

STEM Grand Challenge – what is it?

- ☐ Growing activity in STEM in line with the ambitious target of +40% set by the University Strategy 2030
- Once-in-a-generation opportunity to shape the future size, shape and strategic direction of STEM teaching and research
- ☐ Faculty-wide initiative

New home for Chemistry, Physics, School of Engineering Engaging the wider institution

☐ Significant **investment** in buildings and infrastructure to enable a **step-change** in our activities

to secure future sustainability

INCLUSIVE INSPIRING
INTERDISCIPLINARY
ENVIRONMENT

Purposeful growth to strengthen he Warwick STEM portfolio

Support and foster
FUNDAMENTAL
AND APPLIED
RESEARCH
of the highest quality

STATE-OF-THE-ART FACILITIES

where innovation and groundbreaking scientific endeavour will flourish

Strengthen our world class research and education so that we can compete in the top tier of universities

Education

- ☐ Design of innovative and alternative education pathways to advocate for a sustainable future.
- ☐ Overall 30-40% expansion of student numbers.
- ☐ Five new interdisciplinary courses to start Oct. 2023 under theme *Science for Sustainable Futures*:
 - MSc Predictive Modelling and Scientific Computing
 - MSc Global Decarbonization and Climate Change
 - MSc Diagnostics, Data and Digital Health
 - BSc Environmental Science (DA)
 - MSc Analytical Science (DA)
- ☐ 45 interdisciplinary modules created enablers of student creativity and innovation facilitated by integration of disciplinary excellence

Research Vision - Objectives

- ☐ Create an environment that is an aspirational place for the world's leading researchers to perform their best work.
- ☐ Inspire researchers, at all career stages, to fresh innovative ideas that transcend disciplinary norms and contribute to the fundamental base of science and engineering.
- ☐ Contribute solutions for the world's most pressing issues.
- ☐ Provide opportunities for partners, in the local region and beyond, to benefit from the University's expertise and facilities in pursuing their goals.
- ☐ Equip/enthuse a diverse next generation of researchers, business leaders, influencers of science & engineering policy

Research Vision - Themes

- ☐ Developing a research vision that will be **transformative** and enable **sustainable growth** of STEM at Warwick
- ☐ Building on our **core** research, five **thematic** areas for growth have been identified:
 - Molecules, Materials & Structures
 - AI, Digital, & Smart Applications
 - Energy & Environment
 - Frontier Science & Engineering
 - Health & Medical Technologies
- ☐ Themes provide a different lens on our research, not silos.

Aspects of the vision that transcend Themes

- ☐ Sustainability research topics and way of working
- Research Culture excellence, inclusive, open, rewarding
- ☐ Data support for research computing, RSEs
- ☐ Innovation & Partnerships enable interactions at all scales
- ☐ Instruments for Cross-Disciplinary Engagement
- Collaboration extended across whole University –
 engineering; physical, life & social sciences; arts.

Theme A: Molecules, Materials & Structures

Designing, discovering, creating, characterising, building things from other things for the benefit of society.

- Sustainable materials
- ☐ Computational materials modelling & molecular science
- Analytical science
- National center for materials characterisation
- ☐ Scale-up
- ☐ Shared facilities, RTPs, cleanroom

See also Quantum Materials, Energy Materials, Biomaterials

Theme B: AI, Digital, & Smart Applications

All things digital. Data science, automation, machine/deep learning, optimization, robotics, Big Data, Al ...

... decentralised, safe, & trustworthy AI; human-centric AI

- ☐ Core AI/Data Science
- ☐ Al for manufacturing, engineering & automation
- Al for sustainability & social good
- Al for e-sport & virtual reality
- Al in finance

See also Computational Materials Modelling, Al for Healthcare & Medical Science

Theme C: Energy & Environment

Our response to massive societal issues of climate change, resources and pollution – energy transition, efficiency, circular economy, net-zero.

- ☐ Energy materials & systems
 - renewable energy, batteries, fuel cells, power electronics, grid management,
- Environmental systems
 - environmental impact analysis, sustainable plastics,
 life cycle analysis, decision making & policy
- ☐ Resilient infrastructure & low carbon buildings

See also Sustainable Materials, Global Health Challenges

Theme D: Frontier Science & Engineering

Curiosity driven research tackling fundamental unanswered questions, discovering new paradigms, initiating technology of the future, and intriguing the public.

- ☐ Engineering for Big Science
- Multi-messenger Astronomy
- Quantum Technologies
- ☐ Synthetic/Chemical Biology
- ☐ Habitability in the Universe
- ☐ Risks from Space
- ☐ Centre for Light Research

See also Advanced Materials, AI for Big Science

Theme E: Health & Medical Technologies

Applying an interdisciplinary approach from fundamental discovery to commercial application for the health of society.

- Medical data analysis & advanced modelling
 - big data approaches to healthcare & epidemiology
 - modelling of therapeutic actions on disease progress
- ☐ Precision medicine
 - individual, data-driven healthcare
 - novel diagnostic approaches
 - novel therapeutic approaches & biomaterials
- ☐ Global Health Challenges
 - AMR, societal ageing, pandemics, affordability

New research **Science Precinct:** Workplace focussed focussed buildings fully refurbished **Enabling growth** existing buildings and transformation New teaching focussed building New showcase and collaborative space New public realm

When will the Science Precinct arrive?

☐RIBA Stage 2

- BDP/ARUP appointed as architects
- Consultations with research groups, RTPs, theme champions
- Inventory & Measurements
- Concept Design
- Sign off by University Council summer 2023

Research Transformation

Creating better spaces for our researchers in the new Science Precinct will:

- Improve the environment for people and their tools
- ☐ Make it easier to collaborate
- Bring together similar equipment/facilities, in suitable environments
- Provide better access to all for shared and fully supported facilities.
- ☐ Give opportunities for researchers working on a common technique or topic to co-locate
- ☐ Enable partnerships working with industry

Questions?

Science Precinct Progress

Detailed Business Case

Technical Briefing

June 22 to Oct 22

Overall Programme Scope

RIBA Stage 2A Oct 22 to Dec 22 Phase 1 Concept Design

RIBA Stage 2B Jan 23 to Apr 23 Governance Approval May 23