multicellular organisms, all of these individual cellular clocks are coordinated by a central
pacemaker that receives environmental light input and feedback from peripheral oscillators.
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus have been identified as
this central pacemaker [40], which orchestrates behavioural and physiological rhythms such
as rest/activity, body temperature, and hormonal patterns, for example, the 24-h cortisol rhythm
in human subjects [41]. The inputs and feedbacks that provide time cues to the SCN are
mediated through a variety of neuropeptides or direct axonal contact [41].

Elucidating the dynamic relative contributions of peripheral and central clocks in physiology
and pathophysiological alterations has only been feasible with the use of in vivo real-time
bioluminescence recording in freely moving mice [4]. Most likely, multiple other processes
are involved in the synchronisation of peripheral clocks. Even in the absence of the SCN or
a tissue-intrinsic clock, some metabolic or proliferation pathways are still ‘driven’ by these yet
unknown signals, and/or an organism's surrounding rhythmic physiology [4,42,43].

Depending on the adaptation of a species, feedback signals from the periphery may have
variable effects on the SCN. Some non-photic signals such as physical activity have great
impact on the central pacemaker in specific rodent models [44], and possibly in human
individuals. However, non-photic signals compete with light signals in terms of adaptation
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[45–47]. Most species show entrainment to food as a time cue. In mice, the liver has been shown
to reset its clock based on the timing of food intake, independent of SCN signalling [48,49]. Of
note, food anticipatory activity is SCN-independent in rodents and remains intact in BMAL1- but
not PER2-deficient mice [50,51]. Recent evidence suggests that food anticipatory activity is
dependent on b-hydroxybutyrate production, which is regulated by hepatic Per2 [52].

Table 1. Recent Examples of Medications with Chronopharmacological Effects and Corresponding Clock-Controlled Metabolic Pathwaysa

Agent (Target) Circadian Modulation Dosing, Species Main Findings Refs

Erlotinib (tyrosine kinase
inhibitor, anticancer drug)

EGFR, Ras/Raf/MAPK[3_TD$DIFF], and PIK3/AKT
(tumour)

5 mg/kg/day p.o., subchronic
Mouse (female) with Hec827
xenograft

Tumour inhibition ZT1 >> ZT13 [140]

Cyp3a11, Cyp3a13, Cyp1a2 (liver) 3 mg p.o., single dose
[1_TD$DIFF]Mouse (female) with LLC
xenograft

Systemic exposure ZT1>>ZT13 [141]

Sunitinib (tyrosine kinase
inhibitor, anticancer drug)

Cyp3a11 (liver, duodenum, jejunum)
abcb1a (liver, duodenum, jejunum, lung)

1.06 mg p.o., single dose
[1_TD$DIFF]Mouse (female)

Systemic and liver exposure to
sunitinib ZT20>ZT0 SUI112
(metabolite) ZT8>ZT12

[142]

(elimination)b [2_TD$DIFF] 25 mg p.o., single dose
[1_TD$DIFF]Rabbit (male)

Cmax and systemic exposure to
sunitinib and SUI12662 (metabolite):
ZT1>>ZT13
Clearance faster after ZT13 dosing

[143]

Lapatinib (dual tyrosine
kinase inhibitor interrupting
the HER2/neu and EGFR
pathways, anticancer drug)

EGFR/Ras/Raf/MAPK
Errfi1, Dusp1 (liver)
Hbegf, Tgfa, Eref (liver)

40 mg/kg/day, p.o., subchronic
Mouse (male) EGFR/HER2
driven tumour

Tumour and angiogenesis inhibition
ZT23>>ZT13

[19–22]

Roscovitine (seliciclib, CDK
inhibitor, anticancer drug)

Cyp3a11, Cyp3a13 (liver) 300 mg/kg/day p.o., single
[1_TD$DIFF]Mouse (male)

Systemic, kidney, adipose tissue
exposure ZT3>>ZT19 Liver metabolic
ratio ZT19>ZT3

[144]

Everolimus (mTOR
inhibitor, anticancer drug,
immunosuppressant)

mTOR/Fbxw7/P70S6K (tumour) 20 mg/kg i.v., single
[1_TD$DIFF]Mouse (male) w/o renal cell
tumour

Plasma PK ZT12 = ZT0 Antitumour
efficacy ZT12>>ZT0

[145]

Irinotecan (Top1 inhibitor,
anticancer drug)

Ces2, Ugt1a1, abcb1a, abcb1b (liver and
ileum), abcc2 (ileum)

50–80 mg/kg i.v., single or
4-day repeat dosing
[1_TD$DIFF]Mouse (male and female,
four strains)

Least toxic time and chronoPK–PD
relation dependent on sex and strain
ZT7, ZT11, or ZT15

[20]

Tamoxifen (antiestrogenic,
anticancer drug)

Cyp2d10, Cyp2d22, Cyp3a11 (liver) 4 mg p.o., single
[1_TD$DIFF]Mouse (female)

Plasma and liver exposure
ZT18>=ZT6 (trend)

[146]

Pethidine (analgesic opioid) N-Demethylationb 20 mg/kg/day i.p., single
or 5-day
Mouse (male)

Analgesic effect and metabolism
ZT15>ZT3

[147]

Bleomycin (toxicant and
anticancer drug)

NRF2/glutathione antioxidant defence 1 mg/kg i.t., single
[1_TD$DIFF]Mouse (female)

Pulmonary fibrosis ZT12>>ZT0 [148]

Tolbutamide (antidiabetic) Glucose transporter 4 (GLUT4) 5–10 mg/kg i.v., single
[1_TD$DIFF]Rat (male)

Hypoglycaemia ZT12>>ZT0 [149]

Isoniazid (antituberculous
antibiotic)

(N-acetyltransferase 2, NAT2, and
Cyp2e1)b [1_TD$DIFF]

120–180 mg/kg i.p., single
[1_TD$DIFF]Mouse (male)

Gross and hematologic toxicities
ZT1<ZT9

[150]

Acetaminophen (analgesic) Cyp2e1, Por (liver) 250 mg/kg, i.p. single
[1_TD$DIFF]Mouse (male)

Toxicity ZT2<<ZT14 [58,59,151]

Pentobarbital (hypnotic,
antiepileptic)

Por (liver) 50–60 mg/kg, i.p. single
[1_TD$DIFF]Mouse (male)

Sleep time ZT2>>ZT14
[1_TD$DIFF]Clearance ZT2<ZT14

[59]

aAbbreviations: dosing routes: p.o., oral; i.v., intravenous; i.t., intratracheal; i.p., intraperitoneal; LLC, Lewis lung carcinoma; Refs, references; ZT, zeitgeber time; Cmax,
peak plasma concentration; >>, higher/better/more [4_TD$DIFF] than; <<, less/better than.

bPathways or enzymes indicate suggested mechanisms for effects.
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Table 2. Recent Clinical Chronotherapy Studiesa

Disease Drug(s) (Dose, Route) Study Design Dosing Schedule N Main Findings [6_TD$DIFF]Ref.

Breast cancer
(hormone
receptor
receptive)

Tamoxifen
(20 or 40 mg p.o.)

PK crossover 8:00 vs 13:00 vs 20:00
(4 weeks on each dosing-
time)

27 F Mean Cmax and AUC0–8 h of
tamoxifen and endoxifen
(bioactive metabolite)
8:00>>20:00 (by �20%)
Mean tmax 8:00<20:00
High CYP2D6 metabolism
may enhance circadian effect

[146]

Renal cell cancer,
gastrointestinal
stromal, or
pancreatic
neuroendocrine
tumours

Sunitinib (stable once
daily dose for >2 weeks
before entry)

PK randomised crossover 8:00 vs 18:00 (3 weeks on
each dosing-time)
Additional testing of 13:00
for pt subset

27 pts
(22 M, 5 F)
12 pts:
three
dosing-
times

Mean concentration at time
of subsequent dose intake
(Cthrough): (13:00 = 18:00) >
8:00
[1_TD$DIFF]No difference in AUC

[142]

Non-small cell
lung cancer
(advanced)

Cisplatin
(20 mg/m2

[5_TD$DIFF]/day � 4 days,
combined with docetaxel
or gemcitabine)

Randomised Phase II with
minimisation

6:00 vs 18:00 41 pts
(28 M,
13 F)

Neutropenia gr 3–4:
12% at 18:00 vs 33% at 6:00
[1_TD$DIFF]Nausea gr 1–2: 18:00 < 6:00
[1_TD$DIFF]Total and unbound cisplatin
clearance 18:00 > 6:00

[152]

Metastatic
colorectal
cancer

5-FU–LV and L-OHP
(5-FU 3000–3600 mg/
m2, LV 1200 mg/m2,
L-OHP 100 mg/m2, q 2
weeks

International randomised
Phase III (post hoc analysis)

Fixed chronomodulated
delivery (chronoFLO4) vs
conventional delivery
(FOLFOX2)

556 pts
(331 M,
225 F)

Neutropenia – All grades:
chronoFLO [8_TD$DIFF]4, 33%,
FOLFOX [9_TD$DIFF]2, 61%
– Grade 3–4: chronoFLO [8_TD$DIFF]4,
7%
FOLFOX [9_TD$DIFF]2, 25%
– More frequent in women
– Predictive of a better
survival for FOLFOX2, not
chronoFLO4

[153]

Metastatic
colorectal
cancer

5-FU–LV and L-OHP
(5-FU 3000–3600 mg/
m2

[7_TD$DIFF], LV 1200 mg/m2,
L-OHP 100 mg/m2, q 2
weeks

International randomised
Phase III (post hoc analysis)

Fixed chronomodulated
delivery (chronoFLO4) vs
conventional delivery
(FOLFOX2)

556 pts
(331 M,
225 F)

Neutropenia – All grades:
chronoFLO4, 33%,
FOLFOX2, 61%
– Grade 3–4: chronoFLO4,
7%
FOLFOX [9_TD$DIFF]2, 25%
– More frequent in women
– Predictive of a better
survival for FOLFOX2, not
chronoFLO4

[153]

5-FU–LV and L-OHP (5-
FU 3000–3600 mg/m2

[9_TD$DIFF],
LV 1200–1500 mg/m2,
L-OHP, 100–125 mg/m2,
q 2–3 weeks)

Meta-analysis of three
international randomised
Phase III

ChronoFLO vs
Conv (FOLFOX2 or
constant rate infusion)

842 pts
(497 M,
345 F)

Sex-dependent efficacy of
optimal fixed schedule:
– Median survival
Male: ChronoFLO: 20.8
months
Conv: 17.5 months
– Median survival
Female:
ChronoFLO: 16.6 months
Conv: 18.4 months
– Same sex–schedule
interaction for progression-
free survival and tumour
response rate in pooled
analysis and for each
randomised trial

[154]

Rheumatoid
arthritis (RA)

Low dose-modified
release prednisone (5 mg,
MR prednisone)

12-week double-blind
placebo-controlled
randomised (CAPRA2)

Evening intake vs placebo
combined with existing RA
disease-modifying

350 pts – 20% improvement in RA
signs and symptoms: MR
prednisone: 48% vs placebo:
29%

[155]
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Importantly, food availability has also been shown to compete with light-dependent signals
coming from the SCN, and can lead to a situation where the SCN and liver clocks are uncoupled
from each other [4,53]. Such uncoupling due to mistimed sleep has also been found in mice
under simulated ‘shift work schedules’, and has been suggested to be associated with
metabolic disruption [54]. In fact, mistimed food intake has been shown to lead to obesity
and metabolic syndrome in mice and human subjects [55–57].

Table 2. (continued)

Disease Drug(s) (Dose, Route) Study Design Dosing Schedule N Main Findings [6_TD$DIFF]Ref.

antirheumatic drug
(DMARD) treatment

– 50% improvement: MR
prednisone: 22% vs placebo:
10%

MR prednisone vs placebo: –
reduced fatigue – improved
SF 36 vitality score and other
well-being parameters

[156]

Adrenal
congenital
hypoplasia

Chronocort (10 mg at
7:00 and 20 mg at 23:00)

PK Phase II Unequal dosing morning
and evening

16 pts
(8 M, 8 F)

– Good approximation of
circadian physiological
secretion
– Good tolerability and
effectiveness in controlling
androgen excess

[157]

Chronic
kidney
disease

Valsartan (80–320 mg p.
o.)

Randomised Bedtime vs awakening 60 pts
(non-
dipper)
30 pts
(dipper)

Non-dippers on bedtime vs
awakening Valsartan: –
greater reduction in
proteinuria
– better glomerular filtration
rate
– better protection against
myocardial hypertrophy

[158]

Blood pressure (BP)-
lowering agent

Systematic review of seven
trials

Bedtime vs no bedtime 1277 pts BP-lowering medication at
bedtime reduced total events
and major cardiovascular
events
Nonsignificant reduction of
death rate (P � 0.06)

[159]

Atherothrombosis
(postmyocardial
infarction)

Clopidogrel (75 mg p.o.)
and aspirin (75 mg p.o.)

Randomised 6:00 [10_TD$DIFF]vs 10:00 vs 14:00 vs
19:00 for 4 days on each
dosing-time

59 pts
(45 M,
14 F)

Platelet inhibition lowest after
dosing at 10:00
Nonresponsiveness: 2.4-fold
more frequent at 10:00 vs
6:00

[160]

Osteoporosis
(postmenopausal)

Raloxifene ([11_TD$DIFF]selective
estrogen receptor
modulator, 60 mg p.o.)

Randomised Morning vs evening for 12
months

39 healthy
(F)

Plasminogen activation
inhibitor 1:
[1_TD$DIFF]Morning dosing: +40%
[1_TD$DIFF]Evening dosing: –0.3%
[1_TD$DIFF]In favour of increased risk of
venous thromboembolism
after morning dosing

[161]

Endogenous
coagulation

Rivaroxaban
(anticoagulant agent,
10 mg p.o.)

Randomised controlled
crossover

Morning vs evening for 3
days

16 healthy Plasma concentration 12 h
after dosing:
[1_TD$DIFF]Evening: 53.3 ng/ml
[1_TD$DIFF]Morning: 23.3 ng/ml
[1_TD$DIFF]Evening dosing: better
matching physiological
morning hypofibrinolysis

[162]

aAbbreviations: pts, patients; 5-FU–LV, 5-fluorouracil–leucovorin; L-OHP, oxaliplatin; PK, pharmacokinetics; N, number of subjects; M, male; F, female; AUC, area under
the curve; Cmax, peak plasma concentration; gr, grade; Cthrough, minimum drug concentration in blood/plasma in multiple (subsequent) dosing at steady-state condition[12_TD$DIFF];
MR, modified release tablets; SF, social functioning; p.o., per oral.
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Critical Importance of Peripheral Clocks
A developing and important question about peripheral clocks is what their impact on physiologi-
cal processes is and therefore what their role is in the modulation of pharmacotherapy. For
example, the phase of the liver-intrinsic clock is important for drug metabolism. The rhythm in
acetaminophen toxicity with high toxicity during the night, but low toxicity during the day is
critically dependent on the hepatocyte circadian clock. Mice with liver-specific ablation of
BMAL1 or CLOCK lack a rhythm in acetaminophen liver toxicity [58,59]. Daytime feeding inverts
this rhythm in nocturnal rodents, which mostly feed during the night phase, leading to high
toxicity of acetaminophen during the day [60]. This illustrates that if peripheral tissue-intrinsic
clocks regulate key steps of a molecular pathway, the deregulation of tissue clocks might
represent an important pathological focus and lead to new potential pharmacotherapeutics.

Furthermore, peripheral tissue clocks have been shown to be essential for proper physiological
function in mice, even if all other peripheral clocks and the central pacemaker are intact. Most of
this work has been carried out by selectively deleting clock function in specific organs or cell
populations. For instance, genetic ablation of the circadian clock in pancreatic b cell-specific
BMAL1-deficient mice has been demonstrated to lead to type 2 diabetes [61,62]. Similarly,
cardiac functions such as myocardial contractility are impaired in a-myosin heavy chain–
ClockD19

[14_TD$DIFF] knock-in mice without a functional clock in cardiomyocytes [63]. Krüppel-like factor
15 (Klf15) is thought to link the circadian oscillator to the regulation of cardiac potassium
channels important for cardiac repolarisation, and therefore ventricular arrhythmias in mice,
as cardiomyocyte-specific Klf15-deficient or -overexpressing mice do not show circadian
cardiac QT interval regulation [64]. Even the local disruption of peripheral clocks in the brain
has important implications for the whole organism. Deleting the circadian clock mechanism in
histaminergic neuron populations in mice by locally deleting BMAL1 expression has been shown
to alter histamine brain levels and consequently lead to sleep fragmentation and shallower non-
rapid eye movement (NREM) sleep [65]. Moreover, cell-intrinsic clocks in various immune cell
populations have been found to be of functional importance for time-of-day variations in both
innate and adaptive immune functions [66–69]. Most recently, the circadian clock in pulmonary
epithelial club cells was found to modulate recruitment of neutrophils to the lungs in response to
a bacterial challenge. In wild-type mice circadian expression of the chemokineCxcl5 in club cells
and systemic glucocorticoid levels modulate neutrophil recruitment. In mice with BMAL1-
deficient bronchiole cells, however, constant CXCL5 increases inflammatory responses after
bacterial challenges, despite persistent circadian glucocorticoid rhythms [68]. Of note, simulated

Box 1. The Molecular Clockwork

The unit of the molecular circadian oscillator is the cell. At the core of this cell-autonomous molecular mechanism driving
circadian cycles are two interlocked transcriptional/translational feedback loops [13_TD$DIFF] (Figure 1). The mechanistic principle of a
circadian clock is rather simple: an activator gene initiates transcription of a repressor gene. Then, the repressor protein
re-enters the nucleus and eventually shuts off its own transcription until the repressor is degraded and the cycle can start
again [163]. In mammals, Bmal1 is the key transcriptional activator. BMAL1 binds to regulatory E-box elements as a
complex with its dimerisation partners CLOCK or NPAS2 [164] and activates the transcription of Period (Per) and Cry
(Cryptochrome) genes. After translation, PER and CRY proteins re-enter the nucleus and as part of a large complex
repress their own transcription [165]. Once the repressor complex dissociates, the cycle can start once more. A second
loop stabilises this basic loop: as in the case of Pers and Crys, Rev-Erbs and ROR orphan nuclear receptor family genes
are activated by the BMAL1-containing complex binding to the E-box on their promoters. In turn, ROR and REV-ERB
proteins competitively bind to ROR elements, activating and repressing Bmal1 transcription, respectively [166]. Most
important for the usefulness of any clock are its hands, that is, the output. In mammals, approximately 20–40% of the
transcriptome [106], proteome [104,105], and metabolome [114,116] are modulated by the circadian clock. Importantly,
many rate-limiting steps of key physiological pathways including those important for drug pharmacokinetics and
pharmacodynamics are under direct or indirect clock control [10,106,167]. Post-transcriptional modifications of
RNA [168], the regulation of ribosomal translation [169,170], as well as post-translational control by kinases, phos-
phatases, and acetylases have been implicated in the daily variation and tuning of the circadian clock [171,172]. Possibly,
completely independent of the transcriptional feedback loop, non-transcriptional oscillators have been described; for
example, the peroxiredoxin oscillations in human red blood cells [173].
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shift work in human volunteers disrupts the coupling between rhythms in cytokine secretion and
relative abundance of monocytes and T lymphocytes [70].

These examples illustrate the functional importance of tissue-intrinsic clocks and emphasise the
potential impact of circadian disruption. It remains to be seen, however, if rescuing or pharma-
cologically enhancing rhythmicity in peripheral clocks could become a relevant treatment option
in chronic diseases.

Interactions between the Circadian Clock and the Cell Cycle
Possible consequences of clock disruption include a higher incidence of cancer and accelerated
cancer progression. In experimental cancer models, SCN ablation or simulated shift work
schedules have been shown to accelerate tumour growth [25,71]. In patients, epidemiological
evidence suggests that shift workers have higher cancer incidences, and breast cancer patients
with misaligned sleep tend to have shorter disease-free survival [72–74]. This reflects, in part, the
tight link between cell cycle and the circadian clock. The cell cycle has long been known to be
synchronised by the CTS in mammals [75]. Twenty-four-hour rhythms have been demonstrated
in DNA synthesis and mitotic activity in vitro in many cells and in vivo in many rodent and human
tissues [9,76–78]. Moreover, circadian synchronised cell cycling has been recognised as an
important mechanism accounting for the chronotoxicity of some anticancer drugs, such as
gemcitabine, irinotecan, 5-fluorouracil, or docetaxel [10,79]. Based on studies in mouse liver and
in cultured fibroblasts, a gating mechanism controlling the G2/M transition via CLOCK/BMAL1-
activated WEE1 kinase was initially considered. Subsequent studies suggested further mecha-
nisms by which the clock and the cell cycle are coupled [80–83]. As such, a common theme
emerges: the circadian clock controls the expression of several cell cycle-related genes, which in
turn modulate the expression of key regulators of mitosis. The combination of long-term clock
and cell cycle reporter recording at the single cell level has further shown, using mathematical
modelling, that the circadian clock and the cell cycle should be considered coupled oscillators,
with reciprocal interactions [1,5]. This suggests that the clock can control cellular proliferation,
but also that cellular proliferation can influence the clock. This relationship could further represent
a critical determinant for the time-dependencies of the cell cycle effects of many drugs and
environmental toxicants. However, whether such coupling also exists in vivo, displays any tissue
specificity, or is altered in proliferative diseases remains unknown.

Role of Circadian Clocks in Pharmacology and Toxicology
Twenty-four-hour rhythms have long been known to moderate xenobiotic absorption, distribu-
tion, metabolism, and excretion. These key processes determine the shape and levels of cellular
exposure to drugs and toxicants, that is, pharmacokinetics and toxicokinetics [10]. An epide-
miologic study involving 14 480 patients with intentional self-poisoning (oleander seed or
organophosphorus) further highlights the tight links between the time of poisoning and death
in the human population. Up to 50% reduction in case fatalities were observed if evening rather
than late morning poisoning occurred; a difference that does not seem to be explained by the
treatment but was suggested to be influenced by intestinal P-glycoprotein (P-gp) and hepatic
cytochrome P450 3A4 (CYP3A4) rhythms [84].

There are recent advances in the understanding of the phases of circadian control of xenobiotic
metabolism, namely, Phase I, oxidation, reduction, and hydrolysis reactions; Phase II, conjugation
reactions; and Phase III, xenobiotic transport. Thus, the circadian coordination of Phase I, II, and III
xenobioticmetabolismcanbeviewedasanadaptiveandanticipatory timemechanism,whichmost
efficiently helps increase xenobiotic water solubility and excretion mainly via urine and bile [10,79].

Phase I and II metabolism in mouse liver, kidney, and intestine has been shown to be
regulated through rhythmic expression of E-box-dependent proline and acidic amino
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acid-rich basic leucine zipper transcription factors (PARbZip) [85]. PARbZip transcription
factors bind rhythmically to D-box-containing promoters of key genes that regulate
xenobiotic metabolism, such as cytochrome P450 oxidoreductase (POR), constitutive
androstane receptor (CAR), peroxisome proliferator-activated receptor-/ (PPAR-/), and
aryl-hydrocarbon receptor (AhR) [85]. Moreover, microsomal and non-microsomal oxidor-
eductases and esterases also display circadian rhythms not only in mRNA and protein but
also at the enzymatic activity level. As mentioned earlier, circadian modulation of CYP activity
results in dosing-time and functional hepatic clock-dependent differences in acetaminophen
toxicity in mice [58,59]. Acetaminophen is metabolised by CYP3A4, and human CYP3A4
is important for the biotransformation of half of all marketed drugs. Indeed, in healthy
human subjects, CYP3A4-dependent metabolism of the benzodiazepine-derived anxiolytic
midazolam is 20% higher in the middle of the day when compared with the middle of the
night [86].

Carboxylesterases (CES) also play a pivotal role in Phase I metabolism and are under direct
transcription control of PARbZip proteins, as has been found in vitro [87] and in vivo [85]. Indeed,
the rhythmic control of CES has been shown to be important for the circadian bioactivation of
anticancer agents such as irinotecan and capecitabine [79]. Another important Phase I enzyme,
dihydropyrimidine dehydrogenase (DPYD) is circadian-regulated, resulting in time-dependent
dehydrogenation and deamination of fluoropyrimidine drugs, such as fluorouracil and capeci-
tabine [79], respectively.

With regard to Phase II drug metabolism, the circadian rhythms of glutathione S-transferase
(GST) activity and glutathione (GSH) content have been reported to be highly important for the
detoxification of xenobiotics, as is the case, for instance, of acetaminophen [60], or metal
compounds such as cadmium [88] or platinum complexes. In rodents, the GSH contents in the
liver and jejunum are approximately 3-fold higher during the second half of the night when
compared with mid-day [89]. In support of this, PARbZip-deficient mice exhibit a general
downregulation of Gstt1 and Gsta3 gene expression and are subsequently less susceptible
to acetaminophen toxicity [85].

Following solubilisation, Phase III transport of compounds in the liver, kidney, and intestine is
mainly accomplished by ATP-binding cassette (ABC) transporters [90]. Many ABC trans-
porters including abcb1a and abcb1b (the rodent homologs of P-gp) and other ABC
members abcc2 and abcg2 have been shown to exhibit circadian expression patterns in
the intestine and liver in rodent models [91–98]. Transcriptional rhythms have also been
demonstrated to lead to higher daytime P-gp activity in the jejunum and ileum of rats [99].
Solute carrier (SLC) superfamily transporters are mainly responsible for drug influx into the
intestine, liver, and kidneys [90]. In mice, hepatic circadian expression patterns have been
observed in various organic anion-transporting polypeptides, the organic anion transporter-1
(Oct1) and -2 (Oct2) [92]. In addition, rhythmic PPAR-/ driven OCT2 protein abundance has
been implicated as an important regulator of the circadian rhythm of cisplatin nephrotoxicity in
mice [100].

The daily variation of enzyme and transporter activity involved in the metabolism of a given
substance is a striking observation. For instance, both in vitro and in vivo, the maximum level of
irinotecan bioactivation by CES occurs near the nadir of its detoxification enzyme UGT1A [9_TD$DIFF]1, and
vice versa [101]. Overall, the circadian coordination of Phase I, II, and III xenobiotic metabolism
and transport pathways represents an anticipatory timing mechanism that most efficiently helps
to increase xenobiotic water solubility and excretion [79]. Such endogenous circadian organi-
sation likely reflects the adaptation of living beings to environmental 24-h cycles of possible
xenobiotic exposure.
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A New Way Forward: In Vitro–In Silico Circadian Modulation of Xenobiotics
Effects
The tight coordination of metabolic pathways across the day shows strong interindividual
variance, but can also be altered, in particular whenever pathological processes or treatments
disrupt the CTS. Therefore, there is a need for a systems approach to chronopharmacology to
systematically map the key clock-controlled metabolic processes and test the consequences of
their alterations on chronopharmacology. Expectedly, such systems chronopharmacology will
help make a priori predictions of the specific chronopharmacology pattern of a given substance,
according to an individual's CTS as assessed by one or more suitable biomarkers. A first step
toward this new strategy has been to combine in vitro and in silico investigations. For instance, in
contrast to chronopharmacology or chronotoxicology studies in vivo, investigations in circadian
synchronised cell culture models presently allow systematic and quantitative testing of drug
compounds, subsequently generating mathematical models to quantify the impact of molecular
clocks on xenobiotic metabolism [24]. An example is the in vitro–in silico circadian investigation
of the cancer chemotherapeutic irinotecan pharmacokinetics–pharmacodynamics, which was
performed in differentiated human epithelial colorectal adenocarcinoma (Caco-2) cells [87,101].
Results showed that transcriptional rhythms were observed in all phases of irinotecan metabo-
lism: Phase I (CES), Phase II (UGT1A1), and Phase III (ABCB [15_TD$DIFF]1; human P-gp) [101]. For example,
the CES-mediated biotransformation of irinotecan into its active metabolite, SN38, doubled,
depending on whether the circadian phase cells were exposed to irinotecan. With all these
effects taken together, this led to a 4-fold change of irinotecan-induced apoptosis depending on
the timing of drug exposure. When the circadian clock was disrupted by siRNA-mediated Bmal1
silencing, however, drug timing-dependent rhythms of drug metabolism and apoptosis were
absent [101]. These findings illustrate how in vitro chronopharmacology and chronotoxicology
might contribute to a cost-effective optimisation of preclinical drug development and/or toxicant
testing.

Each on their own, different in vitro systems might reveal further differences in circadian
dynamics of drug metabolism, potentially indicative of cell or tissue specificity and proliferation
status, or interindividual differences irrespective of comparable molecular clock proficiency. For
example, by contrast to Caco-2 cells, clock-containing proliferating Glasgow osteosarcoma
cells were not found to exhibit a circadian pattern of abcb1a or abcb1b gene expression [102].

Usefulness of Circadian ‘Omics’
The in vivo and in vitro drug metabolism circadian investigation approaches might indeed benefit
from ‘omics’ technologies. Multiple pharmacology and toxicology studies have shown that
circadian clocks regulate key molecular pathways of drug metabolism in animal models. For
studies of liver drug metabolism, various recent transcriptomic, proteomic, and metabolomic
circadian datasets are now available from mice [103–107]. This has been extremely useful for
systems biology approaches to drugmetabolism. However, fewer time-series studies have been
published in other putative drug target tissues such as the heart and aorta [27,108,109], the
kidney [110], or the central pacemaker, the SCN [111]. Comparing circadian patterns of multiple
tissues is especially interesting and informative because it casts insight into tissue-specific clock-
controlled mechanisms of xenobiotic metabolism. For example, circadian expression profiles of
more than half of all nuclear receptor genes (which represent important metabolic sensors in key
tissues such as the liver, skeletal muscle, and fat) have established a clear tissue-specific
circadian regulation of energy metabolism in mice [112]. However, only one drug metabolism
study has been conducted to compare circadian gene expression in a dozen mouse tissues
[106]. The resulting data suggest that many disease-relevant genes operate under the control of
circadian clocks, but also that many drug targets are circadian genes themselves. In fact, a large
proportion of marketed drugs has effects on circadian genes, with a half-life of less than 6 h
[106]. This could be conducive for the development of chronotherapeutic approaches for these
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compounds. Key drug metabolism pathways have important roles in extrahepatic functions. For
example, the human CYP P450 system contributes to the bioactivation of multiple drugs in
intestinal and respiratory tissues, and is highly regulated by molecular clocks with tissue-
dependent phases of gene expression [113]. Of note, circadian metabolomics has been recently
described in various biological samples such as blood, saliva, urine, and exhaled breath
[114–119]. These matrices might offer huge translational potential as biomarkers for the clinic
because they are available from animals and human subjects alike [114–117,120], and facilitate
noninvasive repeat sampling [118,119] in time-series or ‘round-the-clock’ dataset collection.

Effects of Drugs on the CTS
The CTSmodulates drug pharmacology and toxicology through amultitude of processes. There
is growing evidence of the effects of drugs on the CTS, as shown by the circadian disruption of
rest–activity, body temperature, or clock gene expression patterns. In mice and human patients
receiving chemotherapeutic drugs, severe alterations of physiological rhythms have been
observed [6,121,122]. Broadly, these drugs can be grouped into (i) those exhibiting unintentional
side effects or unspecific toxicity, resetting the clock; and (ii) targeted chronodrugs. With a
promising outlook, new agents such as Rev-Erb/ agonists [123] are currently being developed
to target either CTS coordination or the molecular clock for different tissues to enhance the
robustness of these components and/or modify circadian phases. Moreover, mathematical
modelling of core clock gene Bmal1 and Rev-Erba expression patterns in mouse liver or colon
have proved to be predictive of different chronotoxicity patterns for the drug irinotecan [20].

Effects of Xenobiotics on the CTS
Chemotherapeutic drugs in particular have been described to have resetting and dampening
effects on circadian oscillations. These agents can also unintentionally modify the CTS by either
disrupting CTS coordination or by altering circadian amplitude or phase. As such, the CTS
can represent a toxicity target to be shielded through proper circadian drug timing. Indeed,
certain indicators of CTS coordination such as rest/activity and core body temperature can be
severely disrupted by anticancer agents of any pharmacological class in mice or rats (reviewed in
[79]). Twelve anticancer agents including cisplatin, carboplatin, oxaliplatin, 5-fluorouracil, irino-
tecan, seliciclib, and everolimus, among others, have been shown to impair molecular circadian
clocks in the SCN, liver, adrenals, and other peripheral organs of mice and in cell cultures [79].
Moreover, the extent of the alterations and the recovery dynamics of rest–activity and body
temperature rhythms depend on dose as well as on circadian timing [124]. Thus, inappropriately
timed anticancer agents are capable of modifying circadian clock amplitude and phase in
peripheral organs, preventing the predictability of internal circadian timing. Indeed, the clinical
relevance of treatment-induced circadian disruption has been demonstrated in cancer patients
receiving chemotherapy, and using the rest–activity rhythm as a CTS ‘biomarker’ [122,125].

Chronodrugs – Clocks as Targets
The hidden resetting of clocks by drugs presents a problem in terms of proper timing for
repeated daily dosing. Interestingly, the dosing-time-dependent toxicity persists or is even
amplified during the chronic dosing of anticancer agents such as taxane-derived docetaxel,
the alkylators carboplatin and oxaliplatin, or the cyclin-dependent kinase inhibitor seliciclib [79].
This finding is in line with the dosing-time dependency of drug-induced circadian disruption.
However, targeting specific agents at the CTS might counteract the disruptive effects of some
drugs through purposely resetting circadian rhythms to a specific phase and/or by enhancing
their amplitudes. Such is the case for drugs that act on the neuronal network of the master
pacemaker in the SCN. The SCN is reset by guanylyl cyclase–cGMP–protein kinase G-depen-
dent mechanisms, which have been described more than a decade ago [126]. More recently,
this pathway has been exploited using ‘sub-erectile’ doses of the cGMP-specific phosphodi-
esterase type-5 (PDE5) inhibitor sildenafil to alleviate jet lag and shorten physiological
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adaptations following transmedian travel [127]. Similarly, it has been suggested that faster
circadian resetting could result from pharmacological uncoupling of the SCN neuronal network.
Desynchronised SCN neurons because of their smaller combined amplitude would then be
more easily reset to the new phase [128].

Even more classical, yet not fully understood mechanistically, the pineal hormone melatonin is
known to reset the circadian clock. Recently, melatonergic agents such as ramelteon and
combined melatonergic/serotonergic drugs such as agomelatine have become available in the
clinic to treat insomnia and depression, respectively. Like melatonin, their mechanism of action
might involve a resetting effect on the SCN clock mediated by the melatonin receptors MT1 and
MT2 [129,130]. Another example is lithium, a marketed drug used in the treatment of bipolar
disorders that has been shown to lengthen the period of the circadian clock, most likely through
inhibition of glycogen synthase kinase 3b (GSK3b), which leads to stabilisation of CRY2 and
faster degradation of REV-ERB/ protein levels [131].

Further compounds have been described as targeting the core clock genes; most prominently,
direct or indirectmodulators of casein kinase 1 [132,133] but alsoRev-Erba [134] and retinoic acid
receptor-related orphan receptor a/g (RORa/g) [135] protein products. In recent years, multiple
high-throughput forward screening (HTS) in vitro projects have been undertaken to find novel
chronomodulatory small molecules. So far, modulators for three targets have been reported:Rev-
Erba, Cryptochrome (Cry), and Casein kinase 1 [32,136–139]. For these experiments, circadian
real-time reporter expressing cell lines,mostly the humanosteosarcomacell lineU2OS, have been
used. Among these agents, the CRY modulators have already been translated into clinical proof-
of-concept trials in two indications, Cushing's syndrome anddiabetesmellitus type 2. It remains to
be seenwhich of the discoveredmechanisms of actionwill effectively prove to be useful in a clinical
setting and whether clock alterations do not lead to unsuspected adverse events.

Concluding Remarks
Circadian clocks modulate many molecular pathways of human physiology and pathophysiol-
ogy. An increasing amount of evidence indicates that there is a biologically andmedically relevant
impact of time-of-day on pharmacotherapy. Recent chronopharmacology studies involving
cancer, rheumatology, [16_TD$DIFF]hematology, neurological/psychiatric disorders, and cardiovascular
medicine have been undertaken (Tables 1 and 2). Indeed, circadian clocks modulate many
processes that define drug properties and behaviour. There have been a few successes in the
clinical translation of chronotherapy, but nevertheless the medical community, drug developers,
and, importantly, regulatory agencies have yet to embrace circadian timing as an important
factor modulating both the efficacy and safety of pharmacotherapy. The identification of reliable
and cost-effective biomarkers of the CTSmight indeed represent the major effort that is required
to fulfil the already documented promise of chronotherapy for improving outcomes of patients
with various diseases. As such, this is an exciting era to be integrated into the development of
new drugs and clock-based therapeutic strategies (see Outstanding Questions). Our ability to
pharmacologically target the CTS to alleviate or treat certain chronic diseases will bring the next
step in fully implementing the concept of chronomedicine.
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