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ABSTRACT

Everolimus (EV), a rapamycin analogue mTOR inhibitor, is used in the clinic to treat Estrogen positive (ER™)
breast cancer in order to avoid the resistance to hormonotherapy. Here, we investigated whether EV
efficacy varied according to administration timing by using the ER" breast cancer cell line MCF-7 as model
system. Our results showed that instead of apoptosis, EV induced a GO/G1 phase blockage of MCF-7 cells.
Following serum shock, MCF-7 cells displayed a statistically significant 24h rhythm of mammalian target of
Rapamycin (mTOR) activity, but perturbed circadian clock genes oscillations. Interestingly, the different
delivery schedule of EV presented different efficacy in GO/G1 phase blockage in serum shocked MCF-7
cells. Moreover, serum shock induced also a circadian-like oscillation in expression or activity of several
important G1 phase progression proteins, such as Cyclin D1 and phosphorylated Retinoblastoma protein
(RB). Inhibition mTOR activity by EV reduced Cyclin D1 and Cyclin D3 protein level as well as RB
phosphorylation level. Taken together, the results indicated that serum shock synchronization induced a
circadian oscillation in mTOR activity in MCF-7 cells, which rhythmically regulated the synthesis or
phosphorylation of key G1 progression proteins, such as Cyclin D1 and phosphorylated RB, ultimately
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resulting in different GO/G1 blockage efficiency according to different EV administration timing.

Introduction

Breast cancer is the most invasive female cancer, accounting for
25% of all cancers in women and resulting in 1.68 million cases
and 522,000 deaths worldwide in 2012." Nearly 70% of breast
cancers express estrogen-receptors (ER") and hence benefit
from anti-estrogen therapies. Recent therapeutic progress has
led to combine anti-estrogens with Everolimus (EV), an inhibi-
tor of the mammalian target of rapamycin (mTOR) pathway/
signaling, in order to avoid or reduce resistance to estrogen
receptor targeted drugs.”™

The mTOR is a serine/threonine protein kinase in the phos-
phatidylinositol 3-kinase-related kinase protein family. mTOR
participates at least the formation of two distinct multi-protein
complexes, mTOR complex 1 (mTORC1) and mTOR complex
2 (mTORC2), which play important roles in cell growth, cell
proliferation, metabolism and survival. EV binds to its protein
receptor FK506 binding protein 12 (FKBP12) to form a com-
plex, which inhibits the activity of mTORCI. One of the most
important roles of mTORCI1 is to promote protein synthesis by
phosphorylating the eukaryotic initiation factor 4E (eIF4E)-
binding protein 1 (4E-BP1) and the p70 ribosomal S6 kinase 1
(S6K1). The phosphorylation of 4E-BP1 inhibits the interaction

between 4E-BP1 and eIF4E, finally promotes cap-dependent
translation. The phosphorylation of S6K1 by mTORCI1
increases mRNA biogenesis, promotes cap-dependent transla-
tion and elongation, and the translation of ribosomal proteins
etc”” mTOR signaling is commonly deregulated in most
human cancers. Hence, it is considered as a target for anti-can-
cer treatments, especially for kidney and neuroendocrine
malignancies, as well as ER" breast cancers.”””

Furthermore, mTOR activity displays a circadian (about 24
hours) variation in different mouse tissues and cells, including
heart, liver, spleen, adipose tissue and brain (as cerebellum, frontal
cortex and suprachiasmatic nucleus) etc., as well as in primary
lung fibroblasts and renal carcinoma cell RenCa etc.'”""” Circadian
cycles exist in most living organisms and coordinate organismal
behavior, physiology and metabolism with environmental cycles
during the course of every 24 hours. In mammals, circadian
rhythms are systemically coordinated by the hypothalamic supra-
chiasmatic nuclei.'® At cellular level, circadian rhythm is generated
through interwoven transcription and translation feedback loops,
involving about 15 clock genes and proteins, including the core
molecular Bmall, Clock, Cryptochromes (Cryl and Cry2), Peri-
ods (Perl, Per2 and Per3) etc."” In brief, the transcriptional activa-
tor complex of Bmall/Clock or Bmall/Npas2 activates the
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transcription of their targets Cryl, Cry2, Perl, Per2 and Per3, these
Cry and Per proteins in turn repress their own transcription
through their interactions with the Clock-Bmall heterodimer.
The Bmall/Clock heterodimer also activates the transcription of
clock genes Rev-Erb o/ and Ror o/B/y, which respectively
repress and activate Bmall transcription.'” Such rhythmical
genetic circadian clock results that about 3%-10% of genes show
one rhythmic expression, which are involved in major cells activ-
ity, as proliferation, metabolism, senescence, apoptosis and DNA
damage response etc.'®

These circadian rhythms can further modify both tolerabil-
ity and efficacy of drugs, resulting in dosing time-dependent
pharmacology and effects. Recent experimental data using tar-
get anticancer agents have demonstrated the importance of
dosing time as well as drug dose in pharmacological effects
determination.'®*° Clinical trials have further shown that the
circadian timing of chrono-modulated chemotherapy could
improve tolerability up to 5-fold and nearly double efficacy as
compared to constant rate or oppositely-timed infusions."” Pre-
liminary clinical data with EV indeed suggested that morning
oral dosing could reduce side-effects in patients with metastatic
breast cancers.”' Moreover, in corresponding to circadian acti-
vation of mTOR in RenCa tumor mass, EV dosing time influ-
ence the survival rate of RenCa-bearing mice.'* All these
findings led us to investigate EV efficacy according to dosing-
time in synchronized human MCF-7 cell cultures, as a model
of ER™ human breast cancer.

Materials and methods
Cell culture and serum shock synchronization

MCEF-7(ATCC® HTB-22™, LGC Standards SARL, France)
cells were grown in Dulbecco’s modified Eagle medium
(DMEM) supplemented with GlutaMAX (GIBCO, Life Tech-
nology, CA, USA) and 10% fetal bovine serum (FBS,
Hyclone, UT, USA). MCF-10A (ATCC® CRL-10317™, LGC
Standards SARL, France) cells were cultured as previously
described.® For western-blot, QRT-PCR and flow cytometry
analysis, MCF-7 cells were seeded into 6-well plates, allowed
to reach 15%-20% confluence in exponential growth phase
and then synchronized with a serum shock as previously
described.”>** Subsequently, the cells were returned to their
usual culture condition and collected at indicated times. The
first sample (Time 0: T0) was taken just after the serum
shock completion. During bioluminescence recordings, cells
were cultured in phenol red-free media supplemented 1mM
luciferin (Promega, WI, USA). For these recordings, MCF-7
and MCF-10A cultures were tested with starting confluence
of 10-15%, 20-25% or 30-40% and recorded for at least
three days.

EV treatment

EV powder (ApexBio Technology, TX, USA) was dissolved in
dimethyl sulfoxide (DMSO, Sigma, MO, USA) and to consti-
tute a 10mM stock solution. EV was added in synchronized
MCF-7 cell culture at indicated times (T0, T12 or T24) at a final
concentration of 1uM and an equivalent volume of DMSO was

added in the control sample (CTRL). The cells were collected
for western-blot and cytometry analysis 24 h after EV exposure
onset.

Western-blot

MCEF-7 cells were washed once with PBS and lysed in 2X
Laemmli buffer (100 mM Tris, pH 6.8, 20% glycerol, 4% SDS,
0.05% bromophenol blue, and 10 mM DTT). The lysates were
then boiled 5 minutes and subjected to sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) gel. After
transfer, nitrocellulose membranes were blotted with the fol-
lowing antibodies: Anti-Actin (A3854, Sigma, MO, USA);
Anti-HSC70 (SPA-815, Stressgen, CA, USA); Anti-Cyclin D1
(556470, BD Bioscience, NJ, USA); anti-Bmall (ab3350), anti-
Cry2 (ab38872) and anti-Per2 (ab179813) were from ABCAM
(Cambridge, UK); Anti-Rev-ERB « (#13418), Anti-Phospho-S6
ribosomal protein (Ser240/244) (#5456), Anti-S6 ribosomal
protein (#2317), Anti-Cyclin D3 (#2936), Anti-P21 Wafl/Cipl
(#2947) were from Cell Signaling Technology(MA, USA). Pri-
mary antibodies were detected with appropriate secondary
antibodies conjugated with horseradish peroxidase and the
membranes were developed with an enhanced chemilumines-
cence (ECL) system (ECL detection kit, Thermofisher, MA,
USA). The results were quantified by Image J, Actin or HSC70
was used as control for protein loading.

Quantitative real time PCR (qRT-PCR)

Cells were collected at indicated times, then total RNA was
extracted as previously described.**** Reverse transcription
was performed with Superscript II RT-kit (Invitrogen,
CA, USA). Quantitative real time PCR was performed with
LightCycler 480 using LightCycler 480 SYBR Green I master
kit (Roche, Bale, Switzerland). Primers used for gene amplifica-
tion were previously described.”® Primers for Bmall were as
following, Fwd: AAGGATGGCTGTTCAGCACATGA; Rev:
CAAAAATCCATCTGCTGCCCTG. Primers for 36B4 were as
following, Fwd: AATCCCTGACGCACCGCCGTGATG, Rev:
TGGGTTGTTTTCCAGGTGCCCTCG. Hybridization temper-
ature for all primers was 60°C. The relative quantification of
target RNA by using 36B4 as a reference was computed with
the Relquant software (Roche, Bale, Switzerland), which is
based on the 2(-AAT) method.

Flow cytometry analysis

Cells were trypsinized by Trypsin-EDTA (ThermoFisher, MA,
USA), then fixed with ice-cold 70% ethanol and afterwards
washed twice in ice-cold PBS with centrifugation at 300g for 10
minutes. The cells were then incubated with anti-Phospho-S6-
APC (#14733) (Cell Signaling, MA, USA) and anti-Ki67-FITC
(BD Biosciences, NJ, USA) in a PBS solution containing 0.5%
BSA and 2mM EDTA for 30 min at 4°C. After being washed
once with PBS, cells were suspended in PBS containing 50ug/
ml propidium iodide (PI) and 20ug/ml RNaseA (Sigma, MO,
USA) and incubated overnight at 4°C. A LSR Fortessa™ cell
analyzer (BeTon Dickinson, NJ, USA) was used for flow cytom-
etry analysis.



Generation of bioluminescence reporter cell lines
and bioluminescence imaging

The lentiviral circadian bioluminescence reporter constructs
pLV7-Bsd-p(Bmall)-dLuc (p(Bmall)-dLuc) was a kind gift of
A.C Liu’® Lenti-viral particles were produced by transient
transfection with TransIT-LT (Mirus-Bio, WI, USA) in
HEK293FT cells (Thermo Fisher, Paisley, UK) according to the
manufacturer’s instructions. pWPI (Addgene plasmid# 12254,
MA, USA) was used as transfection control. For target cell
transduction, a 10 cm dish of 50% confluent MCF-7 or MCF-
10A cells were incubated with 1ml filtered viral supernatant in
the presence of 8 pg/ml polybrene (SIGMA, MO, USA) for
6 hours. Three days after viral transduction, infected cells were
selected by adding Blasticidin (2.5 pg/ml to MCF-7 and 6 ug/
ml to MCF-10A) to the culture medium for at least 1 week.

The LumiCycle (Actimetrics, IL, US) luminometer was used
for bioluminescence recording of serum shocked MCE-7 p
(Bmall)-dLuc and MCF-10A p(Bmall)-dLuc cells in 35 mm
dishes at 37°C with 5% CO,. The bioluminescence signal was
recorded every 10 min for at least 3 days. The LumiCycle Anal-
ysis program was used to obtain baseline-subtracted data.

Statistical analysis

For flow cytometry analysis, statistically significant differences
were determined by two-way ANOVA or by t-test by using
GraphPad Prism version 6.0. Error bars represent standard error
of the mean (SEM) or standard deviation (SD) of independent
experiments. For western-blot or qRT-PCR, time-dependent dif-
ferences were first statistically validated with one-way ANOVA.
If the time-dependent differences is significant, the results were
then analyzed by Cosinor algorithm based on Fourier trans-
formed analysis for sinusoidal function using SPSS to determine
if the variation corresponds to a sinusoidal waveform over the
circadian period. The Cosinor analysis provided the following
parameters estimates: mesor (rhythm-adjusted mean), amplitude
(difference between mesor and maximum of best-fitting cosine
function), and acrophase (time of maximum in best-fitting
cosine function). These parameters are reported with their
respective 95% confidence limits. For bioluminescence recording,
the circadian period and the statistical significance of the com-
puted period are determined by Periodogram analysis.

Results

mTOR activity displayed a rhythmic variation after
serum shock

An about 24 hours (24h) oscillatory pattern in phosphorylated
S6 ribosome protein was found in MCF-7 cell populations after
serum shock (Fig. 1A and B). As one of the main mTOR effec-
tors, Ribosomal protein S6 phosphorylation level was used as a
proxy for mTOR activity.*” In three independent experiments,
phosphorylated S6 ribosome protein gradually increased from
T8, reached a peak between T12 to T20, then decreased toward
a nadir around T24 to T28, and rose again at T36 (Fig. 1B).
Time-dependent differences were statistically validated with
one-way ANOVA (p = 0.03). A statistically significant 24h
oscillation in phosphorylated S6 ribosome protein was further
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Figure 1. Circadian rhythm in mTOR activity after serum shock (A and B): Western-
blot revealed a rhythmic change of mTOR activity in MCF-7 cell after serum shock
(3 independent experiments). MCF-7 cells were harvested every 4h after serum
shock for 36h. The first time point (T0) was taken just after the serum shock. The
phosphorylation level of S6 was used to evaluate mTOR activity. Actin was used as
a control of protein loading to calculate phosphorylated S6 and total S6 level at
every T time. (C): The table resumed Cosinor analysis which revealed a statistically
significant 24h oscillation in phosphorylated S6 ribosome protein, Cyclin D1 and
phosphorylated RB protein, but not in S6 protein. (D and E): Western-blot showed
mTOR activity in MCF-7 cell without synchronization (3 independent experiments).
The non-synchronized MCF-7 cells were harvested every 4h for 36h as the synchro-
nized MCF-7 cells. Actin was used as a control of protein loading to calculate phos-
phorylated S6 and total S6 level at every T time.

suggested by Cosinor analysis (p = 0.0002), with a double-
amplitude of 38% =+ 14% relative to the rhythm-adjusted mean
(Mesor), and an Acrophase occurring at 16h27min + 1h35min
(Fig. 1C). However, no apparent time dependent differences
were observed for total S6 protein expression (one-way
ANOVA, NS; Cosinor, NS; Fig. 1C). In contrast, unsynchro-
nized MCEF-7 cells did not show significant time-dependent dif-
ferences in neither phosphorylated S6 nor total S6 protein
expression (one-way ANOVA, NS; Fig. 1D and >E)

The oscillatory pattern in mTOR activity was consistent
in every cell cycle phase

The use of the tri-staining method (Ki67 antibody, PI and
phosphorylated ribosomal protein S6 antibody) for cytometry
analysis, enabled us to assess mTOR activity dynamics in dis-
tinct cell cycle phases (Fig. 2A and B). A consistent oscillatory
pattern in S6 phosphorylation level was found in G0/G1, S and
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G2/M phase cells that persisted for two consecutive 24 h cycles
after serum shock (Fig. 2C). Higher phosphorylated S6 expres-
sion occurred at T12 and T36, in alternation with lower ones at
TO, T24 and T48. Irrespective of sampling time, phosphory-
lated S6 levels were higher in S and G2/M phase cells compared
to GO/G1 phase cells (Fig. 2D).

Lack of evident circadian oscillation of Bmal1 expression
in serum shocked MCF-7 cells

Previous study on Bmall '~ mice revealed the implication of
Bmall in mTOR signaling regulation''; we therefore probed
Bmall expression in serum shock MCE-7 cells to check if there
existed one circadian oscillation pattern in Bmallexpression.

First, real-time bioluminescence of MCF-7 p(Bmall)-dLuc
and MCF-10A p(Bmall)-dLuc reporter cells were recorded
over three days. MCF-10A p(Bmall)-dLuc reporter cells which
used as positive control displayed a statistically significant
rhythm in Bmall promotor activation (p<0.05, Periodogram
analysis, Fig. 3A). However, MCF-7 p(Bmall)-dLuc did not
show one evident rhythm in Bmall gene expression (p>0.05,
NS for three conditions, The circadian period and the statistical
significance of the computed period are determined by Perio-
dogram analysis, Fig. 3A).

The lack of detectable Bmall expression oscillation was con-
firmed in serum shocked MCF-7 cells at mRNA and protein
levels by qRT-PCR and western-blot respectively (Fig. 3B-C).

One-way ANOVA ruled out statistically significant time depen-
dent differences in Bmall mRNA and protein expressions.

Moreover, no obvious time related oscillatory pattern was
found in both mRNA and protein expression of other clock
genes (Per2, Rev-Erbo and Cry2) in serum shocked MCE-7 cells
over 36 hours (data not shown).

Serum shock induced rhythmic Cyclin D1 and pRB
expressions and synchronized cell cycle in MCF-7 cells

Although no rhythmic mRNA and protein expression of the core
circadian genes could be detected following a serum shock, Cyclin
D1 and phosphorylated RB (pRB), two key G1 phase proteins dis-
played oscillatory patterns, with a period around 24 h (Fig. 4A
and B). Time-dependent differences were statistically validated
with one-way ANOVA (Cyclin D1, p = 0.0003; pRB, p = 0.04).
Cosinor analysis further validated a 24h period (Cyclin D1, p =
0.0062; pRB, p = 0.0017 Fig. 1C) and revealed a double-amplitude
of 62% =+ 34% relative to mesor and an acrophase occurred at
18 h10 min & 2 h 15 min for Cyclin D1; for the pRB protein
rhythm, the double-amplitude relative to mesor is 44% =+ 18%
and the acrophase was located at 18 h32 min + 1h56 min
(Fig. 1C). The 24h oscillation in Cyclin D1 and pRB expressions
indicated that serum shock induced cell cycle synchronization.
Cytometry analysis further confirmed that an accumulation of
cells in G1/GO phase at TO which then released into S at T24
(Fig. 4C).
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Figure 2. The oscillatory pattern in mTOR activity was consistent in every cell cycle phase (A and B): The combination of anti-piS6-APC, Ki67-FITC and Pl in cytometry anal-
ysis allowed to determine mTOR activity of cells in different cell cycle phases. The combination of Ki67 and Pl allowed to determine cell cycle phase distribution and mTOR
activity is indicated by phosphorylated S6 level. (C): Cytometry analysis revealed an oscillatory pattern of mTOR activity in every cell cycle phase of MCF-7 cell. The first
time point (T0) was taken just after the serum shock. Cells were then harvested at indicated times after synchronization. The Phospho-S6-APC level of every cell cycle
phase (G0/G1, S, G2/M) at every T time (T0, T12, T24, T36 and T48) was calculated from 6 independent experiments. (D): The cells in S and G2/M phases presented one
higher S6 phosphorylation levels compared to cells in GO/G1 phase at each sampling time T.
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Figure 3. Lack of evident circadian oscillation of Bmal1 expression in serum shocked MCF-7 cells (A): Average real-time bioluminescence traces of serum shocked MCF-7 p
(Bmal1)-dLuc or MCF-10A p(Bmal1)-dLuc reporter cell lines. Three different cell confluences were used at the beginning of record, condition (1) was around 10-15%, con-
dition (2) was around 20-25% and condition (3) was around 30-40%. The plotted data represent bioluminescence (photon count/sec) against time (hours). For details
see Material and Methods. The circadian period and the statistical significance of the computed period are determined by Periodogram analysis. MCF-10A p(Bmal1)-dLuc
reporter cells presented one significant rhythm of Bmal1 promotor activation, condition: (1) p<0.048, Period = 20.5h; (2) p<0.048, Period = 21.5 h; (3) P<0.0005, Period
= 21.7 h. However, MCF-7 p(Bmal1)-dLuc cells did not show any consistent oscillation in Bmal1 expression (p>0.05, NS for every confluence condition). (B): Western-blot
analysis did not revealed an obvious oscillation in Bmal1 protein expression oscillation in serum shocked MCF-7 cells. Bmal1 protein expression was analyzed every 4 h
after serum shock for 36 h. Actin was used as a control of protein loading. (C): qRT-PCR analysis revealed that MCF-7 cells did not display an obvious rhythm in Bmal RNA
expression. Bmall RNA expression was analyzed every 4 h after serum shock for 36h. 3684 was used as reference for relative quantification of target gene mRNA.

Everolimus inhibited MCF-7 cells proliferation without
inducing apoptosis

Using phosphorylated S6 antibody and PI double labelling flow
cytometry, similar dose-response curves of EV on the inhibition
of S6 phosphorylation were found in every cycle phase of MCE-7
cells. A steeper slope of the dose-response relation was shown in
S and G2/M phase cells (Fig. 5A). Maximum inhibition was
reached at 1uM EV and plateaued thereafter, since a similar effect
was found with 10uM EV. Such dose-dependency was further
confirmed by western-blot analysis for phosphorylated S6 protein
level irrespective of cell cycle phase (Fig. 5B). Therefore, an EV
concentration of 1M was selected for further experiments.

First, we investigated EV induced apoptosis and cell cycle
arrest 48h after exposure onset. EV did not increase the propor-
tion of apoptotic or dead cells compared to controls, as assessed
with Annexin V positive cells or Annexin V and PI double posi-
tive cells, respectively (Fig. 5C). However, EV inhibited MCF-7
cells proliferation, as indicated by a significant increase in GO/
GI1 phase and decrease in G2/M phase cells (Fig. 5D). Thus, GO/
G1 phase blockage was used as the main endpoint when assess-
ing anti-proliferative effects of EV according to drug timing.

Time dependent anti-proliferative effect of EV in serum
shocked MCF-7 cells.

In order to imitate different clinical dosing time (one time
every day, morning or evening), serum shocked MCF-7 cells
were exposed to EV for 24h under three different time sched-
ules: TO to T24, T12 to T36 or T24 to T48 respectively. GO/G1
blockage was used to determine EV anti-proliferative effect
(Fig. 6A). EV exposure from TO to T24 or exposure from T24
to T48 induced a more evident GO/G1 blockage compared to
EV exposure from T12 to T36 in serum shocked MCEF-7 cells

(Fig. 6B and C). In matching up to the control, EV exposure
from TO to T24 and from T24 to T48 increased respectively
27.5%=£5.5% and 17.3%=+3.6% GO/G1 phase cells. However,
G0/G1 phase cell is only increased 7.19%=£2.5% when MCEF-7
cell was treated from T12 to T36. The time dependent efficacy
of EV in serum shocked MCEF-7 cells is statistically validated
for T0-T24 VS T12-T36 (p = 0.0022) and T24-T48 VS T12-
T36 (p = 0.0186). However, there is no significant difference
for TO-T24 VS T24-T48. (Fig. 6C).

The increase in the proportion of GO/Gl phase cells
matched significant decreases in both S and G2/M phase cells
when EV dosing is started at TO or T24. However, EV exposure
starting at T12 did not significantly reduce the proportion of S
or G2/M cells compared to controls (Fig. 6B). Hence, the block-
age efficacy was largely higher following drug exposure at either
T0-T24 or T24-T48 compared to T12-T36.

The cytometry and western-blot analysis revealed that after
a 24h incubation with 1uM EV, S6 phosphorylation was
strongly inhibited in the three different conditions (T0-T24,
T12-T36 or T24-T48). (Fig. 6D-E).

EV inhibited Cyclin D1 and Cyclin D3 expressions
as well as RB phosphorylation

Western-blot analysis revealed that inhibition of mTOR activity
by EV further decreased Cyclin D1 and Cyclin D3 protein lev-
els (Fig. 7A-B). Importantly, inhibition of mTOR by EV did
not decrease RB expression but only its phosphorylation. As
Cyclin D and phosphorylated RB (pRB) play an essential role
in GI1 phase progression, EV induced diminution of Cyclin D
and pRB provided a potential explanation of the GO/G1 arrest
induced by EV.
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Figure 4. Serum shock induced Cyclin D1 and pRB rhythmic oscillations and synchronized cell cycle in MCF-7 cells (A and B): Western-blot revealed the rhythmic expres-
sion of Cyclin D1 and phosphorylated RB in serum shocked MCF-7 cell. MCF-7 cells were harvested every 4h after serum shock for 36h. The first time point (T0) was taken
just after the serum shock. Actin and HSC70 were used as protein loading control to calculate Cyclin D1 and phosphorylated RB expression level at every T time
(3 or 4 independent experiments). HSC70 was used as a control of protein loading to calculate pRB, Cyclin D1 and Cyclin D3 expression level at every T time. (C): Cytome-
try analysis revealed that an accumulation of cells in G1/G0 phase at T0 induced by serum shock which then released into S at T24.

Discussion

Here we tried to understand how and why the administration
time of Everolimus could affect its anti-proliferation efficacy by
using ER™" breast cancer cell line MCF-7 as a model.

We found that mTOR activity, the target enzyme of EV, dis-
played a 24 h rhythmic pattern in serum shocked MCEF-7 cells. EV
dose dependently arrested MCF-7 cells in GO/G1 phase without
eliciting detectable apoptosis. This result was consistent with previ-
ous results suggesting that several pan-mTOR inhibitors induced
also cell cycle arrest but not cell death.”” Interestingly, the extent of
EV induced GO/G1 blockage varied significantly according to EV
administration time in the serum shocked MCEF-7 cells. Normally,
serum shock is used to synchronize both the cell cycle and the cir-
cadian clock, two essential biological oscillators which are all
around 24 h.*** Especially, these two process share some common
elements in biochemical and molecular regulation, like hormones,
growth factor, E-box and bHLH transcription factors and can be
reset by light or serum response, etc.”*® The conservation of essen-
tial elements for the molecular regulation of circadian and cell cycle
underlies similarities in the dedicated molecular mechanisms,
which allow both the ordered progression along cell cycle and the
maintenance of circadian rhythm. Recent studies revealed also

possible molecular interaction between the endogenous circadian
clock and cell cycle.*** However, circadian rhythms are often
altered in breast cancer patients®>” as well as in breast tumors and
breast cancer cells lines.”>**** Alterations and desynchronization
of molecular clock machinery on genetic and epigenetic level were
observed in more aggressive breast cancer and those lacking estro-
gen receptor. Numerous studies have suggested that there are no
mRNA circadian-like oscillations of canonical circadian genes in
many breast cancer cell lines, either in ER™ cells (such as MCF-7 or
T47D) or in ER cells (such as HS578T and MDA-MB231). How-
ever, cultured human mammary epithelial cells maintain an inner
circadian clocks.”>*"** Using luciferase reporter technology, our
results revealed also serum shock induced the rhythmical expres-
sion of Bmall promotor in non-tumorigenic epithelial cell line
MCEF-10A, supporting it was endowed with functional circadian
clocks. But ER* MCF-7 cell did not display an evident circadian
oscillations of core clock genes expression under the examination
of luciferase reporter technology, qRT-PCR and western-blot. How-
ever, after a serum shock, MCF-7 cell exhibited surprisingly a
rhythmic pattern of mTOR activity as well as a synchronized cell
cycling and a significant 24h rhythms in G1 phase progression pro-
teins, such as Cyclin D1 and phosphorylated RB.
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Figure 5. EV inhibited MCF-7 cells proliferation without inducing apoptosis (A): Flow cytometry analysis revealed dose-dependent inhibition of S6 phosphorylation level
in different cell cycle population. (B): Western-blot result revealed dose-dependent inhibition of S6 phosphorylation level by EV. (C): Annexin V and PI analysis by cytome-
try revealed that EV did not induce apoptosis or cell death of MCF-7 cells. (D): Ki67 and PI analysis by cytometry showed that EV inhibited MCF-7 cells proliferation and

induced a significant increase of GO/G1 and G2/M phases cells after 48 h incubation.

Increasing mTOR activity was shown to drive cell cycle pro-
gression and increase cell proliferation mainly thanks to its
effect on protein synthesis. Indeed, it was reported that mTOR
activity regulated Cyclin D1 translation through phosphorylat-
ing S6 kinase or 4E-BP1.**** Similarly, Rapamycin, an EV ana-
log, decelerated the accumulation of Cyclin D1 during p21
induced cell cycle arrest.*> Our results revealed mTOR inhibi-
tion by EV could decrease Cyclin D1 and Cyclin D3 protein
expression, but not alter P21 expression. Interestingly, the
mTOR activity peak started at T12, slightly before the Cyclin
D1 expression peak (T16), suggesting that induction of Cyclin
D1 expression after mTOR activation takes several hours. Usu-
ally, Cyclin D-Cdk4/6 dimer phosphorylates RB protein in G1
phase cell, which releases transcription factor E2F from phos-
phorylated Rb and become active to drive G1 to S phase transi-
tion. As RB is one of the main substrates of Cyclin D-Cdk4/6
dimer, it is reasonable that Cyclin D1 expression and RB phos-
phorylation presented a similar oscillation tendency and arrive
to their peak at the same time. Moreover, EV induced only a
decreased RB phosphorylation level but not total RB expres-
sion, which suggested that mTOR is not directly involved in RB
expression. The decreased RB phosphorylation could be due to
the diminution of Cyclin D expression. Taken together, our
results suggested that the oscillation of mTOR activity might
induce the oscillation of expression or phosphorylation of
some G1 progression proteins, which in turn could couple it to
cell cycle progression. In view of the rhythmic activation of
mTOR, when EV was added at different times on serum

shocked MCEF-7 cells which had different mTOR activity level,
different G1 progression proteins levels and therefore different
cell cycle progression probabilities, it was reasonable the cells
presented varied EV sensitivity.

The optimal cancers therapy should be to minimize the tox-
icity of drug to the host but maximize its effect on the tumor.
But unfortunately, in most cancers the clinicians have to apply
higher toxicity to gain good efficacy. Based on our results and a
growing literature on chronotherapy,'® > drug dosing timing
has the potential to become a critical factor, but currently its
importance is underestimated. Chronotherapy aims to design
optimal drug dosing schedules based on physiological circadian
rhythms, which could increase its efficacy and reduce its toxic-
ity.'*"'® The in vitro MCF-7 model investigated here provides
useful hints toward EV chronotherapy in human ER" breast
cancer. A striking finding was that chrono-efficacy of EV
seemed not require canonical circadian rhythm of core molecu-
lar clocks. Moreover, exogenous signals to synchronize the
molecular clocks also coordinate and couple rhythmic mTOR
activity and cell cycling with about 24h periods. These results
suggested the potential importance of clock gene independent
rhythms in chronotherapy. Clock gene independent rhythms
appear pervasively in biology, as shown with the highly con-
served Peroxiredoxins biochemical circadian clock, and the cell
autonomous 12h clock in mouse liver, which coordinated ER
and mitochondrial functions independently from the genetic
circadian clock.***” Even in MCEF-7 cells who did not possess
one net clock gene rhythm, the serum shock could still induce
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Figure 6. Time-dependent anti-proliferative effect of EV in serum shocked MCF-7

cells. (A): After serum shock, cell cycles of EV treated MCF-7 cells and their controls

under three different time schedules (TO-T24, T12-T36 or T24-T48) were analyzed by cytometry. (B): Graphical resumed from cell cycle cytometry analysis illustrated the
different cell cycle phase distributions of T0-T24, T12-T36 or T24-T48 EV treated serum shocked MCF-7 cells compared to their control (5 independent experiments). The

whiskers go down to the smallest value and up to the largest, the line in the box

is plotted at the median. (C): Histograms depicting the relative changes in cell cycle

phase distributions according to EV timing schedule. In matching up to the control, the proportion of GO/G1 phase cells were increased much more evident when EV
exposure from TO to T24 or from T24 to T48 in comparison with EV exposure from T12 to T36. (D): Graphic resumed from the cytometry analysis revealed S6 phosphoryla-
tion level was inhibited by EV with different dosing times in serum shocked MCF-7 cell. (E): Western-blot results showed S6 phosphorylation level was inhibited by EV

with different dosing times in serum shocked MCF-7 cell.

rhythmic mRNA expressions of more than 400 genes.*' Thus,
in chronotherapy, how to take into account not only clock gene
dependent rhythms but also clock gene independent rhythms
will be a new potential clue for the future. Remarkably, the xen-
ografting of MCF-7 cells into nude rats could re-establish a

circadian pattern in Bmall transcription, suggesting that the
importance of host circadian time cues in the circadian coordi-
nation of cancer cells in vivo.*> Thus, if it is possible to re-estab-
lish cancer cell's rhythm by reinforcing the breast cancer
patients’ rhythms which are often deregulated during cancer
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Figure 7. EV inhibited Cyclin D1 and Cyclin D3 expression as well as RB phosphorylation (A):Western-blot results show that different 24h exposure schedules of EV inhibit
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D1 and Cyclin D3 expression levels. (B): Three independent western-blot results were quantified by Image J. Statistical analysis (T-test) revealed that EV induced significant
diminution of Cyclin D1, Cyclin D3 and RB phosphorylation level but not the total RB expression level.

progression, how to take in consideration the interaction
between cancer cells and health host cells also need to be con-
sidered for jointly optimizing EV chronotherapy effects.

The chrono-efficacy of EV found here provided a new per-
spective for cancer chronotherapy, which could be potentially
applied to other anticancer agents.
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