SIRS epidemics

>

McKendrick and Kermack, A Contribution to the
Mathematical Theory of Epidemics (1927)

» we study SIR and SIRS without 'vital dynamics’
» S, I, R - susceptible, infected, removed class (temporary

immunity)

» mass action kinetics (similar to chemical reactions)
» conservation law (S(t) + I(t) + R(t) = N)




SIRS model

» the model equations are
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» use the conservation law to eliminate R
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> Equilibria (Sk, le): P1 = (N,0), P, = (4, 20=2))

» |, could be also written as h = %

> when is equilibrium P, physical?

N a0
|




» compute the Jacobian at a stationary point (S, lp):

g “B=7 =S -7
lo3 SoB —v

> a1 = —hpB -7, a2 =—56 —, an = b, ax =SB —v
» Equilibrium P; = (N,0): use Routh-Hurwitz criterium
> ain+an=-—7+(NB-v)
> det(J) = —y(NS —v)
If det(J) > 0 and a11 + ax2 < 0, then Py is stable (by R-H).
However, if we know the eigenvalues, we can say a bit more
(A==, 2=Ng—v).

if Py is physical = Pj is a saddle
if Po is not physical = P; is a stable node




» Equilibrium Py = (52, k): again Routh-Hurwitz criterium
(assuming physical P»)
> ay +an=—(fh+7v) <0
» det(J) =Bh(v+v)>0
So P, is stable (by R-H). However, to determine for what
parameter values there is stable node or stable spiral, tedious
algebra is needed.

N

» Suppose that 5 = v =y = 1. For what values of N does one
have stable spirals, or stables nodes, for Py?



Modelling Human Immunodeficiency Virus (HIV) infection

» RNA virus — needs reverse transcriptase to synthesize RNA
into DNA

» infects mostly CD4™ T cells

» primary/acute HIV infection, clinically asymptomatic stage,
symptomatic HIV infection, AIDS
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HIV dynamics

» T,T* - resting/infected CD4™" T cells, V - HIV virions

» proposed equations:

dT
—=s—dT — kVT
il (6)
dT*
= kVT —6T* 7
pm (7)
dVv
—— = N6T* —cV 8
™ c (8)

» cell/mm3, virions/mm3, N ~ 102 — 103 virions//cell
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Dimensionless model

> introduceng, ™ = l* v—% /_%
» we have
adr
Sdr s —dat — kBavt
~
* dr*
L d71;’ = kBavt — a*oT"
~y o
d
édf:, = Néo*7* — cfBv
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» solve for 5,v,a*, a: = %,y:%’a*:%’a:ﬁ
» in canonical form
dr
PW =a—T-—VT (9)
dar* .
Qg = VT =7 (10)
dv N
@ =7 —V (1]_)

_ C _c _ . overall production rate
where P=g9=5 2= (a is the overall destruction rate)




Solution behavior in certain parameter
regimes
> the dimensionless system only has 3 parameters, but is
analytically not trivial

> look at extreme cases - case I: ¢ — oo and case Il: g — 0

Case I: ¢ — 0o = 977 — 0 for all t/ = 7* = 7%(0) is a constant
Also, (11) changes to

ﬁ:’r*—v (12)

Solving it, we obtain v(7’) = v(0)e™™ + 7*(1 — e~™"). How would
a completely efficient drug modify (12) (to kill all HIV viruses)?
Casell: g— 0

» Subcase l: p — 0

» Subcase ll: p —



Subcase I: ¢ — 0,p — 0
p—0=a—7—vr=0by(9)
g— 0= vr—7*=0 by (10)

Then, 7 = 17 and (11) changes to

dv v

a1y Y (13)

What are the stationary points? Show that the solution of (13)

satisfies
lv—(a—1)| = Kvl/2e~t (371)/3, (14)

where K is a constant. If a>> 1, then 1/a < 1 in (14). Hence,
lv—(a—1)| =~ Ke

so v approaches v = a — 1 exponentially.
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Figure : Time course for p — 0 when a > 1.

If a< 1, then |v—(a—1)]=v+1-— a, so (14) changes to
v=K'(v+1—a)ye 173" oy x K'et

That is, if overall production rate is much smaller than overall
destruction rate, the infection is suppressed.



Subcase Il: g — 0,p —» x

p— 00 = % — 0 for all ' = 7 = 7(0) is a constant
qg— 0= 71" =v7 by (10)
So (11) changes to

Figure : Time course for p — co.



Case IlI: g — 0, but without the subcases
Recall that 7" = v7 by (10), so let's consider (9) and (11) again:

dr 1

@:E(Q—T—VT)
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The stationary points are X; = (1,a — 1) and X» = (a,0), but are
they stable or unstable?

Compute the Jacobian at a stationary point (79, vp):

J= —51+w) 3
Vo 77— 1

Find the eigenvalues from the characteristic equation
det(J — Al) = 0.



The eigenvalues corresponding to Xj are

A1 = ;p(—a—H/a2 —4(a— 1)p), Ao = i(—a— a2 —4(a— l)p)

and the eigenvalues corresponding to Xy are

1
pp=-——, pp=a—1L
p

Consider how a changes the stability of the stationary points in the
following cases:

» Weak source: a <1

» Marginal case: a=1

» Strong source: a > 1



Weak source: a <1
Xi: biologically not relevant (why?)
X1 1 < 0, p2 < 0 - stable node (the virus is eliminated)

Marginal case: a=1

Xi: A1 = 0,2 = —a/p - nonisolated stationary points

Xo: p1 < 0, u2 =0 - nonisolated stationary points

What steady-state is achieved depends on the initial condition (see
the Figure).



Strong source: a > 1
Xo: u1 < 0, pp > 0 - saddle point
X1: the discriminant a?> — 4(a — 1)p can change sign
» if a> —4(a—1)p > 0= \; <0, <0 - stable node
» if a2 —4(a—1)p=0= A1 = \a < 0 - borderline case (but
stable)
» if a2 —4(a—1)p < 0 = Re()\1) = Re()\2) < 0 - stable spiral
It is not possible to eradicate the virus.



