Please read our student and staff community guidance on COVID-19
Skip to main content Skip to navigation

Microbiology and Infection


Four-year fully funded studentships available for 2020 entry

These studentships offer the opportunity of PhD research into the ways in pathogenic bacteria and viruses emerge, evolve and spread, deploy the structures and strategies needed for survival within host cells and tissues and how these vary across populations with the emergence of anti-microbial resistance (AMR). Jointly supervised by internationally leading experts from biomedicine, engineering and the physical sciences, this programme will enable you to integrate molecular, quantitative and analytical approaches to undertake important new discovery science projects in molecular microbiology and infection.

Project supervisors

  • Martin Antonio (MRC Unit, The Gambia) | New molecular technologies in large-scale international research projects including investigating the aetiology of pneumonia and diarrhoea.
  • Greg Challis (Chemistry) l The discovery, biosynthesis, bioengineering and mechanism of action of antibiotics and other bioactive specialised metabolites produced by microorganisms. l see: Rutledge and Challis, Nature Reviews Microbiology, 2015. l working with: Jozef Lewandowski (Chemistry), Christopher Corre (Life Sciences/Chemistry).
  • Chrystala Constantinidou (Medical School) | Microbial pathogenesis through the study of secretions systems, motility and genomics analysis. | see: Loman et al, JAMA, 2013.
  • Allister Crow (Life Sciences) l Structural studies of bacterial proteins. Interested in how bacteria divide, cause infections, and defend themselves against antibiotics. | See: Crow et al PNAS 2017.
  • Samuel Dean (WMS) l Ciliary function in protozoan parasite pathogenicity and human genetic disease l see Dean et al. eLife 2019 PMID30810527 l My work intersects with that of Ann Straube and Robert Cross.
  • Marcio Dias (Chemistry) l Understanding the cell biosynthesis and remodeling in Mycobacterium tuberculosis using a structural biology perspective through crystallography. We are also interested in drug discovery methods, particularly fragment-based drug discovery (FBDD) and drug repurposing. l see Dias et al. ACS Infect Dis. 2019 l working with Liz Fullam (Life Sciences) and Manuela Tosin (Chemistry).
  • Ann Dixon (Chemistry) l Molecular and structural basis of membrane protein folding and interactions for proteins of importance to immune function and development of disease. l see: Nash et al, BBA Biomembranes, 2015 l working with: Victor Zammit, Mark Christian, Daniel Mitchell, Judith Klein-Seetharaman (Medical School), Lorenzo Frigerio, David Roper (Life Sciences), Steven Brown (Physics), Daniel DiMaio, James Drake (USA).
  • Christopher Dowson (Life Sciences) l Antibiotic discovery and antibiotic resistance: underpinned by fundamental mechanistic insight using molecular microbiology, biochemistry, and high resolution imaging.
  • Neil Evans (Engineering) l Mathematical modelling and control of biomedical processes, including reaction kinetics, tumour growth, and antibody dynamics, with a particular interest in Systems Pharmacology. l see: Evans et al, Computer Methods and Programs in Biomedicine, 2014 l working with: Chris Dowson, David Roper (Life Sciences), Tim Bugg, (Chemistry), Dan Mitchell (Medical School), Sunil Daga (University Hospital Coventry and Warwickshire).
  • Elizabeth Fullam (Life Sciences) l Utilising a multidisciplinary approach to understand nutrient uptake and metabolism in Mycobacterium tuberculosis. l see: Fullam et al, Open Biology, 2016 l working with: Matthew Gibson (Chemistry), Alison Rodger (Chemistry).
  • Matthew Gibson (Chemistry) l Developing systems for rapid, low cost microbial diagnostics (for e.g developing countries); understanding the role of carbohydrates in infection; cryopreseration of donor cells/tissue inspired by how antifreeze proteins enable life to flourish in the polar oceans. l see: Deller et al, Nature Communications, 2014 l working with: Nick Waterfield, Daniel Mitchell (Medical School), Elizabeth Fullam (SLS).
  • Freya Harrison (Life Sciences) | Pathogenesis and antibiotic resistance of bacterial biofilms in chronic lung infection; antibiotic discovery from natural products used in historical medicine. | see: Harrison et al, mBio, 2015 l working with Meera Unnikrishnan (Medical School), Julie Bruce (Clinical Trial Unit), Dowson/Roper groups (Life Sciences), Dave Barrett (Pharmacology, Nottingham), Kendra Rumbaugh (Surgery, Texas Tech).
  • Matthew Jenner (Chemistry) | Mapping protein-protein interactions in biosynthetic systems responsible for antibiotic production using structural mass spectrometry. | See: Jenner et al. 2018. Nat. Chem. Biol., 14, 270-275. | Working with Jozef Lewandowski (Chemistry), Greg Challis (Chemistry).
  • Bridget Penman (Life Sciences) l Uses co-evolutionary theory to understand how human genetics affects infectious disease severity. Studies the genetics of malaria resistance, and HLA and KIR genetics. l Penman et al PNAS 2013, PMID 24225852.
  • Rudo Roemer (Physics) l Research interests in protein ridigity and flexibility as applied to structure and function relations in systems/problems such as HIV protease, PDI, AMR resistance, ligand-binding, etc. Also, electron transport in biological molecules including DNA. l see: Soulby et al, Protein Sci., 2015 l working with: Chris Dowson, David Roper, Robert Freedman (Life Sciences).
  • David Roper (Life Sciences) l Investigating the molecular basis of microbial physiology in relation to antimicrobial resistance.
  • Tara Schiller (WMG) l Early detection of myocardial infarction through materials techniques. Research into the difference between stable and unstable plaques for earlier detection of heart disease. l Htun, N. M., et. Al. 2017. Nat. Commun., 8 (1) l working with Prof Matt Gibson, Prof Judith Sridharaman-Klein and Prof Karlheinz Peter, Baker IDI.
  • Anne Straube (Medical School) | Viral hijacking of the host cytoskeleton using Marek's disease virus as model system to study changes in microtubule and actin organisation and mechanism of viral capsid trabnsport. | see: Theisen et al, Dev Cell 2012 | working with: Venugopal Nair (Pirbright).
  • Manuela Tosin (Chemistry) l Chemical biology tools for the elucidation of antibiotic biosynthesis; understanding the role of glycosyltransferase enzymes in health and disease l see: Riva et al., Angew Chem Int Ed Engl. 2014 l working with: Christopher Corre (Life Sciences/Chemistry), Jozef Lewandowski (Chemistry), Alex Cameron (Life Sciences), Alex Jones (Life Sciences), Rachel O'Reilly (Chemistry).
  • Meera Unnikrishnan (Medical School) | Understanding how clinically important bacterial pathogens colonise the host, invade and survive within host cells using a combination of whole genome-based and cellular methodologies. | see: Dapa et al J. Bacteriol., 2013 | working with: Marco Polin (Physics) and Chris Corre (Chemistry).
  • Nick Waterfield (Medical School) l Understanding the molecular mechanisms employed by bacterial pathogens to achieve virulence in insect and human hosts, more specifically how certain insect pathogens have evolved to infect humans also. l see: Mulley et al PLoS One, 2015 l working with: Matthew Gibson, Peter Scott (Chemistry), Christopher Corre, David Roper (Life Sciences).

Key Facts

Four-year MSc + PhD fully funded programme

Contact: Sally Blakeman

Email: mrcdtp at warwick dot ac dot uk

Telephone: 024 7652 3913

Apply here