

WARWICK

Out-of-hospital cardiac arrest outcomes (OHCAO) registry

Data driven insights improving outcomes from cardiac arrest (2018 to 2023)

Key impacts

- Helping the NHS to measure and improve performance
- Highlighting health inequalities
- Data driven community CPR campaigns
- Improving access to defibrillators
- GoodSAM collaboration improving community response
- National and international research collaborations

Working with the NHS to measure and improve performance

Since April 2018 OHCAO has been the data source for NHS England's Ambulance Quality Indicators

https://www.england.nhs.uk/statistics/statistical-work-areas/ambulance-quality-indicators/

Disproportionately placed in more affluent areas with a lower population density

Data driven community CPR campaigns

OHCAO data used for targeted community CPR events OHCAO data used by Resuscitation Council UK (RCUK) for online awareness campaigns and lobbying activities

World Restart a Heart (WRAH)

- 291,000 trained in the UK in 2018
- Our data helps identify communities who need the most help

"Hot-Spot" location data shared with St John Ambulance to inform their CPR Community Network

An RCUK out-of-hospital cardiac arrest awareness campaign reached over:

- 75,000 people via Twitter
- 35,000 via Linked In
- 30,000 via Facebook
- 3,000 on Instagram

Using data to improve access to defibrillators

OHCAO research informed the design of The Circuit

- The national defibrillator network
- Now used by all UK ambulance services

OHCAO helped NatWest place 100 defibrillators in the community

Department for Education

NatWest

OHCAO worked with the Department for Education to help develop the Defibrillators in Schools Plan leading to the deployment of defibrillators at almost 18,000 schools

Department of Health & Social Care OHCAO helped the Department of Health & Social Care to place defibrillators in areas of most need

GoodSAM collaboration: Improving the community response to cardiac arrest

Research using OHCAO data

- Demonstrated the life-saving potential of the GoodSAM app
- Helped to refine the optimal alerting radius and system configuration

National and international collaboration

- OHCAO data used by researchers in the UK and around the world to learn about cardiac arrest
- OHCAO has supported the training of 13 new researchers, helping secure the next generation of resuscitation scientists
- OHCAO research findings have informed resuscitation guidelines around the world

Together we make a difference

- More people helping to save a life with CPR
- More defibrillators available and being used
- More hearts restarted
- More lives saved

2,670

lives saved

- Annual CPR surveys show increased confidence in performing CPR
- Public Access Defibrillator (PAD) use has increased from 4.7% in 2017 to 5.5% in 2021
- Annual CPR surveys show an increase in the proportion of individuals trained in PAD use from 25% in 2018 to 31% in 2022
- Annual CPR surveys show that the proportion of individuals reporting they would be likely to use a PAD has risen from 41.2% in 2018 to 50.8% in 2022
- The number of lives saved has improved from 2350 in 2017 to 2670 in 2021
 - Survival has increased from 8.1% in 2017 to 8.5 in 2021

$\overline{\mathbf{V}}$

Publications

Benson M, Brown TP, Booth S, Achana F, Smith CM, Price G, Ward M, Hawkes C, Perkins GD. Location of out-of-hospital cardiac arrests and automated external defibrillators in relation to schools in an English ambulance service region. Resusc Plus. 2022;11:100279.

Hawkes CA, Kander I, Contreras A, Ji C, Brown TP, Booth S, Siriwardena AN, Fothergill RT, Williams J, Rees N, Stephenson E. Impact of the COVID-19 pandemic on public attitudes to cardiopulmonary resuscitation and publicly accessible defibrillator use in the UK. Resusc Plus. 2022;10:100256.

Albargi H, Mallett S, Berhane S, Booth S, Hawkes C, Perkins GD, Norton M, Foster T, Scholefield B. Bystander cardiopulmonary resuscitation for paediatric out-of-hospital cardiac arrest in England: An observational registry cohort study. Resuscitation. 2022;170:17-25.

Brown TP, Perkins GD, Smith CM, Deakin CD, Fothergill R. Are there disparities in the location of automated external defibrillators in England? Resuscitation. 2022;170:28-35.

Smith CM, Lall R, Fothergill RT, Spaight R, Perkins GD. The effect of the GoodSAM volunteer first responder app on survival to hospital discharge following out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care. 2022 Jan;11:20-31.

Ji C, Brown TP, Booth SJ, Hawkes C, Nolan JP, Mapstone J, Fothergill RT, Spaight R, Black S, Perkins GD, Foster T. Risk prediction models for out-ofhospital cardiac arrest outcomes in England. Eur Heart J Qual Clin Outcomes. 2021;7:198-207.

Hawkes CA, Brown T, Noor U, Carlyon J, Davidson N, Soar J, Perkins GD, Smyth MA, Lockey A. Characteristics of Restart a Heart 2019 event locations in the UK. Resusc Plus. 2021;6:100132.

Smith CM, Lall R, Spaight R, Fothergill RT, Brown T, Perkins GD. Calculating real-world travel routes instead of straight-line distance in the community response to out-of-hospital cardiac arrest. Resusc Plus. 2021;8:100176.

Gräsner J-T, Wnent J, Herlitz J, et al. Survival after out-of-hospital cardiac arrest in Europe-results of the EuReCa TWO study. Resuscitation. 2020;148:218-226.

von Vopelius-Feldt J, Morris RW, Benger J. The effect of prehospital critical care on survival following out-of-hospital cardiac arrest: A prospective observational study. Resuscitation. 2020;146:178-187.

Kiguchi T, Okubo M, Nishiyama C, Maconochie I, Ong ME, Kern KB, Wyckoff MH, McNally B, Christensen EF, Tjelmeland I, Herlitz J. Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation. 2020;152:39-49.

Brown TP, Booth S, Hawkes CA, et al. Characteristics of neighbourhoods with high incidence of out-of-hospital cardiac arrest and low bystander cardiopulmonary resuscitation rates in England. Eur Heart J Qual Care Clin Outcomes. 2019;5:51-62.

Hawkes CA, Brown TP, Booth S, Fothergill RT, Siriwardena N, Zakaria S, Askew S, Williams J, Rees N, Ji C, Perkins GD. Attitudes to cardiopulmonary resuscitation and defibrillator use: a survey of UK adults in 2017. J Am Heart Assoc. 2019;8:e008267.

Couper K, Kimani P. K, Gale C, et al. Patient, health service factors and variation in mortality following resuscitated out-of-hospital cardiac arrest in acute coronary syndrome: Analysis of the Myocardial Ischaemia National Audit Project. Resuscitation. 2018;124;49-57.

Ji C, Quinn T, Gavalova L, Lall R, Scomparin C, Horton J, Deakin CD, Pocock H, Smyth MA, Rees N, Brace-McDonnell SJ, Gates S, Perkins GD. Feasibility of data linkage in the PARAMEDIC trial: a cluster randomised trial of mechanical chest compression in out-of-hospital cardiac arrest. BMJ Open. 2018;8:e021519.

Masterson S, McNally B, Cullinan J, et al. Out-of-hospital cardiac arrest survival in international airports. Resuscitation. 2018;127:58-62.

Smith CM, Perkins GD. Improving bystander defibrillation for out-of-hospital cardiac arrest: Capability, opportunity and motivation. Resuscitation. 2018;124;A15-A16.