
SIRS epidemics
I McKendrick and Kermack, A Contribution to the

Mathematical Theory of Epidemics (1927)
I we study SIR and SIRS without ’vital dynamics’
I S, I, R - susceptible, infected, removed class (temporary

immunity)
I mass action kinetics (similar to chemical reactions)
I conservation law (S(t) + I(t) + R(t) = N)



SIRS model
I the model equations are

dS
dt = −βSI + γR (1)

dI
dt = βSI − νI (2)

dR
dt = νI − γR (3)

I use the conservation law to eliminate R

dS
dt = −βSI + γ(N − S − I) (4)

dI
dt = βSI − νI (5)

I Nullclines:
I dS

dt = 0⇒ I = γ(N−S)
βS+γ

I dI
dt = 0⇒ I = 0, S = ν

β



I Equilibria (Sk , Ik): P1 =
(
N, 0

)
, P2 =

(
ν
β ,

γ(N−S2)
βS2+γ

)
I I2 could be also written as I2 = γ(Nβ−ν)

β(ν+γ)

I when is equilibrium P2 physical?



I compute the Jacobian at a stationary point (S0, I0):

J =

(
−I0β − γ −S0β − γ

I0β S0β − ν

)

I a11 = −I0β − γ, a12 = −S0β − γ, a21 = I0β, a22 = S0β − ν
I Equilibrium P1 = (N, 0): use Routh-Hurwitz criterium

I a11 + a22 = −γ + (Nβ − ν)
I det(J) = −γ(Nβ − ν)

If det(J) > 0 and a11 + a22 < 0, then P1 is stable (by R-H).
However, if we know the eigenvalues, we can say a bit more
(λ1 = −γ, λ2 = Nβ − ν).

if P2 is physical ⇒ P1 is a saddle
if P2 is not physical ⇒ P1 is a stable node



I Equilibrium P2 = (S2, I2): again Routh-Hurwitz criterium
(assuming physical P2)

I a11 + a22 = −(βI2 + γ) < 0
I det(J) = βI2(ν + γ) > 0

So P2 is stable (by R-H). However, to determine for what
parameter values there is stable node or stable spiral, tedious
algebra is needed.

I Suppose that β = ν = γ = 1. For what values of N does one
have stable spirals, or stables nodes, for P2?



Modelling Human Immunodeficiency Virus (HIV) infection
I RNA virus → needs reverse transcriptase to synthesize RNA

into DNA
I infects mostly CD4+ T cells
I primary/acute HIV infection, clinically asymptomatic stage,

symptomatic HIV infection, AIDS

(a) (b)



HIV dynamics
I T ,T ∗ - resting/infected CD4+ T cells, V - HIV virions
I proposed equations:

dT
dt = s − dT − kVT (6)

dT ∗
dt = kVT − δT ∗ (7)

dV
dt = NδT ∗ − cV (8)

I cell/mm3, virions/mm3, N ≈ 102 − 103 virions/cell
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Dimensionless model
I introduce τ = T

α , τ
∗ = T∗

α∗ , v = V
β , t ′ = t

γ
I we have

α

γ

dτ
dt ′ = s − dατ − kβαvτ

α∗

γ

dτ∗
dt ′ = kβαvτ − α∗δτ∗

β

γ

dv
dt ′ = Nδα∗τ∗ − cβv

I solve for β, γ, α∗, α: β = d
k , γ = 1

c , α
∗ = cd

Nδk , α = c
Nk

I in canonical form

p dτ
dt ′ = a − τ − vτ (9)

q dτ∗
dt ′ = vτ − τ∗ (10)

dv
dt ′ = τ∗ − v (11)

where p = c
d , q = c

δ , a = Nks
cd (a is the overall production rate

overall destruction rate)



Solution behavior in certain parameter
regimes

I the dimensionless system only has 3 parameters, but is
analytically not trivial

I look at extreme cases - case I: q →∞ and case II: q → 0
Case I: q →∞⇒ dτ∗

dt′ → 0 for all t ′ ⇒ τ∗ = τ∗(0) is a constant
Also, (11) changes to

dv
dt ′ = τ∗ − v (12)

Solving it, we obtain v(τ ′) = v(0)e−τ ′ + τ∗(1− e−τ ′). How would
a completely efficient drug modify (12) (to kill all HIV viruses)?

Case II: q → 0
I Subcase I: p → 0
I Subcase II: p →∞



Subcase I: q → 0, p → 0
p → 0⇒ a − τ − vτ = 0 by (9)
q → 0⇒ vτ − τ∗ = 0 by (10)
Then, τ = a

1+v and (11) changes to

dv
dt ′ = a v

1 + v − v (13)

What are the stationary points? Show that the solution of (13)
satisfies

|v − (a − 1)| = Kv1/ae−t′(a−1)/a, (14)

where K is a constant. If a� 1, then 1/a� 1 in (14). Hence,

|v − (a − 1)| ≈ Ke−t′ ,

so v approaches v = a − 1 exponentially.



Figure : Time course for p → 0 when a� 1.

If a� 1, then |v − (a − 1)| = v + 1− a, so (14) changes to

v = K ′(v + 1− a)ae−(1−a)t′ ⇒ v ≈ K ′e−t′

That is, if overall production rate is much smaller than overall
destruction rate, the infection is suppressed.



Subcase II: q → 0, p →∞
p →∞⇒ dτ

dt′ → 0 for all t ′ ⇒ τ = τ(0) is a constant
q → 0⇒ τ∗ = vτ by (10)
So (11) changes to

dv
dt ′ = (τ − 1)v

Figure : Time course for p →∞.

So viral production is controlled by τ , the number of CD4+ T cells
ready to be infected.



Case II: q → 0, but without the subcases
Recall that τ∗ = vτ by (10), so let’s consider (9) and (11) again:

dτ
dt ′ =

1
p (a − τ − vτ)

dv
dt ′ = (τ − 1)v

The stationary points are X1 = (1, a − 1) and X2 = (a, 0), but are
they stable or unstable?

Compute the Jacobian at a stationary point (τ0, v0):

J =

(
− 1

p (1 + v0)
τ0
p

v0 τ0 − 1

)

Find the eigenvalues from the characteristic equation
det(J− λI) = 0.



The eigenvalues corresponding to X1 are

λ1 =
1

2p
(
−a+

√
a2 − 4(a − 1)p

)
, λ2 =

1
2p
(
−a−

√
a2 − 4(a − 1)p

)
and the eigenvalues corresponding to X2 are

µ1 = −1
p , µ2 = a − 1.

Consider how a changes the stability of the stationary points in the
following cases:

I Weak source: a < 1
I Marginal case: a = 1
I Strong source: a > 1



Weak source: a < 1
X1: biologically not relevant (why?)
X2: µ1 < 0, µ2 < 0 - stable node (the virus is eliminated)

Marginal case: a = 1
X1: λ1 = 0, λ2 = −a/p - nonisolated stationary points
X2: µ1 < 0, µ2 = 0 - nonisolated stationary points
What steady-state is achieved depends on the initial condition (see
the Figure).



Strong source: a > 1
X2: µ1 < 0, µ2 > 0 - saddle point
X1: the discriminant a2 − 4(a − 1)p can change sign

I if a2 − 4(a − 1)p > 0⇒ λ1 < 0, λ2 < 0 - stable node
I if a2 − 4(a − 1)p = 0⇒ λ1 = λ2 < 0 - borderline case (but

stable)
I if a2 − 4(a − 1)p < 0⇒ Re(λ1) = Re(λ2) < 0 - stable spiral

It is not possible to eradicate the virus.


