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a b s t r a c t

This review provides a detailed account of density functional theory (DFT) and its application to the cal-
culation of molecular properties of inorganic compounds. After introducing some fundamental quantum
mechanical concepts, the foundations of DFT and their realization in the framework of the Kohn–Sham
construction are described. Following a brief exposition of the computational machinery required to carry
out large-scale DFT calculations, the application of analytic derivative theory to DFT is developed in some
detail. The cases covered include geometric, electric, magnetic and time-dependent perturbations. The
developed theoretical apparatus is then applied to the calculations of molecular structures, vibrational
energies as well as a wide variety of properties including absorption, circular dichroism, magnetic circular
dichroism, resonance Raman, X-ray absorption, Mössbauer and electron paramagnetic resonance spec-
troscopies. Finally, the important subjects of spin state energetics and exchange couplings in oligomeric
transition metal clusters is discussed.

© 2008 Elsevier B.V. All rights reserved.

. Introductory remarks

The present volume is devoted to the use of density functional
heory (DFT) in (bio)-inorganic chemistry. In fact, DFT has enjoyed
n enormous popularity in this field over the past two decades (for
eviews see [1–16]) and has found many users that range from hard-
ore theoretical chemists to experimentalists who wish to employ
FT alongside with their experimental studies. Parallel with the

mpressive development of computational hardware the quantum
hemical software that is required to perform DFT calculations has
rogressed to a state where calculations can be performed with
igh efficiency and in a user friendly manner. Consequently, at least
dozen of major program packages are available, either commer-

ially or free of charge, that allow for DFT calculations on large
olecules (Table 1). The notion of a ‘large’ molecule in quantum

hemistry is a moving target. At the time of writing molecules with
round 100 atoms can be treated routinely with DFT methods and
olecules with around 200 atoms with some effort. Even larger
olecules belong to a specialist domain and will usually require

linear-scaling’ or mixed classical/quantum mechanical (QM/MM)
echniques in order to be approachable. Such techniques have been
xtensively developed but have not yet found their way into the
tandard arsenal of the practicing computational chemist.

The present chapter is intended to provide the theoretical back-
round that is necessary to appreciate the physical content of DFT. It
s neither intended to be a complete guide into the technical aspects
f DFT nor it is intended to be a comprehensive description of the
ntire theory of DFT. Rather, the aim of the chapter is to provide the
ain lines of thought that led to present day DFT, to briefly touch

he most frequently used methods and to describe how the exist-

calculations and wish to learn more about the background of the
calculations that they are doing. The physical principles of the vari-
ous spectroscopies that are treated in this chapter can, of course, not
be described and the reader is referred to several excellent compila-
tions [17,18]. Extended examples of DFT applications will be amply
covered in the other articles of this volume and will therefore only
receive a cursory treatment here.

2. Theoretical background

2.1. The molecular Hamiltonian

The molecular Hamiltonian operator that describes the vast
majority of chemistry is deceptively simple—it just contains the
Coulombic interactions between the charged nuclei and electrons
together with the kinetic energy of the electrons. In atomic units1

it reads for a system with N electrons and M nuclei [19,20]:

ĤBO = Te + VeN + Vee + VNN

= −1
2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
|ri − RA|

+1
2

N∑
i=1

N∑
j = 1
j /= ì

1
|ri − rj|

+ 1
2

M∑
A=1

M∑
B = 1
A /= B

ZAZB
|RA − RB|

≡
∑
i

h(i) + 1
2

∑
i /= j
g(i, j) + VNN

(1)
ng DFT methods can be used to calculate structures, energies and
pectroscopic parameters of molecules of bio-inorganic interest.

It is hoped that the material contained in this chapter proves to
e useful for theoretical Ph.D. students at the beginning of their the-
is work and for spectroscopists who already had contact with DFT a

h̄

1 One atomic unit of energy (1 Eh) is equivalent to ∼27.21 eV or ∼627 kcal/mol. The
tomic unit of length is equivalent to 0.529 Å. In these units the numerical values of
and 4�ε0 are unity.
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Table 1
Alphabetic list of major program packages used for performing DFT calculations

Program Leading authors Homepage Commercial

ADF Baerends, Ziegler http://www.scm.com/ Yes
DALTON Helgaker, Jörgensen, Ruud, Agren, Salek http://www.kjemi.uio.no/software/dalton/dalton.html No
DGauss Andzelm, Wimmer http://cachesoftware.com/index main.php Yes
DeMon Salahub, Casida, Köster http://www.demon-software.com/public html/index.html No
DMol Delly http://www.accelrys.com/products/mstudio/modeling/quantumandcatalysis/dmol3.html Yes
Gamess Gordon, Schmidt http://www.msg.ameslab.gov/GAMESS/ No
Gaussian Frisch, Pople, Gill http://www.gaussian.com/ Yes
Jaguar Friesner http://www.schrodinger.com/ProductDescription.php Yes
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O i-bon
Q .com/
T ogic.d

w
p
i
t
r
t
e
i

i

H

H
(
(
i
f
e
e
T

infin
nucl
ronic

a
t
t
a
m
<
m
a
c

2

d
W
s
w
o
B
i
T
i

w

�

T
t
r
t
n
m

�

H
o

T
a
m
x
a
c

	

where the ‘integration’ over the spin-variable s amounts to a sum-
mation over the two possible argument s = ±(1/2) of a function
defined in one-particle spin-space. The electron density	(r) simply
represents N times the probability for finding an electron at position
r irrespective of its spin. The spin-density 	˛−ˇ(r) =	�(r) −	�(r)
represents the distribution of unpaired spins and is normalized to
N˛− Nˇ.

Note that �(x1, x′
1) can be obtained from a generalization of
WChem Kendall, Windus http://www.emsl.pn
RCA Neese http://www.thch.un
Chem Head-Gordon, Gill http://www.q-chem
urboMole Ahlrichs, Häser, Furche, Hättig http://www.cosmol

here i, j sum over electrons at positions ri and A, B over nuclei at
ositions RA with nuclear charges ZA. The term (−1/2)∇2

i = (1/2)p2
i

s the quantum mechanical form of the kinetic energy operator of
he ith electron with momentum pi. Note that this Hamiltonian cor-
esponds to the Born–Oppenheimer (BO) approximation in which
he kinetic energy of the nuclei is dropped and the nuclear positions
nter as fixed parameters in the equations. The BO approximation
s assumed to be valid throughout this chapter.

Associated with the N-electron Hamiltonian is a time-
ndependent N-electron Schrödinger equation:

ˆ BO� (x1, . . . , xN|R1, . . . ,RM) = E� (x1, . . . , xN|R1, . . . ,RM) (2)

ere xi collectively denotes the three spatial degrees of freedom
ri) and the spin-degree of freedom (�i) for the ith electron. Eq.
1) constitutes a high-dimensional differential equation that can –
n principle – be solved at any nuclear configuration R = R1, . . ., RM
or the exact eigenstates �0(x|R),�1(x|R), . . . (x = x1, . . ., xN) with
nergies E0, E1, . . . that represent the ground- and the electronically
xcited states of the system as a function of molecular geometry.
he interpretation of the many-electron wavefunction is:

�I(x|R)�I(x|R)∗ dx = probability for finding the electrons in an
element dx around configuration x if the
positions R and the system is in the elect

The set of many-electron wavefunctions�I define the maximum
mount of information that can be gained about the molecular sys-
em according to the laws of quantum mechanics. Unfortunately,
he complexity of the N-electron problem defeats exact solution
nd consequently, approximations are needed. The best approxi-
ations that can nowadays be generated provide energies within

1 kJ/mol of their exact values [21–25]. However, the associated
ethods are computationally so demanding that they can only be

pplied to very small systems that are irrelevant to (bio)inorganic
hemistry.

.2. Reduced density matrices

The many electron wavefunctions �I(x|R) are objects of bewil-
ering complexity that can not be pictured or easily understood.
e will now drop the subscript ‘I’ and refer to the electronic ground

tate until otherwise noted. As a matter of fact, these many-electron
avefunctions contain far more information than is necessary in

rder to deduce all observable properties of the system. Since the
O Hamiltonian does not contain more than two-particle operators,

t is in fact sufficient to know the distribution of pairs of electrons.
his information about the pair distribution function is contained
n the second-order reduced density-matrix associated with the

�

�

/docs/nwchem/ No
n.de/tc/orca/ No

Yes
e/QuantumChemistry/main turbomole.html Yes

itesimal volume
ei are at rest at
eigenstate I

avefunction�(x|R). It is defined by

(x1, x2) = N(N − 1)
2

∫
� (x1, x2, . . . , xN |R)

×� (x1, x2, . . . , xN |R)∗ dx3 . . .dxN (3)

he integral evaluates to the probability of finding a pair of elec-
rons in the arrangement (x1, x2) irrespective of the positions of the
emaining electrons. The normalization factor is chosen such that
he integral of � (x1, x2) over all arrangements (x1, x2) returns the
umber of electron pairs. Analogously, the single particle density
atrix is defined by

(x1, x′
1)=N

∫
� (x1, x2, . . . , xN |R)� (x′

1, x2, . . . , xN |R)∗dx2 . . .dxN

(4)

ere we have applied a small trick and have introduced a new set
f primed variables x′

1 that only enters into  * but not into  .

he reason for this somewhat unusual manipulation will become
pparent below. The ‘diagonal element’ of the first order density
atrix 	(x) =�(x, x) is simply the electron density at configuration
as it may be measured by electron diffraction techniques. As long
s we disregard relativistic effects, 	(x) can be decomposed into
ontributions from spin-up and spin-down electrons as

(r) =
∫
	(x) ds = 	˛(r) + 	ˇ(r) (5)
(x1, x2) to � (x1, x2, x′
1, x′

2) as

(x1, x′
1) = 2

N − 1

∫
� (x1, x2, x′

1, x2) dx2 (6)

http://www.scm.com/
http://www.kjemi.uio.no/software/dalton/dalton.html
http://cachesoftware.com/index_main.php
http://www.demon-software.com/public_html/index.html
http://www.accelrys.com/products/mstudio/modeling/quantumandcatalysis/dmol3.html
http://www.msg.ameslab.gov/GAMESS/
http://www.gaussian.com/
http://www.schrodinger.com/ProductDescription.php
http://www.emsl.pnl.gov/docs/nwchem/
http://www.thch.uni-bonn.de/tc/orca/
http://www.q-chem.com/
http://www.cosmologic.de/QuantumChemistry/main_turbomole.html
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n terms of these density matrices, the exact energy E = 〈 |H| 〉 can
e written as

= VNN − 1
2

∫
x1=x′

1

∇2�(r1, r′
1) dx −

∑
A

∫
	(r)ZAr

−1
iA

dr

+
∫ ∫

� (r1, r2)r−1
12 dx1 dx2 (7)

he spin-free density matrices used in this expression are obtained
y simply integrating over the spin-variables:

(r, r′) =
∫
s1=s′

1

�(x1, x′
1) ds = �˛(r, r′) + �ˇ(r, r′) (8)

(r1, r2) =
∫ ∫

� (x1, x2) ds1 ds2 = � ˛˛(r1, r2) +� ˇˇ(r1, r2)

+� ˛ˇ(r1, r2) +� ˇ˛(r1, r2) (9)

rom this discussion, it becomes apparent that once the pair-
istribution function � is known, all properties of the system (in
he given electronic state) can be calculated exactly by evaluating
he appropriate one- and two-electron integrals. Obviously, � , �
nd in particular 	 are much simpler objects than the N-electron
avefunction itself. Hence, an old dream of quantum chemistry

s to directly calculate these density matrices without the “detour”
f the many electron wavefunction. Perhaps one could formulate a
ariational principle that allows the variation of a trial� in order to
btain a ‘best’ approximation to the true� within the given Ansatz.
owever, so far this dream has been proven to be elusive although

here has been progress along these lines [26]. The reason is the
-representability problem: in order to obtain a physically allowed
it must be derivable (in principle) from a physically allowed N-

lectron wavefunction � . The necessary and sufficient conditions
n � to be N-representable, are, however, not known.

In DFT one does not attempt to calculate or approximate � .
nstead, it will be motivated below that – in principle – it is enough
o know 	(r) in order to fully determine the exact E.

.3. Hartree–Fock theory

If one proceeds along a systematic route the most obvious
hoice is to use the variational principle in order to obtain an opti-
um approximate � from which � , � and E are calculated. The

erm in the Hamiltonian that prevents an exact solution is the
lectron–electron interaction. Without this term, the Hamiltonian
ould be simply a sum of one-particle contributions and its eigen-

unctions would be a product of single-electron wavefunctions, e.g.
(x1, . . ., xN) = 1(x1), . . ., N(xN). However, such a Hartree product

iolates the Pauli principle and hence the appropriate form for a
ystem of noninteracting electrons is a single Slater determinant:

SD(x1, ..., xN) = 1√
N!

∣∣∣∣∣∣∣∣
 1(x1)  2(x1) · · ·  N(x1)
 1(x2)  2(x2) · · ·  N(x2)

...
...

. . .
...

 1(xN)  2(xN) · · ·  N(xN)

∣∣∣∣∣∣∣∣ (10)
hich, from the mathematical properties of determinants, is prop-
rly antisymmetric with respect to interchange of two sets of
lectronic variables and is usually abbreviated by | 1, . . ., N|.2 The

2 If one wants to specify the spin of a given one-electron function one writes it
ith an overbar in order to indicate a spin-beta spin factor, e.g. | 1 ̄1... N ̄N | for
closed shell system.
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ingle-electron wavefunctions  i that enter into Eq. (10) are, as
f yet, unspecified, but should form an orthonormal set. They are
alled orbitals. The expectation value of the BO operator over such
Slater determinant is:

�SD|HBO|�SD〉 = VNN +
∑
i

〈 i|h| i〉 + 1
2

∑
i,j

〈 i j|| i i〉 (11)

here the one- and two-electron integrals are defined as3:

 i|h| i〉 =
∫
 ∗
i (x)h(x) i(x) dx (12)

〈 i j|| i j〉 = 〈 i j| i j〉 − 〈 i j| j i〉

=
∫ ∫

 ∗
i (x1) ∗

j (x2)r−1
12 [ i(x1) j(x2)

− i(x2) j(x1)] dx1 dx2

(13)

bviously, there are two types of electron–electron repulsion
ntegrals. The Coulomb-integral Jij 〈 i j| i j〉 represents the
lectrostatic interaction of two-smeared out charge clouds | i|2
nd | j|2 while the second integral Kij 〈 i j| i j〉 represent the
elf-repulsion of an ‘interference-density’  i j. As will be elabo-
ated in Section 7.10, these ‘exchange’ integrals solely arise from
he antisymmetry requirement of the wavefunction and have noth-
ng to do with a genuine ‘exchange interaction’ between electrons.
oth types of integrals are inherently positive. Since Jii = Kii the
egative sign of the exchange interaction cancels the spurious ‘self-

nteraction’ terms arising from the Jii integrals.
The basic idea of Hartree–Fock theory is to use this independent

article model as an Ansatz for the full, interacting many electron
ystem. By means of the variational principle:

≤ 〈�trial|H|�trial〉
〈�trial|�trial〉

(14)

ne seeks the single determinant that yields the lowest energy.
hus, one varies the functional E[{ }] with respect to the form of
he orbitals. The energy that one obtains is an upper bound to the
rue ground state energy of the system. However, one cannot per-
orm a free variation of the orbitals, since these are required to stay
rthonormal in the process. This is usually achieved by means of
agrange multipliers [20]. The result is that all of the orbitals have
o satisfy the same pseudo-one-electron self-consistent field (SCF)
quations:

ˆ i(x) = εi i(x) (15)

he operator F̂ is the Fock-operator. It is a rather complicated
ntegro-differential operator. For an arbitrary pair of orbitals p, q,
he matrix elements of the Fock-operator are:

 p|F | q〉 = 〈 p|h| q〉 +
∑
i

〈 i p|| i q〉 (16)

he interpretation of the orbital energy εi = 〈 i|F| i〉 is that it pro-
ides the average energy of an electron that occupied  i in the
eld of the nuclei and the average field of the other electrons. By

oopmans’ theorem, it is approximately equal to minus the energy
equired to remove the electron from this orbital (i.e. −εi approx-
mates an ionization potential). It is obvious from Eq. (10) that
he Fock-operator depends on its own eigenfunctions. Hence, the
artree–Fock equations constitute a complicated set of nonlinear

3 We will also simply write 〈pq|rs〉 = 〈 p q| r s〉.
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quations that cannot be solved directly.4 Rather, the HF equations
re solved by iterative methods as described in Section 5.

A very useful form of the HF equations can be readily derived
nd reads:

ˆ P̂ − P̂F̂ = 0 (17)

here F̂ is the Fock operator and P̂ is the so-called density operator
ˆ =∑i| i〉〈 i| that has the property of being idempotent (P̂2 = P̂).

Hartree–Fock theory is surprisingly successful. Despite the
rude Ansatz for the many-electron wavefunction HF theory is
apable to recover around 99.9% of the exact ground state energy.
owever, the remaining fraction of ∼0.1% still amounts to several
artrees (>1000 kcal/mol) for a medium sized molecule. Thus, on
chemically relevant energy scale (∼1 mEh = 10−3 Eh), the error

f the HF approximation is, unfortunately, gigantic. Of course, in
hemistry, what matters are energy differences rather than total
nergies. For these, the HF approximation can be much better and
any chemically meaningful results can be obtained with it, in par-

icular, if the number and identity of the bonds that are involved in
he chemical process under study does not change drastically. Yet,
he errors of the HF approximation in chemistry are still so large
hat it is seldom used in actual investigations.

While there are many ways to approach the subject, the most
ommon definition of the correlation energy is, that it is the energy
hat is missing from the Hartree–Fock energy. Thus:

C = Eexact − EHF (18)

n this definition, the correlation energy is always negative (except
or one electron systems where it is zero). Physically speaking, the
orrelation energy arises from the electron–electron interactions
hat are not covered by the mean-field approach provided in the HF
reatment. Thus, electron–electron correlation is an ‘instantaneous’
nteraction and is of short range.

Much progress has been made in quantum chemistry with the
evelopment of ‘post-HF’ methods that recover sizeable fractions of
he correlation energy (today these are essentially Coupled-Cluster
nd many-body perturbation theory [27,28], and their ‘multirefer-
nce’ generalizations [29–35]). In fact, if high accuracy is required,
hese are the methods of choice. However, they have presently still
ot been developed to the stage where one could routinely treat
olecules of interest for (bio)inorganic chemistry owing to the

igh- and steeply rising computational effort that is characteris-
ic of these approaches.5 Thus, these methods will not be covered
n this chapter (see [36–38] for reviews in an inorganic chemistry
ontext).

. Foundations of DFT

Owing to the enormous rise in popularity in chemistry and
hysics DFT was rewarded with the Nobel prize for chemistry in
998 to Walter Kohn (for developing DFT) and to John Pople (for

is developments of computational methods in quantum chem-

stry in general). In fact, Kohn stated [39] “DFT has found many useful
pplications when moderate accuracies (typically in the range 10−3 to
0−1) are required. It is not a precision method which, in principle,

4 It is not even known how many different solutions the Hartree–Fock equations
ave nor is it possible to mathematically prove the existence of such solutions.
owever, such fundamental questions are of no concern in the present context.
5 In fact, these approaches are only highly accurate in conjunction with very large

nd flexible basis sets of at least triply-polarized triple-
 quality. Such basis sets are
ot yet affordable for larger molecules. Correlated ab initio calculations with smaller
asis sets cannot claim to have achieved high-accuracy and must be viewed with
aution.
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ig. 1. Electron density of the CO molecule in the X–Y plane. The density shows
haracteristic cusps at the nuclear positions from which the position of the nuclei
nd their nuclear charge can be deduced.

an be pushed to arbitrary accuracy”. Viewed from this perspective,
he success of DFT is truly remarkable and must be considered as
ery fortunate for the development of theory in chemistry. DFT, as
e know it today, rests on the theorems of Hohenberg and Kohn
hich were formulated in the 1960s [40]. However, it should be

ecognized that DFT has been pursued by theoreticians since the
radle days of quantum mechanics. In fact, important ingredients
hat are used in practically all presently used functionals have been
ormulated in the 1930s by a combination of mathematical rigor
nd physical intuition [41]. The only thing that was not realized at
hat time was that these methods are approximate realizations of
formally exact theory.

.1. Everything from the density?

It was stated in Section 2.2, that the true ground state energy
ould be calculated from the second-order density matrix if it could
nly be calculated without having to know the many electron wave-
unction� . DFT is based on a considerably more powerful theorem
hat proves that – in principle – the exact energy could be deter-

ined from the knowledge of the electron density 	(r) alone. It
ight still be considered surprising that such a theorem exists and

ince DFT is based on this theorem it is appropriate to investigate
ow it comes about. At first glance it seems counter-intuitive that
ne would be able to calculate the interactions of electron pairs
ithout knowing the actual distribution of the pairs (a two-electron

ntity) but only the distribution of the electrons (e.g. 	(r); a one-
lectron entity).

The basic ideas are disarmingly simple and the mathematical
laboration of the theory (which we will not go into in this chap-
er [42]) is frustratingly complex. Consider the plot of the electron
ensity of the CO molecule in Fig. 1.

It is a rather smooth function except at the positions of the nuclei
here 	(r) has a cusp (Fig. 1). The cusp is finite and has values [43]:

im
→0

[
∂

∂r
+ 2ZA

]
	̄(r) = 0 (19)
here 	̄(r) is the spherically averaged electron density. Qualita-
ively, the argument runs as follows (Fig. 2): (1) The BO Hamiltonian
s completely determined by specifying the number of electrons
nd the ‘external potential’, v (in our case simply VeN) which in turn
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Fig. 2. The route from the density

s fully specified once the nuclear positions and nuclear charges
re known. (2) Given N and �, the Schrödinger equation has a
nique ground state energy E (now regarded as a functional of N
nd v, E[N, v]) and associated many electron wavefunction � .6

3) Since one can deduce N from the integral over 	(r) and the
uclear positions and charges from the cusps of 	(r) one can fully
econstruct the Hamiltonian from only the knowledge of 	(r).
ince the Hamiltonian determines the energy, the wavefunction
nd also all associated properties, it must be possible to construct
functional E[	] that provides the exact energy given the exact

ensity. The existence of this functional is the subject of the first
ohenberg–Kohn theorem [44].

How would one start to construct such a functional? The obvious
tarting point is to see which terms in the exact energy expression
an already be expressed in terms of 	(r) directly. A quick inspec-
ion shows that this is only true for the nuclear-electron attraction
erm (disregarding the trivial nuclear-nuclear repulsion term). The
lectronic kinetic energy involves a differential operator and con-
equently we need to know the more general first-order density
atrix �(r, r′) while the two-particle density� (x1, x2) seems to be

equired in order to calculate the electron–electron repulsion. The
ost discouraging part is the latter interaction.
Insight into its dependence on the density can be obtained by

tudying the Hartree–Fock energy in terms of density matrices:

HF = VNN−
∑
A

ZA

∫
	(r)r−1

iA
dr

︸ ︷︷ ︸
VeN [	]

+ 1
2

∫ ∫
	(r1)	(r2)r−1

12 dr1 dr2︸ ︷︷ ︸
J|	|

−1
2︸

his expression reveals that a part (in fact, typically 80–90%) of the
lectron–electron repulsion energy can be written as J[	], the quasi-
lassical self-interaction energy of the charge-cloud 	(r). However,
ven in the Hartree–Fock model – that by definition contains no
orrelation – the exchange and kinetic energy terms require the
nowledge of the entire one-particle density matrix. Yet, the first
K theorem states that it must be possible to somehow write these

erms and the missing electron correlation in terms of the density.
hus, we may write:

[	] = VNN + VeN[	] + J[	] + T[	] + E′
XC[	] (21)

here T[	] is the (unknown) kinetic energy functional and E′
XC[	]

s the (unknown) exchange-correlation functional. These latter two
unctionals are “universal” in the sense that they have a common
but unknown) form for every system.

If it is presumed that these functionals would be known, the
econd Hohenberg–Kohn theorem provides the necessary recipe
o obtain the exact energy. It states that for any trial density 	̃, the
alue of E[	̃] ≥ E[	] where the equality holds if 	̃matches the exact

. Thus, minimization of E[	] over the range of allowed 	̃ would
ield the exact ground state density, energy and hence all other
roperties of the system.

6 This discussion does only apply to orbitally non-degenerate states. The treat-
ent of spin-degeneracy presents no problem. Since the eigenfunctions of the BO
amiltonian are also eigenfunctions of the total-spin squared operator S2, the con-
ition is that the ground state is only 2S + 1-fold degenerate.

	

I
i
s
r

E

exact energy and wavefunction.

�(r1, r2)�(r1, r2)r−1
12 dr1 dr2︷︷ ︸

K

− 1
2

∫
r′=r

∇2�(r, r′) dr︸ ︷︷ ︸
T

(20)

.1.1. A point of concern
While the existence of the universal functional is remarkable,

ne should probably not overlook one fact: the one thing that we
ave so far achieved is to reconstruct the many electron Hamil-
onian from the density. We are then faced with the fact that we
an not solve the associated many-electron Schrödinger equation
xactly. However, we knew the Hamiltonian before and could not solve
he associated Schrödinger equation! The Hamiltonian is given by Eq.
1) in this review, in Eq. (1) of the famous book by Parr and Yang
44] and in pretty much “Eq. (1)” of any other exposition of quantum
hemistry. Viewed from this perspective DFT brings oneself back to
he start with one additional step: the reconstruction of the Hamil-
onian from the density which, so far, has no practical relevance.
he common situation is that the number and identity of atoms as
ell as the number of electrons in the system is known in advance

nd at least a reasonable guess of the initial nuclear positions is
vailable.

Thus, depending on the taste of the reader, the existence of
he universal functional might be taken as an inspiration for the
evelopment of new approximate approaches and as a source of
hysical insight – or – as an elaborate excuse for pursuing more or

ess elegant approximate methods that have, in their essence, been
eveloped by physical reasoning much earlier.

.2. The Kohn–Sham construction

One of the most difficult early problems has been to develop
n accurate expression for the kinetic energy in terms of the den-
ity. Models like the well-known Thomas–Fermi method provide
uch an explicit expression [44]. However, it is unfortunately not
ccurate enough for chemical applications. Practically speaking, the
inetic energy predicted by the Hartree–Fock method is not a poor
pproximation to the exact kinetic energy. Thus, one may won-
er whether it would not be possible to use some aspects of HF
heory in constructing an appropriate expression that would still

aintain the formal exactness of DFT. Indeed, the Kohn–Sham con-
truction provides such a recipe [45]. Consider a fictitious system of
on-interacting electrons. Such a system is described exactly by a
ingle Slater determinant  KS(x) = | i. . . N|. The electron density
ssociated with this determinant is:

KS(r) =
∑
i

∫
| i(x)|2 ds (22)

n order to make the connection to the formal DFT theory, it

s required that 	KS(r) =	(r); the fictitious system and the real
ystem are required to share the same density. One may then
e-write:

[	] = VNN + Ts[	] + VeN[	] + J[	] + EXC[	] (23)
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here the non-interacting kinetic energy (presumably the largest
art of T[	]) is calculated from the Kohn–Sham orbitals:

s[	] = −1
2

∑
i

〈 i|∇2| i〉 (24)

his expression is, indirectly, a functional of the density since the
ohn–Sham orbitals themselves are also functionals of the density.7

he exchange correlation functional is then redefined as

XC[	] = E′
XC[	] + T[	] − Ts[	] (25)

t now contains the (presumably small) part of the kinetic energy
hat is not covered by Ts[	]. The big step forward achieved with
his construction is that the second Hohenberg–Kohn theorem can
ow be applied to yield through variation of the density the single-
article (Kohn–Sham) equations:

−1
2

∇2 + veff(r)
}
 i(x) = εi i(x) (26)

mportantly, the ‘effective potential’ seen by the electrons is given
y

eff(r) = −
∑
A

ZA|r − RA|−1 +
∫
	(r′)|r − r′|−1dr′ + VXC(r) (27)

he exchange-correlation potential is the functional derivative of
he exchange-correlation energy with respect to the density8:

XC(r) = ıEXC[	]
ı	(r)

(28)

bviously, the KS equations closely resemble the HF equations. The
nly difference is the replacement of the (nonlocal) exchange term
y the (local) exchange-correlation potential. Thus, most of the
owerful machinery worked out for Hartree–Fock calculations can
e transferred with limited modifications to density functional pro-
rams. Yet, if the exchange-correlation potential would be exactly
nown, the KS procedure would yield the exact ground state energy.
owever, despite its frequent use, this is an empty statement unless

he form of EXC[	] is actually specified.
A particular Ansatz that has provided much insight is to write the

wo-particle density of the real system in terms of the two-particle
ensity of the non-interacting system (known from HF theory)
nd a correction. The correction is called the ‘exchange-correlation
ole’:

(r1, r2) = 	(r1)	(r2)[1 + hXC(r1, r2)] (29)
number of properties of the (unknown) function hXC(r1,r2) are
nown and can be put to good use in the construction of density
unctionals. However, a thorough description of these properties is
utside the scope of this article [20,46,47].

. Realization of DFT

The large majority of approximations to EXC[	] are derived on
he basis of physical reasoning, intuition, reference to model sys-

7 This is most easily seen if one considers the orbitals to be the natural orbitals of
he density. See Parr and Yang, chapter 7, p. 143.

8 The functional derivative may be defined by expanding the functional in 	 + ı	
nd keeping only linear terms in ı	. See Parr and Yang, Appendix A.
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ems or fitting to experimental data. It is customary to neglect the
inetic energy contribution to EXC[	].

.1. Ab initio DFT

One obvious suggestion that, unfortunately, does not work is to
imply calculate the exchange energy as in Hartree–Fock theory
but from the Kohn–Sham orbitals) and simply add a correla-
ion functional. First, the KS construction shows that the exchange
otential must be local while the HF exchange is nonlocal. In fact,
he construction of the exact, local exchange functional is surpris-
ngly difficult but much progress has been made over the years.
he most important approaches carry the acronyms OEP (opti-
ized effective potential [48]) and LHF (localized Hartree–Fock

49]). Unfortunately, these exact exchange treatments are not com-
atible with the known correlation functionals and consequently,
he results obtained for energetic quantities such like atomiza-
ion or reaction energies are not good. The procedures required to
btain the exact exchange functional are also still not economical
n terms of computational requirements and consequently some
f the advantages of DFT over wavefunction-based theories are
ost. Nevertheless, more progress along the lines of combining
xact, local exchange with suitable correlation functionals is to be
xpected in the future.

A suitable route to “ab initio” DFT that systematically converges
o the exact solution (as wavefunction theory) has been pursued in
ecent years by Bartlett and co-workers. As a result correlation func-
ionals and potentials are available that are consistent with many
ody perturbation and coupled cluster theories [50–55]. Compari-
on of these potentials with the ones that are in present use reveals
hat the widely used potentials do not agree well with the ab ini-
io ones. One example is shown in Fig. 3 where it is evident that
inus the correlation potential predicted by the PBE functional for

he Argon atom agrees better with the ab initio derived potential
han the one that is actually used. The PBE exchange potential on
he other hand follows the exact potential reasonably well except
or the structure at the shell boundaries where the PBE potential is
oo smooth and at long distance from the nucleus where it falls off
oo quickly [511,512]. This may serve as a reminder that the success
f the standard functionals to be discussed below largely rests on
he compensation of large errors.

A second promising route for the construction of new XC poten-
ials is to reconstruct them from accurate densities, for example
btained for small model systems from elaborate wavefunction
ased approaches. Several such methods have been devised and as
consequence the shape of the XC-potential is known for several

ystems [56,57]. However, despite significant trials [58–66] these
ttings have not yet led to functionals that are systematically more
ccurate than the standard approaches described below.

.2. Self-interaction

The immediate consequence of departing from exact exchange
s one of the important features of DFT (which is perhaps to

significant part responsible for its successes and its failures):
elf-interaction. In HF theory, the diagonal exchange terms Kii
ancel the self-interaction terms Jii. The same must hold for
he exact exchange potential, though in a less obvious way. It
oes not, however, hold for non-exact approximations to the
xchange such as the ones that are currently used. Since the self-

nteraction is unphysical, methods have been devised to remove
t [67,68]. However, they have met with mixed success [69–74]
nd it is often argued that the self-interaction actually simulates
o some extent long-range (so called ‘static’) correlation effects
72,73,75,76].
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reasoning has been that the exchange term in the HF equations

for orbital  i (
{∑

j

∫
 ∗
j
(x2) i(x2) dx2

}
 j(x1)) could to a good

approximation be replaced by a local potential VX(r1) i(r1) if one
ig. 3. Comparison of ab initio derived exchange potentials (red) with the commo
nits. Reproduced with permission from [508].

.3. Standard functionals

The most common part of departure of most approximations in
urrent use is the uniform electron gas. This is a model system of
nite volume with a smeared out positive background charge that
enders the entire system electrically neutral and that features a
onstant electron density 	 = N/V (V is the volume into which the
lectrons are confined). Since this system is a cornerstone of present
ay DFT, we briefly summarize how one obtains the leading term

n the exchange functional.
Assuming periodic boundary conditions, the Hartree–Fock

rbitals for this artificial system are plane waves  k(r) = V−1/2 eikr

ith the ‘wave-vector’ k = 2�/(V1/3)n, where n is a collection of
hree integer quantum numbers. In the limit of large N, k may be
reated as a continuous variable. The calculation of the exchange
otential then proceeds as follows:

K̂ k(r1) =
∑

q

∫
 ∗

q(r2) kr2r
−1
12 dr2 qr1

= V−3/2
∑

q

∫
ei(k−q)r2 r−1

12 dr2 eiqr1

= V−3/2
∑

q

∫
ei(k−q)(r2−r1)r−1

12 dr2 eikr1

=  k(r1)4�
V

∑
q

(k − q)−2

(30)

here the crucial third line follows by inserting e−i(k−q)r1ei(k−q)r1 =
. What remains is to sum (integrate) over all q which is achieved
y using the volume element in k-space V/8�3 dk. Integration in
pherical coordinates then yields:

ˆ k(r1) =
(
kF

�

)
S
( |k|
kF

)
 k(r1) (31)

ith S(x) = 1 + (1 − x2)/2x ln((1 + x)/(1 − x)) and kF is the highest
ccupied q (Fermi-level). The total exchange energy evaluates to:
EX = −1
2

∫
kF
� S
(

|k|
kF

)
dk

= − V
4�3 k

4
F

(32) a

ı
P

ed PBE potential for the Ar atom. Left: exchange potential. The y-axis is in atomic

his result needs to be re-expressed in terms of the density. Since
xchange only works for electrons of like spin, we have:

	˛(r) =
∑

k

 ∗
k(r) k(r) =

∑
k

V−1

= 1
V

V

8�3

4�
3
k3

F = 1
6�2

k3
F

(33)

ne finds that kF = (6�2	�)1/3 and hence the exchange energy per
lectron is:

EX

N
= −3

4

(
6
�

)1/3
(	1/3
˛ + 	1/3

ˇ
) (34)

his is how the famous 	1/3 law for the exchange functional may
e formally derived. Of course, a molecule does not at all resemble
homogenous electron gas (unlike a metal) and consequently, it

s not at all clear that a method based on such an oversimplified
odel system should work—but fortunately it does.
The bold suggestion is to now apply the inhomogeneous electron

as exchange equation locally. Thus it is assumed that in an inhomo-
eneous system (where the electron density is not homogeneous)
he same equation still holds at each point in space and therefore
ne finds the exchange energy by integrating over all space. This
eads to the definition of the local exchange functional:

X[	] =
∫
	(r)εx(	) dr = −3

4

(
6
�

)1/3
∫

(	4/3
˛ (r) + 	4/3

ˇ
(r)) dr

(35)

hich means that the local exchange potential becomes9:

˛
X (r) = ıEX

ı	˛(r)
= −
(

6
�

)1/3
	1/3
˛ (r) (36)

nd analogously for the spin-down (ˇ)-potential. This famous result
arries the names of Dirac [41] and Slater [77] who derived it
ong before the Hohenberg–Kohn theorems were known. Slater’s
9 The local exchange functional like almost all other functionals in common use
re of the form EX [	] =

∫
f (	) dr where f is some function of 	. For such functionals

EX/ı	(r) = ∂f/∂	 and similarly if f contains gradients of the density. See Yang and
arr, Appendix A.
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verages the potentials for the individual orbitals  i which leads
o:

X(r1) = 1
�(r1, r1)

∫
�(r1, r2)�(r2, r1)r−1

12 dr2 (37)

later then applied this much more general equation to the
omogeneous electron gas for which �(r1, r1) = (1/6�2)k3

F and
(r1, r2) = V−1

∑
qeiq(r2−r1) to arrive at Eq. (36).

Simplistic as this local density approach is, it is surprising that
t gives exchange energies that are only underestimated by ∼10%
ompared to their HF values. However, this 10% still presents a large
rror in the total energies. Hence, early workers multiplied this local
xchange by an empirical constant ˛ which defined the so-called
˛-method—an approximation to Hartree–Fock theory that existed
efore the Hohenberg–Kohn theorems had been derived.

However, there would be little point in stopping the develop-
ent at the X˛-approximation since the ultimate goal is to proceed

eyond the HF method. Thus, one needs to incorporate correlation
nto the model. Following the same logics as before, the correlation
nergy of the uniform electron gas can be studied. There is no ana-
ytic solution but accurate numerical results that can be expressed
hrough parametric equations. As pointed out by Kohn in his Nobel
ecture [39], the first such expression was proposed by Wigner and
eads:

W
C [	] =

∫
	(r)εW

C [	] dr = −
∫
	(r)

0.44
rS + 7.8

dr (38)

ith rS = (3/(4�	))1/3 is the Wigner–Seitz-radius and ε denotes
he correlation (or exchange) energy per particle. A more accu-
ate parameterization must take into account that the correlation
etween electrons of the same spin and of opposite spin is dras-
ically different. This arises, because of the exchange—electrons of
dentical spins avoid each other already because of the antisymme-
ry of the wavefunction (Fermi hole), while the same is not true for
lectrons of opposite spin. Hence, opposite spin-pairs contribute
ore strongly to the correlation energy than parallel spin-pairs.

his is a very important effect that, for example, has considerable
onsequences for the spin-state energetics in transition metal com-
lexes as will be pointed out in Section 7.10.9.

For example, the parameterization of the uniform electron gas
xchange and correlation energies due to Gunnarson and Lundqvist
78] is:

GL
XC[	˛,	ˇ] ≡ εGL

XC[rS, 
] = εGL
XC[rS,0] + {εGL

XC[rS,1] − εGL
XC[rS,0]}f (
)

(39)

(
) = 1
24/3 − 2

((1 + 
)4/3 + (1 − 
)4/3 − 2) (40)

GL
XC[rS,0] = − 3

4�

(
9�
4

)1/3 1
rS

− c0G(rS/r0) (41)

GL
XC[rS,1] = − 3

4�

(
9�
2

)1/3 1
rS

− c1G
(
rS
r1

)
(42)

(x) = (1 + x3) ln
(

1 + 1
x

)
− x2 + 1

2
x − 1

3
(43)

here 
 = (	˛−	ˇ)	−1 is the spin-polarization and c0 = 0.0333,
1 = 0.0203, r0 = 11.4, r1 = 15.9. These expressions are only written

own here in order to provide a flavor of how typical density func-
ional expressions look like. Many other parameterizations have
een proposed in the literature with the most popular local den-
ity expressions being due to Perdew and Wang [79–82] and Vosko
t al. [83].

a
b

r
G
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Experience shows that correlation energies for molecules
redicted by the local density approximation (LDA) in its spin-
olarized form (LSD) are overestimated by about a factor of two
ompared to accurate wavefunction based values. Since the abso-
ute values for exchange energies are much larger than correlation
nergies (vide infra), the errors for exchange and correlation tend
o cancel to a certain extent. Nevertheless, the LSD method is only

oderately successful in chemistry since it has a distinct tendency
or overbinding while it still predicts surprisingly good geometries
36].

The next logical step after the LSD approximation is to take
urther terms into account that take care of the inhomogeneity
n the electronic distribution. Such terms depend on the deriva-
ives of the electron density. The initial attempts to incorporate
hem met with little success. However, following the development
f the so-called ‘generalized gradient approximation’ (GGA), DFT
ecame highly popular in chemistry [510]. For GGA’s the exchange
orrelation functional is written as:

GGA
XC [	˛,	ˇ,∇	˛,∇	ˇ] = ELSD

XC [	˛,	ˇ] +
EXC[	˛,	ˇ,∇	˛,∇	ˇ]

(44)

here, for example, the gradient correction for the exchange func-
ional proposed by Becke is [84]:

EXC[	˛,	ˇ,∇	˛,∇	ˇ] = −	1/3(r)
ˇx(r)2

1 + 6ˇx(r) sinh−1 x(r)
(45)

ith x = |�|/	4/3 being a ‘reduced gradient variable’ and ˇ is an
mpirical constant that takes the value 0.0042 from fitting to the
xchange energies of rare gas atoms.

A number of similar approaches based on modifications of
he GGA approach have been derived, implemented and tested. A
oticeable exception is the correlation functional of Lee, Yang and
arr (LYP) [85] that has been derived from a parameterization of the
orrelation energy of the Helium atom by Colle and Salvetti [86].
he functional takes a rather involved form that will not be writ-
en down. It has the nice feature of being self-interaction free for
ne-electron densities and it produces correlation energies that are
mong the best currently available from DFT [87].

The foregoing discussion exemplifies the route that the main-
tream of DFT has followed: start from the uniform electron gas and
ry to incorporate the effects of density inhomogeneity by a mix-
ure of derivation, physical reasoning and data fitting. The resulting
xpressions are often rather complicated and reveal their physical
ontent only to experts. Some workers prefer ‘non-empirical’ func-
ionals over those that contain fitted parameters. Non-empirical

eans in this context, that these functionals have been derived
ith reference to a model system without introducing empirical
arameters—namely the slowly varying, inhomogenous electron
as. How relevant this model is for chemistry is, however, open
o debate. It is not even obvious that a perfect modeling of the
lowly varying electron gas would produce results that are superior
o those of the standard functionals.

It has been extensively tried to produce better functionals by
tting more and more parameters to more and more experimental
ata points [63–66,88–91]. These attempts have been, subject to
ebate, only moderately successful and there has not yet emerged
highly parameterized functional that has found widespread use

n the chemical community and that has proven to be uniformly
uperior to the standard functionals. It appears that the maximum

ccuracy that is achievable within the GGA framework has probably
een reached.

Further corrections based on higher derivatives have only
ecently gained more popularity and have been termed meta-
GA’s. Perhaps the most successful attempt is the TPSS functional
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Table 2
Performance of different standard functionals in extensive thermochemical tests (in
kcal/mol)

Density functional

BP86 PBE TPSS TPSSH B3LYP PBE0

G2/97′ test set (N = 156)
Mean deviation 0.39 0.17 0.73 0.39 0.33 −0.25
Mean absolute deviation 2.79 2.87 3.06 2.74 2.12 2.28
Maximum deviation 24.2 25.9 21.7 19.8 14.5 14.7

Second test set (N = 67)
Mean deviation −4.6 −2.66 −4.52 −3.55 −6.91 −0.88
Mean absolute deviation 8.77 7.74 8.45 7.02 8.46 4.63
Maximum deviation 87.4 79.0 70.3 52.9 77.9 36.9
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hat incorporates the kinetic energy density [92–96]:

(r) = 1
2

∑
i

|∇ i(r)|2 (46)

he TPSS functional has been implemented into several major codes
ow and has been shown to perform well for transition metal con-
aining systems [97].

A significant boost in the application of DFT to chemistry has
een achieved in 1993 by Becke who proposed the use of so-
alled hybrid functionals [98,99] that incorporate a fraction of the
on-local HF exchange. While this admixture has been motivated
y the so-called ‘adiabatic-connection’ method, it remains largely
mpirical in character and many workers have chosen to adjust the
raction of exact exchange to fit their needs and whishes. By far the

ost popular of these hybrid functionals is the B3LYP method, that
an be written as [100]:

B3LYP
XC = aEHF

X + (1 − a)ELSD
X + bEB88

X + ELSD
C + c(ELYP

C − ELSD
C ) (47)

here the empirical constants a, b, c have the values 0.20, 0.72 and
.81, respectively. The accuracy of energetic predictions with the
3LYP functional for small molecules has been really astonishing
nd is competitive with correlated wavefunction approaches. Since
he B3LYP functional also proved to be one of the best functionals for
roperty predictions it rapidly became the ‘workhorse’ of applied
uantum chemistry. However, some points must be made: (a) the
igh accuracy pertains to the basis set limit and does not carry over
o the small double-
 type basis sets that are often used in applica-
ion studies; (b) the benchmarks are usually done on collections of
mall molecules that do not contain open-shell transition metals.
he results of such studies are not necessarily representative of real
ife chemistry applications.

In fact, more recently detailed benchmark studies have revealed
ignificant points of concern about the application of the B3LYP
unctional.

Several authors found that the errors of the B3LYP predic-

ions increase disproportionately with increasing molecular size. In
articular, Grimme, who reported a detailed comparison of wave-
unction and DFT methods for atomization energies (Table 2) and
sed large basis sets, found many errors in his test set that exceed
0 kcal/mol [101]. This did not occur for other functionals and the

u
c

w

ig. 4. Unexpectedly large errors from standard DFT calculations for the isomerization ener
nergy is dominated by correlation effects since the HF method predicts the wrong sign b
greement with experiment. DFT misses on the medium range “bond/bond” electron corre
rom [509]).
umbers taken from Grimme [101] (N denotes the number of molecules in the test
ets).

tudy concluded that of the investigated functionals PBE0 [102,103]
erformed the best and very similarly to a hybrid version of TPSS
ith 25% HF exchange (which may be called TPSS0).

Several authors found discouragingly large errors (exceeding
0 kcal/mol) even in seemingly simple systems – for example for
he isomerisation energies of hydrocarbons (Fig. 4). This discon-
erting situation was interpreted in a paper by Grimme [104]. In
omparing wavefunction and DFT results, he concluded that the
rrors of the DFT methods arise from correlation effects at medium
lectron–electron distances, i.e. from electrons occupying adjacent
onds. Such correlation effects are not included in the standard DFT
odels since the correlation energy is calculated from the values of

he densities and gradients at a given point in space. Thus, the DFT
orrelation effects are too short-sighted and hence the stability of
ranched structures is significantly underestimated (Fig. 4).

It is readily anticipated that similar situations must be prevalent
hroughout chemistry and hence one is well advised to view the
heoretical results always with much care and seek feedback from
xperiment wherever possible.

A small collection of standard functionals that find frequent

se in chemistry is shown below in Table 3 together with some
omments.

We finally wish to mention a last class of density functionals for
hich some promising results have been obtained. They have been

gy from octane (left) to iso-octane (right). The sign of the experimental isomerization
ut already a modest correlated wavefunction-based method (SCS-MP2) gives good
lation effects and hence underestimates the stability of the branched isomer (taken
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Table 3
Some standard functionals

Name Type Comments

BLYP GGA One of the earliest GGA functionals.
Usually inferior to BP86 and PBE. Predicts
too long bonds

BP86 GGA Excellent geometries and vibrational
frequencies. Energetics is usually not
highly accurate but performs often well in
spectroscopic investigations

PW91 GGA One of the older GGA functionals with
excellent accuracy for exchange couplings

PBE GGA A GGA version designed to replace PW91.
Very popular in physics. Often similar to
BP86

OLYP GGA Violates the uniform electron gas limit but
gives improved results for molecules

B3LYP Hybrid De facto standard in chemistry for
structures, energies and properties. See
discussion in the text

PBE0 Hybrid Excellent accuracy; competitive with B3LYP
T
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Table 4
Total, correlation and exchange energies of the Neon atom using the ab initio CCSD(T)
method and various density functionals (deviations from the wavefunction results
in mEh)

Etot Ecorr Ex

CCSD(T) −128.9260 −0.379 −12.098
BP86 −128.9776 (−52) −0.388 (− 9) −12.104 (−6)
PBE −128.8664 (+60) −0.347 (+32) −12.028 (+70)
BLYP −128.9730 (−47) −0.383 (− 4) −12.099 (−1)
TPSS −128.9811 (−55) −0.351 (+28) −12.152 (−54)
B3LYP −128.9426 (−17) −0.452 (−73) −12.134 (−36)
B2PLYP −128.9555 (−30) −0.392 (−13) −12.103 (−5)
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results reflect the properties of the functional and not the properties
of the basis set.

Specific properties [for example isotropic hyperfine couplings
in EPR spectroscopy, NMR chemical shifts, excitations of Rydberg

10 However, basis set free methods have been developed as well [117–119].
PSS Meta-GGA Improvement over PBE
PSSh Hybrid meta-GGA Probably improvement over PBE0; perhaps

increase fraction of HF to 25% (TPSS0)

roposed in 2006 by Grimme and contain – in addition to a fraction
f exact exchange – also a fraction of wavefunction based correla-
ion energy calculated from second-order many-body perturbation
heory (MP2) [105–109]. Thus, this class of functionals has been
alled ‘double hybrid’ functionals [108]. The energetic benchmarks
eported by Grimme have demonstrated outstanding accuracy with
n average error for the so-called G2 set of molecules of <2 kcal/mol
hich is usually only achieved with the best wavefunction based
ethods. The method contains two adjustable parameters for the

raction of HF exchange (53%) and the fraction of MP2 correla-
ion (27%) [105,106,108,110,111]. Analytic gradients have recently
een reported for this new class of functionals [108] and excel-

ent accuracy was obtained for structures of main group molecules
nd transition metal complexes, although at somewhat elevated
omputational cost relative to standard DFT methods (see Section
). Most recently, excited states have also been treated with this
ethodology [109]. Further improvements to this method (as well

s for standard functionals) are obtained by adding an empirical
an der Waals correction to the DFT energies which compensates
or the poor behavior of the functionals in the long range regime
110,112–114]. Owing to the large amount of HF exchange and the
erturbative estimate of the correlation contribution it might be
xpected that open-shell transition metal containing systems may
e more challenging to treat with these functionals. These ques-
ions clearly warrant more detailed studies.

In order to put these results into perspective some num-
ers for exchange and correlation energies are collected for the
round state of the neutral neon atom (1S) in Table 4. As ref-
rence serves an accurate wavefunction based calculation with
he CCSD(T) (coupled-cluster theory with single- and double
xcitations together with a perturbative estimate for triple exci-
ations) method and a very large basis set. This calculation yields

Hartree–Fock exchange energy of −12.098 Eh which is close
o the Hartree–Fock limit. The calculated correlation energy of
0.379 Eh is quite close to Clementi’s experimental estimate of
0.393 Eh [115]. In fact, adding a relativistic correction using the
ouglas–Kroll–Hess method [116], the CCSD(T) total energy of
129.064 Eh is close the experimental total energy of −129.056 Eh

btained by summing the first ten ionization potentials. Compared
o the CCSD(T) values, the DFT results show a rather large scatter.
ome functionals (like PBE) underestimate both the correlation and
he exchange energy while others (like TPSS) underestimate cor-

F
b
e
a

ll calculations with uncontracted Partridge-3 basis set together with polarization
unctions from aug-pw-pCV5Z(-h) basis set (−67 mEh core-correlation contribu-
ion). All DFT results are from self-consistent Kohn–Sham densities.

elation and overestimate exchange. The best individual exchange
nd correlation energies are predicted by the BLYP functional. The
ignificant error in the BLYP total energy must then stem from the
hortcomings in the kinetic energy—the difference between T and
S is nowhere explicitly accounted for in any of the investigated
unctionals. These numbers are merely shown in order to provide
ome feeling of how variable the DFT results with different func-
ionals are and how large the individual contributions become. No
onclusions about the performance of these functionals in chemical
pplications should be drawn from this data.

. The computational machinery of DFT

Since the Kohn–Sham orbitals (unlike the density) assumes a
omplicated shape they are almost always expanded in terms of a
et of pre-fixed basis functions ϕ10:

i(x) =
∑
�

c�iϕ�(x) (48)

s a consequence, the solutions of the Kohn–Sham equations only
ecome equivalent to the true Kohn–Sham orbitals if the set of

approaches mathematical completeness. We will not enter a
etailed discussion of basis sets at this stage but only make a few
subjective) remarks.

Most present day calculations are performed with Gaussian
asis functions for which computational techniques are very well
eveloped. Alternatives involve Slater type orbitals (ADF code),
lane waves (CPMD or PQS codes) or numerical basis func-
ions (DMol code) which have certain advantages. However, the
artree–Fock exchange term or the MP2 contribution to the dou-
le hybrid functionals can presently only be efficiently calculated
ith Gaussian basis functions.

Experience indicates that the results converge relatively quickly
owards the basis set limit [120]. By present day standards calcula-
ions should be performed with basis sets of at least triple-
 quality
ith at least one set of polarization functions. For accurate results

hree sets of polarization functions11 and perhaps one set of diffuse
unctions should be employed. If basis sets of this size are used, the
11 These are typically two 2p1d for hydrogens and 2d1f for main group elements.
or transition metals one should add at least 2p1f. The def2-TZVP and def2-TZVPP
asis sets developed by Ahlrichs and co-workers [121] can be recommended for all
lectron calculations. Smaller basis sets of polarized double-� quality (def2-SVP) are
lso available for less accurate calculations.
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×
(
ϕ�(x)ϕ�(x) −

∑
Q

cQ���Q (x)

)
dx1 dx2 (63)

12 The original work used three-center overlap integrals instead of three-center
F. Neese / Coordination Chem

haracter or weak interactions] require special basis set with added
exibility in the core or outer regions of the molecule. Basis sets for
uch calculations have only partially been standardized.

Inserting the basis function expansion into the Kohn–Sham Eq.
26) yields a matrix pseudo-eigenvalue equation:

(c)ci = εiSci (49)

here ci is a vector with elements c�i, S is the overlap matrix
ith elements S�� = 〈ϕ�|ϕ�〉 and F is the Kohn–Sham matrix. It will

e written in a general form that includes pure Kohn–Sham and
artree–Fock theory as special cases:

�� = h�� + J��(P) − cHFK��(P) + cDFV
XC
��[	] (50)

here cHF is the fraction of HF exchange possibly included in the
unctional and cDF = 0 for Hartree–Fock theory. In this equation

is the one-electron matrix, P the density matrix and VXC the
xchange-correlation matrix with elements:

�� =
〈
ϕ�

∣∣∣−1
2

∇2 −
∑

A
ZAr

−1
A

∣∣∣ϕ�〉 (51)

��(P) =
∑
��

P�� 〈��|��〉 (52)

��(P) =
∑
��

P�� 〈��|��〉 (53)

�� =
∑
i

c�ic�i (54)

XC;�
�� =

∫
ϕ�(r�)

ıEXC[	˛,	ˇ]

ı	�(r)
ϕ�(r�) dr (55)

=˛, ˇ. These terms represent rather different computational
equirements. The one-electron integrals are not very numerous
nd present no computational challenge.

As is obvious from Section 4.3, the exchange-correlation terms
re of a complicated form and to find closed-form solutions of the
ssociated integrals is next to hopeless. Hence, these terms are best
andled by numerical integration. Thus, the integral is approxi-
ated by a finite sum over grid points rg with weights wg that

re chosen according to some prescription:

XC;�
�� ≈

∑
g

wgϕ�(rg�)
ıEXC[	˛,	ˇ]

ı	�(rg)
ϕ�(rg�) (56)

ortunately, the numerical integration problem did not turn out
o be a difficult one [122] and most schemes are modifications of
he original proposal by Becke [123], see for example Ref. [124]. If
roperly coded, the computational effort for the quadrature scales
nly linearly with the size of the molecular system [125] but the
refactor varies considerably between different implementations.
xperience shows that the error in the calculated exchange corre-
ation energies is of the same order as the error in the numerically
ntegrated electron density. Hence, a useful target accuracy is to
ntegrate the electron density to an accuracy of at least 10−3 elec-
rons which is readily achieved with about 1000–2000 integration
oints per atom.

The Coulomb matrix is

(P) =
∑

P 〈��|��〉 (57)
��

��

��

��(P) =
∫
ϕ�(x1)ϕ�(x1)

∑
��

P��

∫
ϕ�(x2)ϕ�(x2)r−1

12 dx2 (58)

r
m
a
w
s
t
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��(P) =
∫
ϕ�(x1)ϕ�(x1)

∑
i

∫
| i(x2)|2r−1

12 dx2 (59)

��(P) =
∫
ϕ�(x1)ϕ�(x1)

∫
	(r2)r−1

12 dx2 (60)

��(P) ≡
∫
ϕ�(x1)ϕ�(x1)VC [	](x1)dx1 (61)

his equation emphasizes that this term represents the interac-
ion of the charge density ϕ� (x)ϕ� (x) with the Coulomb potential
reated by the total charge density distribution. The first line
mplies an exact analytic integration involving four-index, four-
enter electron–electron repulsion integrals. While these integrals
an be efficiently computed over Gaussian basis functions, the
umber of integrals is very large and grows with the fourth power
f the molecular size. Fortunately, negligible charge distributions
� (x)ϕ� (x) can be efficiently recognized and screened out before

he actual computation of the integrals (it is readily shown that
〈��|��〉| ≤

√
〈��|��〉√〈��|��〉) [126,127]. Due to the fast decaying

ature of the basis functions the product ϕ�(x)ϕ�(x) is only sig-
ificant for ϕ�(x) being located close to ϕ�(x) thus leading to an
verall linearly increasing number of significant charge distribu-
ions with increasing molecular size. Since the Coulomb operator
s of long range, it appears that the effort to evaluate the Coulomb
erm is asymptotically quadratically scaling with molecular size.
owever, following the introduction of multipole expansions, the

ast-multipole method (FMM) allows for the linear scaling eval-
ation of the Coulomb term [128–131]. Unfortunately, however,

rrespective whether one uses a linear scaling formulation or not,
he prefactor for the computation of the Coulomb term by exact
nalytic integration is high and usually dominates the compu-
ational effort for a DFT or HF calculation. Consequently many
echniques have been developed in order to speed this part of the
omputation up. These include pseudo-spectral techniques [132]
r the solution of Poisson’s equation [119]. However, one of the
arliest techniques that has been employed also turns out to be
he most efficient one. It has first been applied in the DFT context
y Baerends, Ellis and Ros [133], elaborated by Dunlap [134,135],
rought to its current form by Vahtras and Almlöf [136] and effi-
iently standardized for general chemistry applications by Ahlrichs
nd co-workers [137,138]. The technique is called ‘density fitting’
DF) or ‘resolution of the identity’ (RI) approximation. The idea is
o fit the charge distributions ϕ�(x)ϕ�(x) to an auxiliary basis set
P(x) like:

�(x)ϕ�(x) ≈
∑
P

cP
���P(x) (62)

s shown by Vahtras and Almlöf [136], the coefficients cP
�� are best

etermined by minimizing the residual self-repulsion12:

�� =
∫ (

ϕ�(x)ϕ�(x) −
∑
P

cP���P(x)

)
r−1
12
epulsion integrals. The work of Vahtras et al. [136]. showed that this approxi-
ation is an order of magnitude less accurate than the method described here

nd consequently larger and more accurate expansion bases have to be used. This
as rationalized by Dunlap [139] who pointed out that the minimization of the

elf-repulsion is equivalent to fitting the electric field generated by the charge dis-
ribution.
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hich immediately leads to a linear equation system:

PQ

VPQ c
Q
�� = (ϕ�ϕ�|�P) (64)

ith the two- and three-index electron–electron repulsion inte-
rals:

PQ =
∫
�P(x1)r−1

12 �Q (x2) dx1 dx2 (65)

ϕ�ϕ�|�P) =
∫
ϕ�(x1)ϕ�(x1)r−1

12 �P(x2) dx1 dx2 (66)

nserting this approximation into the expression for the Coulomb
atrix yields:

�� ≈
∑
P

(ϕ�ϕ�|�P)
∑
Q

V−1
PQ

∑
��

P��(ϕ�ϕ� |�Q ) (67)

he evaluation involves the three steps: (a) calculation of density
n the auxiliary basis (PQ =∑��P��(ϕ�ϕ� |�Q)), (b) solution of the
inear equation system g = V−1 P and (c) contraction with the three
ndex integrals to give the Coulomb matrix J�� =∑P(ϕ�ϕ�|�P)gP .

Comments: (1) the calculation of the three index repulsion
ntegrals is much more economical than the calculation of the
our-index integrals and there is an order of magnitude fewer of
hem.13 (2) As shown by Ahlrichs and co-workers [137,138], the
olution of the linear equation system is best approached via the
holesky decomposition of V, (3) experience shows that if the
uxiliary basis sets are well designed14 the error of the fitted
oulomb energy is only ∼10−5 Eh/atom. (4) The fitted Coulomb
nergy is an upper bound to the true Coulomb energy and the
tting is ‘robust’ in the sense of Dunlap [140]. (5) The advan-
ages of the RI approximation increase with increasing size of the
rbital expansion basis. (6) Without any pre-screening the compu-
ational effort for the construction of the Coulomb matrix is reduced
rom O(N4) to O(N3) and using straightforward pre-screening tech-
iques to O(N2). (7) The error of the approximation is very smooth
nd the errors for structural parameters and energy differences is
egligible 8) the most efficient implementations of this concept
138,141–143] lead to a reduction of the computational cost for the
oulomb problem of the factor 10–100.15 Quite large systems can
e treated with present day DFT programs such as the one shown

n Fig. 5.
The contributions by the Hartree–Fock exchange terms that

nter into hybrid density functionals are more difficult to approx-
mate with high accuracy. One of the possibilities that is exploited
n the Jaguar code are pseudo-spectral techniques that lead to effi-
ient calculations [132,144–147]. Fortunately, however, the analytic
alculation of the exchange term scales almost linearly with sys-
em size (or can be relatively easily designed to scale perfectly
inearly [148]). This is readily seen from Eq. (53) if one assumes
hat the density matrix element connectingϕ (x) and ϕ (x) decays
� �

xponentially with distance as it appears to do for ‘insulators’ (sys-
ems with sufficiently large HOMO–LUMO gap; Kohn’s conjecture
149]).

13 The leading term is 4Naux/N2
bas

where Naux is the number of auxiliary func-
ions and Nbas the number of basis functions. For a reasonably large calculation
aux ∼ 3000 and N ∼ 1000 such that there is roughly a factor of 100 fewer three-index

ntegrals than four index integrals.
14 Particularly good and accurate auxiliary basis sets have been designed by
hlrichs and co-workers [137,138]. They are typically only 2–3 times larger than

he orbital expansion basis set.
15 A multipole accelerated versions for very large systems has been developed by
ierka et al. [142].
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e completed on a standard personal computer in less than 14 h elapsed time using
odern algorithms (calculations done with the ORCA program on a 2.0 GHz Opteron

PU). Superimposed is the electrostatic potential of this system derived from the
alculation.

Given the developments in computational hard- and software,
FT calculations with several thousand basis functions (several
undred atoms) can now be routinely carried out on standard per-
onal computers or in parallel fashion on computer clusters. This
normously widens the range of systems are amenable to study by
FT methods. Since the diagonalization of the Kohn–Sham matrix
ecomes a computationally significant step in large calculations
scaling as O(N3)), techniques have been devised to avoid it. The
pecialist literature must be consulted for a thorough exposition of
uch linear-scaling approaches [125,128–131,148,150–157].

. Theory of molecular property calculations with DFT

We are now in a position to present the calculation of properties
f interest of (bio)inorganic chemistry by means of DFT methods.
he theory will be presented in the coherent framework of analytic
erivative/linear response language which turns out to be the most
ystematic framework for property calculations.

We assume that we have solved the Kohn–Sham problem
lready in some of the approximate ways that were described in
he previous sections using some molecular coordinates as input.
ext, we wish to predict the equilibrium geometry or spectro-

copic properties or we want to refine our results by including some
maller terms in the Hamiltonian. Each of these situations can be

onsidered as a small perturbation of the system which will want
o adapt to the new situation in the presence of the perturbation.
hus, we have to study the immediate vicinity of the solution of the
ohn–Sham problem and have to examine the restoring forces that
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of the density matrix – that can no longer be avoided – and the
third line contains the second derivative of the exchange correla-
tion contribution. The latter consists of two parts. The first part is
straightforward and simply involves the second derivative of the
F. Neese / Coordination Chem

ct on the system in the presence of the perturbation. Specifically,
he perturbation might be the change of the nuclear coordinates,
n external electric field, an external magnetic field or the sudden

turn-on’ of relativistic corrections to the Hamiltonian. In addition,
he perturbation may or may not be time dependent.

Based on the foregoing discussion it is evident that the ‘immedi-
te vicinity’ of the solution is best explored by performing a Taylor
xpansion in the neighborhood of the initial Kohn–Sham solution
hich in turn implies that we have to calculate the derivatives (or
artial derivatives) ∂E/∂� of the total Kohn–Sham energy where �
enotes the perturbation. We will first treat the time-independent
ase and then turn to the more general (and more complicated)
ime-dependent case in Section 6.4.

.1. First derivatives

The point of departure is the energy functional:

= VNN + Ts + VeN + J − cHFK + EXC + OC (68)

= VNN +
∑
��

P��h�� + 1
2

∑
����

P��P��(〈��|��〉 − cHF〈��|��〉)

+EXC[	] −
∑
i,j��

εij(c�iS��c�j − ıij) (69)

he last term represents the orthogonality constraint (OC) that was
orced upon the orbitals in the variation process and the matrix εij
epresent the Lagrange multipliers that turned out be the orbital
nergies in the canonical representation that diagonalizes ε. Each
f the terms may depend on the perturbation �. However, there is
ne important simplification: since we have determined the total
nergy by variation of the MO coefficients c�i that enter into the
atrix P it is known that ∂L/∂P�� = 0. Hence, since the derivative
ith respect to � certainly contains a term (∂L/∂P��)(∂P��/∂�) we

now that we can ignore the�dependence of the density matrix, or,
xpressed differently, the fluctuations in the density matrix due to
he perturbation. Hence, the derivative of the total energy becomes
158]:

∂L

∂�
= ∂VNN

∂�
+
∑
��

P��
∂h��
∂�

+ 1
2

∑
����

P��P��
∂(〈��|��〉 − cHF〈��|��〉)

∂�

+
∫
ıEXC[	]
ı	(r)

∂	(r)
∂�

dr +
∑
��

W��
∂S��
∂�

(70)

ith the ‘energy weighted density matrix’:

�� = −
∑
i

εic�ic�i (71)

∂2L

∂�∂�
= ∂2VNN

∂�∂�
+
∑
��

(
P��

∂2

∂

+
∑
��

(
∂P��
∂�

∂h��
∂�

+ ∂W

+
∫
ıE[	]
ı	(r)

∂2	(r)
∂�∂�

dr +
he derivatives of the one-electron matrix elements contain contri-
utions from the basis function and from the operator derivatives:

∂h��
∂�

=
〈
∂ϕ�
∂�

|h|ϕ�
〉

+
〈
ϕ�|h|∂ϕ�

∂�

〉
+
〈
ϕ�| ∂h

∂�
|ϕ�
〉

(72)

c
m
c
a
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n taking the derivative of the density, it is sufficient to take the
erturbation dependence of the basis functions into account:

∂	(r)
∂�

=
∑
��

P��

{
ϕ�
∂ϕ∗
�

∂�
+ ϕ∗

�
∂ϕ�
∂�

}
(73)

hich means that the exchange correlation contribution to the
erivative becomes simply

∑
��P��

∫
VXC(r)∂/∂�(ϕ∗

�ϕ�) dr.
This is the complete expression for the gradient of the

ohn–Sham energy with respect to an arbitrary perturba-
ion. It contains the derivatives of the one- and two-electron
ntegrals and the nuclear-nuclear repulsion energy. The
ependence of the integrals arises from the (possible)
ependence of the basis set on the perturbation. The basis
unctions certainly depend on the perturbation in the
ase that the perturbation represents the movement of a
ucleus since the basis functions are ‘glued’ to their parent
uclei.16

Hence, in the special case that the perturbation is simply the
ddition of a term �h� to the Hamiltonian and the basis functions
o not depend on the perturbation, the derivative simplifies enor-
ously to:

∂L

∂�
=
∑
��

P��〈ϕ�|h�|ϕ�〉 (74)

hus, in this particular case, the Hellmann–Feynman theorem
olds. It also holds in the limit of a complete basis set. This simple
xpression is for example valid for the calculation of electric multi-
ole moments, the electric field gradient at a given nucleus, as well
s the spin-dipolar and Fermi contact contributions to the hyper-
ne coupling tensor. The appropriate matrix elements for these
roperties have been reviewed in detail recently [11].

.2. Second derivatives

The second derivatives with respect to the perturbations � and
are found by differentiation of Eq. (69) [159]:

+W��
∂2S��
∂�∂�

)
+ 1

2

∑
����

P�� P��
∂2(〈��|��〉 − cHF〈��|��〉)

∂�∂�

∂S��
∂�

)
+ 1

2

∑
����

∂(P�� P��)
∂�

(
∂(〈��|��〉 − cHF〈��|��〉)

∂�

)
ı2E[	]

	(r1) ı	(r2)
∂	(r1)
∂�

∂	(r2)
∂�

dr1 dr2

(75)

his expression appears somewhat formidable but has clearly rec-
gnizable parts: the first line contains simply second derivative
ntegrals which involves the second derivatives of the basis func-
ions as well as the first- and second derivatives of the one- (and
wo-) electron operators. The second line contains the derivative
16 This is not the case if the basis set consists of plane waves. In this special case all
ontributions from the basis set derivatives are absent from the gradients which
eans that it can be computed with very high efficiency. Thus, forces are very

heap and plane wave approaches lend themselves very well to molecular dynamics
pproaches.
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ensity:

∂2	(r)
∂�∂�

=
∑
��

(
P��

∂2(ϕ∗
�ϕ�)

∂�∂�
+ ∂P��

∂�

∂(ϕ∗
�ϕ�)

∂�

)
(76)

hile the second part involves the second functional derivative
f the exchange correlation potential. This quantity is known as
he ‘exchange-correlation kernel’. Since the XC potential measures
he rate of the change of the energy with respect to a change of
he density at position r1, the kernel measures the rate of change
f the potential at r1 with a change of density at position r2. For
he standard functionals described in this review, the second func-
ional derivative always leads to a ı function ı(r1 − r2) and hence
nly a three-dimensional integral is to be evaluated by numerical
uadrature. It is readily appreciated from the complicated expres-
ions for the XC-energy, that the expressions for the XC potential
nd even more so for the XC kernel become rather involved.
owever, they are easily handled by widely available computer
lgebra programs (e.g. MAPLE V: http://www.maplesoft.com/;
athematica: http://www.wolfram.com/) that are also able to

enerate computer code for the explicit evaluation of these
erms.

Assuming that all technical difficulties in the evaluation of the
ntegral derivatives have been overcome, the remaining difficulty
s the calculation of the derivatives of the density matrix ele-

ents which comes down to the calculation of the derivatives of
he MO coefficients. This concerns the important problem of how
he Kohn–Sham orbitals of the system change if a perturbation is
pplied. This subject is of fundamental importance and will be stud-
ed in the next section. In fact, if the basis functions do not depend
n the perturbation, the second derivative assumes a rather simple
orm:

∂2L

∂�∂�
=
∑
��

(
P��

∂2h��
∂�∂�

+ ∂P��
∂�

∂h��
∂�

)
(77)

his equation covers most of the so-called ‘static-response prop-
rties’. One says that the first term is of ‘first-order’ and the
econd-term of ‘second-order’. This nomenclature arises since in
um-over-states based pictures the equivalent of the first term
rises as an expectation value over the ground state wavefunc-
ion while the second term involves the first-order wavefunction
hat is represented by an infinite sum over electronically excited
tates.

.3. The coupled perturbed SCF equations

It became apparent in the previous section that the derivatives
f the density matrix elements are an indispensable ingredient in

he calculation of molecular properties. It is thus important to find
ut how such derivatives can be obtained efficiently.

∂F��(c)
∂�

= ∂h��
∂�

+
∑
��

P��

(
∂(〈��|��〉 − cHF〈��|��〉)

∂�

+
∑
jp��

(U∗�
pj c

∗
�pc�j + U�pjc∗�jc�p)(〈��|��〉 − cHF〈�
The point of departure are the Kohn–Sham equations in their
asis set form:

�

F��(c)c�i = εi
∑
�

S��c�i (78)

I
T
w
s
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his expression is differentiated and re-arranged to obtain:∑
�

(
∂F��(c)
∂�

c�i + (F��(c) − εiS��)
∂c(�i)
∂�

)

= ∂εi
∂�

∑
�

S��c�i + εi
∑
�

∂S��
∂�

c�i (79)

he next step is to make an Ansatz for the perturbed MO coeffi-
ients. Since the entire set of unperturbed molecular orbitals spans
he same space as the original orbitals but forms an orthonormal
et it is convenient to expand the perturbed MOs in terms of the
nperturbed ones:

∂c�i
∂�

=
∑
p

U�pic�p (80)

here the indices p, q, r, s run over all molecular orbitals (occupied
nd unoccupied), the indices i, j refer to occupied orbitals and the
ndices a, b to unoccupied ones. The condition that the perturbed

Os remain orthonormal leads to an important condition on the
atrix elements of the matrix U. This is seen by differentiating the

rthonormality condition:

��

c∗�pS��c�q = ıpq (81)

hat leads to:

�∗
qp + U�pq + S(�)

pq = 0 (82)

ince the energy is invariant with respect to unitary transforma-
ions between orbital pairs within the occupied space and within
he virtual space respectively, the corresponding blocks of the U-

atrix can be fixed from the conditions:

�
ij = −1

2
S(�)
ij

(83)

�
ab = −1

2
S(�)
ab

(84)

hile

�
ia = −U∗

ai − S
(�)
ia

(85)

hich shows that only the Uai block of the U-matrix is to be deter-
ined. The perturbed overlap integrals are:

�
pq =

∑
��

c∗�p
∂S��
∂�

c�q (86)

he derivative of the Kohn–Sham matrix takes a somewhat involved
orm:∫
VXC[	]

∂(ϕ∗
�ϕ�)

∂�
+ ϕ∗

�ϕ�fXC[	]
∑
��

P��
∂(ϕ∗

�ϕ�)
∂�

dr

〉) +
∫ ⎛⎝fXC[	]

∑
pj��

(U∗�
pj c

∗
�pc�j + U∗�

pj c
∗
�pc�j)

⎞
⎠ϕ∗

�ϕ� dr

(87)

owever, the first line involves nothing but the derivative of the
ne-electron operator and the derivatives of the basis functions.

t can be abbreviated as F (�)

�� and shifted to the right-hand side.
he second line contains the response of the Kohn–Sham operator
ith respect to the perturbation. It is this dependence on its own

olutions which renders perturbation theory with self-consistent
eld wavefunctions more complicated than standard perturbation

http://www.maplesoft.com/
http://www.wolfram.com/
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static case discussed above is readily recovered if the frequency of
the perturbation is set to zero.
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heory. The perturbed KS equations are further simplified by multi-
lying them from the left by c∗�a and summing over all�. The result

s:

U�
ai

(εa − εi) +
∑
bj

U�∗
bj {〈ab|ij〉 + 〈ab|fXC|ij〉 − cHF〈ab|ji〉}

+
∑
bj

U�bj{〈aj|ib〉 + 〈aj|fXC|ib〉 − cHF〈aj|bi〉}

= −F (�)
ai

+ εiS(�)
ai

+ 1
2

∑
kj

S(�)∗
kj

{〈ak|ij〉 + 〈ak|fXC|ij〉 − cHF〈ak|ji〉}

+1
2

∑
kj

S(�)
pj

{〈aj|ik〉 + 〈aj|fXC |ik〉 − cHF 〈aj|ki〉}

(88)

t this point it is advantageous to split the U-coefficients explicitly
nto a real and an imaginary part:

ai = xai + iyai (89)

ssuming that the perturbation is either purely real or purely imag-
nary leads to the final response equations:

�
ai(εa − εi) + R(re)

ai
(x�) = −b�(re)

ai
(90)

�
ai(εa − εi) + R(im)

ai
(y�) = −b�(im)

ai
(91)

he right-hand sides are defined by

�(re)
ai

= Re(F (�)
ai

− εiS(�)
ai

) − 1
2
R(re)
ai

(s(re;�)) (92)

�(im)
ai

= Im(F (�)
ai

− εiS(�)
ai

) − 1
2
R(im)
ai

(s(im;�)) (93)

ere s denotes the real and imaginary part of the (ij) block of the
erturbed overlap integrals. If the basis functions do not depend on
he perturbation, the right-hand sides simplify considerably: the
ast two terms are zero and F (�)

ai
= 〈a|h�|i〉. The ‘response operators’

re defined by

(re)
pq (x�) =

∑
rs

x�rs{2〈pr|qs〉 + 2〈pr|fXC |qs〉 − cHF (〈pr|sq〉 + 〈ps|rq〉)}

(94)

(im)
pq (y�) = cHF

∑
rs

y�rs{(〈pr|sq〉 − 〈ps|rq〉)} (95)

t is clear from inspection that the real-response operator is sym-
etric while the imaginary response operator is antisymmetric.

mportantly, the imaginary response operator only contains contri-
utions from the Hartree–Fock exchange. Thus, if no HF exchange

s present, the linear equation system for a purely imaginary per-
urbation has the simple solution yai = −b(im)

ai
/(εa − εi) as would

ave been expected if the Kohn–Sham operator would not be a
elf-consistent operator.

The perturbed density matrix finally becomes:

∂P��
∂�

=
∑
ip

U∗
pic

∗
�pc�i + Upic∗�ic�p (96)

hus, for a purely imaginary perturbation:

∂P��
∂�

= i
∑
ia

yai(c
∗
�ic�a − c∗�ac�i) (97)
nd hence:

∂	(r)density-matrix

∂�
=
∑
��

∂P��
∂�

ϕ�(r)ϕ�(r) = 0 (98)
o
t

T

eviews 253 (2009) 526–563 541

his shows that a purely imaginary perturbation does not lead to
first order change in the electron density which explains why all

ocal potentials (like the Coulomb and exchange-correlation poten-
ials) do not contribute to the response of the system with respect
o an imaginary perturbation. This would be different in extensions
f DFT that introduce a dependence of the XC potential on the cur-
ent density [160–166]. However, such methods have not yet found
heir way into chemistry.

Since the number of orbitals pairs is usually so large that the lin-
ar equation system can not be solved directly, iterative techniques
re employed in practice [167]. To this end, the response operators
re usually calculated in the AO basis and are transformed back
o the MO basis.17 Since the computational effort that is involved
s similar to a single SCF iteration, the solution of the coupled-
erturbed Kohn–Sham equations is typically as expensive as one
CF calculation.18

.4. Time-dependent perturbations

If the perturbation is time dependent the formalism is quite a
it more complicated. We will concern ourselves here with only
he most straightforward treatment in which the basis functions
o not depend on the perturbation and the exchange correlation
otential is assumed to be time-independent (adiabatic approx-

mation). The foundations of time-dependent density functional
heory have been laid out by Runge and Gross [170] and have
ecently spawned a detailed dispute that we will not enter into
171].

Just like there is a time-dependent HF treatment, there also is
time-dependent KS treatment. The best way is to start from the

ollowing form of the TD–KS equations [172]:

ˆ P̂ − P̂F̂ = i ∂P̂
∂t

(99)

here P̂(t) =∑i| i(t)〉〈 i(t)| is the idempotent KS density oper-

tor and F̂ is the Kohn–Sham operator. The static KS equations
re readily recovered if the right-hand side is set to zero. Let us
ssume that we have solved the static KS problem and now turn on
time-dependent perturbation. Such a perturbation can always be
ritten as a sum over its Fourier components. Thus, it is sufficient

o investigate a perturbation that oscillates at a single frequencyω:

ˆ (1)(t) = 1
2

(Â e−iωt + Â+ eiωt) (100)

ere Â is some operator that describes the nature of the perturba-
ion (for example the electric dipole operator if one is interested
n the interaction of the molecule with the electric vector of a
ight wave). We now need to expand the TD–KS equations to first
rder in the perturbation. However, in the time-dependent case,
e need to make an Ansatz for the U-coefficients that reflects the

ime-dependence. A suitable one takes the form:

�
bj(t) = 1

2
{Xω;�
bj

e−iωt + Yω;�∗
bj

e+iωt} (101)

here the X and Y coefficients have now to be determined. The
17 However, this is not necessary. There are variants of CP-SCF theory that avoid
rbitals altogether and directly solve for the perturbed densities. In this case no
ransformations to the MO basis are necessary [168,169].
18 However, the CP-SCF equations are linear while the SCF equations are nonlinear.
hus, often the CP-SCF equations converge in fewer iterations than the SCF equations.
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The right-hand side of the perturbed TD-KS equation then
ecomes:〈
b

∣∣∣∣∂P̂(1)

∂t

∣∣∣∣ j
〉

= ω

2
Xω;x
bj

e−iωt − ω

2
Yω;x∗
bj

e+iωt (102)

hile the left hand side is readily obtained from the discussion for
he static case. We will not perform the algebra in detail but simply
uote the result that reads:

(εb − εj)Xω;�
bj

+ V�bj +
∑
kc

Xω;�
kc

[〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jc|kb〉]

+
∑
kc

Yω;�
kc

{〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jk|cb〉} = ωXω;�
bj

(103)

(εb − εj)Yω;�
bj

+ V�∗
bj +

∑
kc

Xω;�
kc

[〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jk|cb〉]

+
∑
kc

Yω;�
kc

[〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jc|kb〉] = −ωYω;�
bj

(104)

ere (Vbj denotes a matrix element of the time-independent part of
he perturbation. It is customary to write these equation in a more
eat form by defining the “super-matrices”:

bj,ck = (εb − εj)ıbj,ck + 〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jc|kb〉 (105)

bj,ck = 〈kj|cb〉 + 〈kj|fXC|cb〉 − cHF〈jk|cb〉 (106)

ote that A + B is related to the real response matrix while A − B is
elated to the imaginary response matrix. Since in this formalism,
and Y become “vectors” (compound label bj), the TD–KS response

quations can be written:(
A B
B A

)
−ω
(

1 0
0 −1

))(
Xω;�

Yω;�

)
= −
(

V�

V�∗

)
(107)

hese equations are of the form: R(�)U = −V. It is interesting to ask
t which frequencies these equations lead to an infinite solution.
his must happen if ω is adjusted such that an eigenvalue of R(ω)
ecomes zero. This ‘resonance’ then implies that ω equals an exci-
ation frequency of the system. Hence, one has directly calculated
he difference in energy between the ground- and an excited state
ithout ever calculating the excited state itself! Obviously, such a

esonance occurs if the equation:

A B
B A

)(
Xω;�

Yω;�

)
= ω

(
1 0
0 −1

)(
Xω;�

Yω;�

)
(108)

s satisfied. Hence, the ‘critical’ω’s are obtained as the solution of a
arge non-standard eigenvalue problem. They can be solved by non-
tandard iterative techniques that are of no concern in the present
ontext [173]. However, there are two special cases that deserve
entioning. The first special case is met when the perturbation

s real (e.g. an electric field type perturbation) and there is no HF
xchange (or any other non-local potential) in the functional. Then
ne can re-arrange the equations to a standard eigenvalue problem:

effZeff = ω2Zeff (109)

ith:

eff = (A − B)1/2(A + B)(A − B)1/2 (110)

eff = (A − B)−1/2(Xω;� + Yω;�) (111)

he matrix square roots present no problem, since (A − B)1/2
bj,ck

=

kc,bj

√
εb − εj .

The second special case is met if the B matrix is simply neglected.
his leads to Y = 0 and the resulting standard eigenvalue problem:

Xω;� = ωXω;� (112)

a
m

i
p
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icely resembles the configuration-interaction with single-
xcitations (CIS) method that is well known from wavefunction
heory [174]. It is often referred to as Tamm-Dancoff approxima-
ion (TDA) [175]. Newer developments of TD-DFT can be found in
he works of Ziegler, Autschbach and co-workers [176–192] and by
inkevicius and Vahtras [193].

. Applications of molecular property calculations with DFT

Thousands of papers have been published that describe applica-
ions of DFT to transition metal chemistry including (bio)inorganic
hemistry. The majority of these papers focus on structural,
nergetic and kinetic quantities. Authoritative reviews of these
pproaches have been provided by Siegbahn and co-workers [1,2]
nd an excellent introduction is provided by the book of Koch
nd Holthausen [43]. Consequently, no attempt will be made to
escribe these important applications. Rather this section will be
ainly concerned with the application of the formalism outlined

n the previous sections to the calculation of molecular spectra and
elated properties. The calculation of molecular properties other
han the total energy allows the close connection of theory and
xperiment and often leads to important clues about the geomet-
ic and electronic structure of the systems being studied. In many
nstances, spectroscopic features react much more sensitively to
ubtle structural variations than the total energies themselves (for
n example see [14,194]). Consequently, the calculation of spec-
roscopic properties is an important area of investigation that is
escribed below.

.1. Geometries and transition states

Almost every DFT investigation starts by optimizing the geom-
try of the species under investigation. All algorithms to find
tationary points on the potential energy surface require the
vailability of analytic first derivatives to be effective. These are
alculated from Eq. (69) with the perturbation � being taken as the
ovement of a given nuclear coordinate. In order to be efficient,

ll 3M derivatives are calculated simultaneously which typically
equires less time than the preceding SCF calculation.

Usually all structural parameters are relaxed in searching for
tationary points on the potential energy surfaces. However, some-
imes it is advantageous to freeze selected structural parameters:
a) if the structure used is part of a much larger structure (e.g. a

odel for a protein active site) and there are constraints provided
y the part that is not included in the model; (b) if the optimizations
ead to a qualitative wrong structure; (c) if a ‘relaxed surface scan’ is
erformed. Such scans are utilized to obtain insight into the shape
f potential energy surfaces or to determine an initial guess for a
ransition state. Algorithms to find minima (to be confirmed by a
requency calculation) are well established in quantum chemistry
hile optimization of transition states (characterized by a single
egative frequency) requires considerable experience and insight

nto the system being studied [195,196].
The accuracy of optimized structures with DFT is usually excel-

ent to good when compared with accurate X-ray diffraction data.
or some recent benchmark results see, for example Refs. [108,197]
nd Table 5. The most extensive transition metal benchmark calcu-
ations for 3d, 4d and 5d metals that also compare ECP and scalar
elativistic all electron approaches is found in Ref. [198]. Scalar rel-

tivistic all-electron Gaussian basis sets for third-row transition
etal complexes have been developed in Ref. [199].
In applications to 3d transition metal complexes experience

ndicates that the weaker metal–ligand bonds (e.g. neutral amines,
hosphines, thioethers or pyridines) are typically overestimated
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Table 5
Statistical assessment of the performance of some common density functionals for
the bond distances of the light (31 molecules made of H–Ne) and heavy element test
sets (33 molecules containing atoms from Na–Ar), respectively

BLYP BP86 PBE TPSS B3LYP B2PLYP SCS-MP2

Light element test set
MD −1.3 −1.1 −1.0 −0.8 0.1 −0.1 −0.3
MAD 1.3 1.1 1.1 0.9 0.6 0.3 0.6
Min. −3.2 −3.1 −2.9 −3.1 −2.3 −1.6 −2.5
Max. 0.0 0.5 0.6 0.5 2.9 1.2 2.0

BLYP BP86 PBE TPSS B3LYP B2PLYP CCSD(T)

Heavy element test set
MD −2.5 −1.8 −1.7 −1.4 −0.7 −0.5 0.0
MAD 2.5 1.8 1.7 1.4 0.8 0.6 0.1
Min. −6.7 −3.7 −3.4 −3.9 −3.1 −1.8 −0.9
Max. −0.4 −0.4 −0.3 −0.2 0.8 0.3 0.3
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iven are the mean deviation (MD) and mean absolute deviation (MAD) as well as
he minimum (min.) and maximum (max.) errors. All values are in pm (data taken
rom [108]).

y nonrelativistic all-electron DFT calculations with standard func-
ionals by about 3–5 pm (sometimes more) (Table 6), while the
trong bonds to anionic or strongly (back)bonding ligands like (O2−,
2−, OH−, NO+, CO, N3

−, . . .) are typically predicted with excel-
ent accuracy (errors of ∼1–3 pm) by DFT methods. As an example
f how the results depend on functional, basis set and relativistic
reatment, consider a geometry optimization on the simple com-
lex [Cu(en)2]2+ (en = ethylenediamine) (Table 6).

The results of this calculation are representative of the typical
erformance of DFT based optimizations and the significant points
ay be summarized as follows:
Under the plausible assumption that the large decontracted
ZVPP basis set is a suitable reference point, it is seen that double-

ases are too small for quantitative results but that one approaches
asis set saturation already at the level of a singly polarized triple-

asis set such as TZVP.

able 6
epresentative geometry optimization results for [Cu(en)2]2+ using a variety of dif-

erent basis sets and density functionals

ethod Additions to HBO Basis set R(Cu–N) (pm)

P86 None SV(P) 207.5
P86 ECPa LANL2DZ 207.4
P86 None TZVP 206.8
P86 None TZVPP(decr)b 206.7
3LYP None TZVPP(decr)b 206.7
PSS None TZVP 206.5
P86 DKH2c SV(P) 206.4
P86 ECPa SDD 205.8
P86 DKH2c TZVP 205.5
P86 ZORAd TZVPP(decr)b 205.4
PSS DKH2c TZVP 205.2
3LYP DKH2c TZVPP(decr)b 205.2
P86 DKH2c TZVPP(decr)b 205.0
P86 DKH2 + VDWe TZVPP(decr)b 204.9
P86 DKH2 + COSMOf TZVP 202.8
P86 DKH2 + COSMOf TZVPP(decr)b 202.1
P86 DKH2 + COSMOf+ VDWe TZVPP(decr)b 202.0
xp [507] 201.5

a Effective core potential.
b Fully decontracted basis set.
c Second-order Douglas–Kroll–Hess all electron calculation.
d Zeroth order regular approximation.
e Includes a correction for the Van der Waals interaction [112].
f Includes a continuum model of the surrounding using the conductor like screen-

ng model [200] with an effective dielectric constant of infinity. This provides perfect
creening of the net charge of the dication by considering it as a perfect conductor.
esults for a finite dielectric constant of 80 resembling water are very similar.
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The well-known relativistic bond contraction amounts to about
–2 pm in the first transition row. Since it can be treated at neg-

igible additional computational cost, it may be recommended for
ll-electron calculations to include such a correction. Apparently,
ven the standard, non-relativistically contracted basis sets can be
sed in such calculations if they are at least of TZVP quality. How-
ver, even after the relativistic correction, the overestimation of
he metal–ligand bond distances for the weaker bonds is not fully
emedied.

Possible compensation by net charges through a continuum
olvation model such as the COSMO [200] or PCM [201] models fur-
her improves the results while van der Waals corrections that are
mportant for modeling weak interactions appear to play a minor
ole. The best results are obviously obtained by a simultaneous
nclusion of relativistic effects and charge compensation models,
oth of which can be included in the calculations at very limited
xtra cost compared to a standard all-electron geometry optimiza-
ion with a triple-
 quality basis set. It is noticeable that even for a
iven functional, the quality of the result is very variable—the worst
P86 calculation with the LANL2DZ ECP/basis set provides a result
hat is in error by 5.5 pm compared to experiment while the best
alculation with the same functional approaches the experimental
ond distance to within 0.5 pm.

About two thirds of the relativistic effect (perhaps often
ore) can be recovered through effective core potentials. The

tuttgart–Dresden potentials [202–206] appear to be quite pop-
lar while very small ECP and the associated valence basis sets like
ANL2DZ [207–209] – despite their popularity – appear to be too
mall to deliver reliable results.

The differences between different density functionals are typ-
cally not large. Hence, a suitable strategy is to select the most
fficient functional for the geometry optimizations and to invest
he time that has been saved in a better basis set or a more realistic

odel of the system that one wants to investigate. As alluded to
n Section 5, calculations without HF exchange can be done with
utstanding efficiency at essentially no loss of accuracy when the
ensity fitting approximation is employed. Hence, there appears
o be little reason to pursue computationally expensive geometry
ptimizations with hybrid density functionals since equally good
nd often better results are obtained with GGAs. Since the GGAs
ike PBE and BP86 also deliver excellent vibrational frequencies it is
computationally attractive and logical route to only switch to the
omputationally much more expensive hybrid functionals for the
nal total energy and property calculations where they have clear
dvantages over GGA functionals.

.2. Vibrational frequencies and IR spectra

The prediction of harmonic vibrational frequencies on the basis
f DFT has been rather extensively pursued [43]. They follow
irectly from the equations presented in Section 6.2 if the two
erturbations are both taken to be nuclear movements.

In fact, harmonic frequencies predicted by GGA functionals such
s BP86 and PBE agree surprisingly well with observed fundamen-
als with errors being usually well below 10% [210–212]. It has been
hown that this good agreement arises from a cancellation of errors
the underestimation of harmonic frequencies and the neglect of

nharmonicities in these calculations [213]. Harmonic frequencies
re better predicted by hybrid functionals but to explicitly calculate
nharmonic corrections to harmonics vibrational frequencies is a

ery difficult task. Consequently, the systematic error cancellation
hat occurs with GGA functionals appears to be fortunate and such
alculations are of great help in the assignment of experimental
pectra. Secondly, the zero-point energy contributions to the free
nergy are quite accurately predicted by DFT methods.
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IR intensities are straightforward to calculate from the eigen-
ectors if the Hessian matrix and the derivative of the electric
ipole integrals with respect to nuclear coordinates. A compila-
ion of benchmark results can be found in the book by Koch and
olthausen [43].

.3. Raman spectroscopy

It is well known that the intensity of Raman active vibrational
odes can be calculated from the derivatives of the polarizabil-

ty tensor with respect to the normal coordinates of the system
214]. However, the polarizability tensor itself is a second derivative
roperty according to Eq. (77) with both perturbations being repre-
ented by the electric dipole operator19 [120]. Consequently, Raman
ntensities and depolarization ratios are third derivative properties.
wing to the ‘2n + 1 rule’ [20] they can, however, still be calculated

rom the second derivative data assembled during the frequency
alculation and the solution of the first order CP-SCF equations with
espect to an external electric field [215–219]. However, Raman
pectroscopy itself finds limited use in (bio)inorganic chemistry
nd consequently the subject will not be further discussed here.

.4. Optical spectroscopy (UV/vis, CD, MCD)

The calculation of transition energies from time-dependent
ensity functional linear response theory has been described in
ome detail in Section 6.4. It is emphasized again that the lin-
ar response approach directly yields the transition energy rather
han the total energies of the ground- and excited states. Thus, the
xcited states themselves are never explicitly calculated. Rather,
heir energies are deduced from the poles of a frequency dependent
round state property. Thus, one may wonder how one should cal-
ulate transition properties such as transition dipole moments and
xcited state properties such as the dipole moment of the excited
tates?

The answer to the second question is simply: in the same way as
or the ground state. Thus, for the ground state it has been greatly
laborated in Section 6 that all properties can be calculated from the
nalytic derivatives of the total energy. Thus, the same procedure
pplies to the excited states as well. The total energy of the excited
tate is simply the sum of the ground state energy and the transition
nergy predicted by the TD-DFT procedure. The derivatives of this
otal energy then define all excited state properties. However, it is
vident that the excited state derivatives are more difficult to calcu-
ate than the ground state derivatives because the excited state total
nergy is not fully stationary. By this statement we mean that the
round state total energy is stationary with respect to variations
f the MO coefficients and the transition energies are stationary
ith respect to the variations in the X and Y amplitudes. However,

he transition energies are not stationary with respect to varia-
ions of the MO coefficients. Hence, there are additional CP-SCF
quations (so-called Z-vector equations) that need to be solved in
rder to obtain what is called the excited state relaxed densities that
ake the part of the ground state density in property calculations.
lucid discussion and an impressive implementation of excited
tate derivatives (first implemented by Amos and co-workers [220])
ased on TD-DFT (into the TurboMole program) has been given by
urche [221–223].

19 Thus, the dipole moment itself is the first derivative of the total energy with
espect to the external field strength. The polarizability is the second derivative and
herefore represents the change of dipole moment induced by an external electric
eld.
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Thus, the problem remains how to calculate transition prop-
rties from TD-DFT. Fortunately, this turns out to be rather
traightforward because TD-DFT fully determines both, the tran-
ition density and the transition current density [223]. For a given
igenvector ‘0n’ for a transition from the ground to the nth excited
tate they are given by:

0n(x) =
∑
ia

(X0n
ia + Y0n

ia ) i(x) a(x) (113)

0n(x) = 1
2

∑
ia

(X0n
ia − Y0n

ia )( a(x)� i(x) + i(x)(� a(x))∗) (114)

ith� being the kinematic momentum operator. From these tran-
ition quantities one readily calculates the electric and magnetic
ransition dipole moments (in atomic units) as:

el = −
∫
	0n(x)r dx (115)

mag = ˛

2

∫
r × j0n(x) dx (116)

ince j contains the momentum p, the magnetic dipole moment
ontains the familiar angular momentum operator l. Thus, the oscil-
ator strength f0n and the rotary strength R0n are given by:

0n = 2
3
ω0n|�el|2 (117)

0n = Im(�el�mag) (118)

hese quantities are the central ones for the calculation of absorp-
ion and CD spectra. The latter has been quite extensively developed
or organic molecules and also for inorganic complexes by Ziegler,
utschbach and co-workers [190–192,224,225]. The results for
ransition energies are typically similar between the full TD-DFT
nd TD-DFT in the Tamm–Dancoff approximation [175] while the
ormer treatment delivers better transition moments. On the other
and, the full response treatment occasionally leads to instabilities
nd the predictions for singlet-to-triplet transitions are often not
f high accuracy.

MCD spectra have been studied by Ziegler, Seth, Autschbach and
o-workers on the basis of TD-DFT [179,189,226]. Their methods
ave been mainly developed for MCD A- and B-terms and proved
o be valuable. C-terms – the most significant for (bio)inorganic
hemistry – have been treated as well [179], but based on the
eneral discussion in Ref. [227] these methods are not yet fully
eneral and more development work appears to be necessary. The
hallenge is substantial since essentially the entire ground state
pin-Hamiltonian (see below) needs to be well predicted alongside
ith the transition energies and the transition properties.

The situation has changed most recently when a general method
or the calculation of MCD spectra was introduced on the basis
f multireference configuration interaction methods (MRCI-MCD)
228].

The method extends and generalizes earlier semi-empirical
ork [229,230] as well as the theory of Ref. [227]. While the com-
utational effort of such methods excludes the application to truly

arge systems, it covers all of the correct physics and is applicable
o at least medium sized systems. As an example, the calculated
bsorption and MCD spectra of [Fe(CN)6]3− are shown in Fig. 6. The
pectra are dominated by ligand-to-metal charge transfer transi-

ions that are not easy to calculate by ab initio methods. This may
e ascribed to very large electronic excitation and differential elec-
ron correlation effects that occur upon increasing (or decreasing)
he formal d-electron count on the metal. In particular, the high-
egative charge of the cluster was only crudely modeled by con-
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37,700 cm−1 (1A1 → 3E(dxy → dz2)). These transition energies are
well predicted by TD-DFT calculations using either the BP86
or B3LYP functionals with errors of only ∼2000–3000 cm−1.21

However, the DFT calculations predict in addition a series of

20 The convergence problems are far less pronounced for transition state calcula-
tions in which one-half electron is moved from the donor to the acceptor orbital
[254–257]. In these calculations the transition moment is straightforwardly calcu-
lated from the matrix elements between the two half-occupied orbitals. From this
perspective, transition state calculations may be preferred over Delta-SCF calcula-
ig. 6. Calculated (broken line) versus experimental (full lines) absorption (bottom)
nd MCD spectra of [Fe(CN)6]3− . For theoretical and computational details see Ref.
228].

inuum solvation models. Given these constraints, the agreement
s qualitatively excellent and quantitatively at least reasonable.

Following the first efficient implementations [231–236] TD-DFT
as quickly become very popular and is nowadays frequently used
e.g. [109,237–249]). The method is very attractive indeed since its
omputational cost is at most equal to that of a CIS calculation and
s considerably faster for HF exchange free functionals if the density
tting technique is employed [221,236,250–252]. Initially there was
uch excitement since it looked like as if TD-DFT was an accurate

echnique for excited state calculations. However, the situation has
een found to be more complex and we note below some of the
ypical problems that have been found with TD-DFT calculations
see also [14]):

a) TD-DFT linear response calculations in the adiabatic approx-
imations do not include any double excitations. Thus, these
will be systematically missing from the spectrum although
they appear prominently in the d-d spectra of transition metal
spectra. Consequently, single excitations that mix strongly with
double excitations are poorly described by TD-DFT. A 1 typical
example is the complex [Ni(H2O)6]2+ shown in Ref. [14] but the
problem is omnipresent in transition metal spectroscopy.

b) Just like DFT ground state calculations fail for orbitally degen-
erate states, TD-DFT calculations cannot properly resolve the
multiplet structure for systems with orbitally degenerate
ground states. Some progress has recently be made for spin flip
transitions [253].

(c) TD-DFT calculations do not account for electronic relaxation
effects (e.g. the change of orbitals in the excited state). This
typically leads to overestimation of transition energies. These

effects have been fully included in the older DFT based cal-
culations of excited states that were based on Delta-SCF and
Slater transition state approaches. Consequently, TD-DFT pre-
dicted transition energies are frequently inferior to Delta-SCF

t

t
1
a

ig. 7. Structure of the [Mn(N)(cyclam-acetate)]+ cation used in the TD-DFT calcu-
ations described in the text.

or transition state calculations. However, these latter calcula-
tions are laborious since a full SCF calculation is needed for
each excited state, they may face convergence problems or
variational collapse and lead to non-orthogonal wavefunctions
which complicates the calculation of transition properties.20

d) The erroneous long-range behaviour of the functionals leads
to orbital energies that are much too high (5–6 eV compared to
accurate ab initio Kohn–Sham calculations) and also to very poor
results for Rydberg states. However, such states are of limited
importance for spectroscopy in condensed phases.

e) The self-interaction error of DFT becomes much more severe
for excited states. In charge transfer transitions or transitions
of neutral-to-ionic valence character, the transferred electron
does not see the proper +1 charge that is “left behind” but more
positive charge. Consequently, such transitions are calculated
much too low in energy—sometimes by several electron volts.
These problems become less severe with hybrid functionals
since the Hartree–Fock exchange removes some of the self-
interaction error. However, as pointed out above, at the same
time the transitions move to higher energy.

A typical example for the problems that TD-DFT calculations fre-
uently face has been analyzed several years ago [258] and is shown
n Fig. 7. The low-spin d2 (closed-shell S = 0 with the ground state
lectronic configuration (dxy)2(dxz,yz)0(dx2−y2)0(dz2)0) complex
MnVN(cyclam-acetate)]+ has been spectroscopically characterized
nd is known to feature only four electronic transitions in the visi-
le region that are all of the d–d type [258]. A closely related MnVN
omplex has been studied by polarized single-crystal absorption
nd MCD spectroscopies [259]. The transitions occur exper-
mentally at 11,800 cm−1 (1A1 → 3E(dxy → dxz,yz)), 16,700 cm−1

1A1 → 1E(dxy → dxz,yz)), 19,900 cm−1 (1A1 → 3E(dxy → dx2−y2)) and
ions.
21 For example, the d–d transitions predicted with the B3LYP functional within
he Tamm–Dancoff approximation and in combination with the TZVP basis set are
1,500 (3E), 17,900 (1E), 19,400 (1A2) and 34,000 (1A1) cm−1 which is in excellent
greement with experiment.
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Fig. 8. Schematic description of the most important parameters that enter the cal-
culation of resonance Raman intensities. The ground- and excited state potential
energy surfaces are represented by harmonic potentials where the excited PES is
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igand-to-metal charge transfer transitions arising from the axial
arboxylate. This series starts already at 13,000 cm−1 in the BP86
alculations and smoothly extends to the far UV with at least 15
uch states being calculated below 40,000 cm−1. The nature and
nergies of these transitions are absurdly low and there is no exper-
mental evidence for them. Such transitions are expected to occur
bove 35,000–40,000 cm−1 [260]. The B3LYP functional is much
etter in this respect since due to the HF exchange it is less plagued
y the self-interaction error. The predicted d-d transition energies
re similar to those of the BP86 functional but the LMCT series
tarts ‘only’ at 26,500 cm−1 which is still much too low and con-
equently, there are ‘only’ six artificial states interspersed into the
-d spectrum.

This simple example shows that TD-DFT predicted spectra are
ften quite good except that they are plagued with artifacts like
rroneous or missing states. In fact, TD-DFT in the adiabatic approx-
mation and in combination with the standard functionals misses
n one of the most important aspects of theoretical electronic
pectroscopy—the balanced treatment of excited states of different
haracter.

Taken together, the combination of all of these problems lead to
redicted optical spectra for open shell transition metals that are
ot fully reliable and sometimes, as in the example shown, even
bsurd. The situation is usually but not always better for closed-
hell species and for systems with strong metal–ligand bonds such
s organometallics. However, in general one has to apply TD-DFT
alculations with utmost caution and one is well advised to seek
ritical feedback from experimental data. Uncritical trust in the
esults of TD-DFT calculations is not justified.

.5. Resonance Raman spectroscopy and absorption bandshapes

The resonance Raman (rR) effect arises from a strong enhance-
ent of the Raman intensities if laser excitations occurs within an

bsorption band [214,261,262]. In this case, the response of the sys-
em to the perturbation is highly nonlinear and it is better to step
utside the linear response formalism developed above. Several
ompeting formalisms have been developed for the calculation of
R intensities and absorption bandshapes (for a relatively compre-
ensive list see references in [38,263]) A very convenient technique
as been developed by Heller and co-workers who outlined a
eneral time-dependent formalism that allows the calculation of
bsorption (and fluorescence) bandshapes, rR intensities and rR
xcitation profiles [264–267]. The formalism has the appealing fea-
ure that the computational effort scales only linearly with respect
o the number of vibrational modes.22 For the special case that
he vibrational modes are treated in the harmonic approxima-
ion and the Franck–Condon approximation is invoked, closed form
olutions to the desired integrals are known [271]. Without going
nto any detail of the somewhat intricate mathematical procedures
38,263] The central quantity that appears in these calculations is
he displacement of the equilibrium energy minimum along each
ibrational mode in the electronically excited state (Fig. 8).

These quantities are directly related to bonding changes and
ence give much insight into the electronic structure of the system.

hey may be viewed as the optical spectroscopy equivalent of the
pin-Hamiltonian parameters mentioned in the next section. They
an be determined by fitting experimental data [272,273] or from
uantum chemical calculations. Our recent suggestion has been to

22 Direct calculation of multi-dimensional Franck–Condon factors on the other
and scales with the number of excited quanta to power 3Natoms and quickly become

mpossible for larger molecules (however, see recent developments by Berger [268]
nd Grimme [269,270,269]).
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hifted by
k along the kth normal mode. Excitation of the ground state wavepacket
o the excited state leads to a non-stationary state that evolves with time on the
xcited PES as described by Heller’s theory. The resonance Raman intensity is directly
elated to
k .

stimate these quantities from ground state force fields and excited
tate gradients as [263]:

Q,k(n) = −ω2
k (n)

∂En
∂Qk

∣∣∣∣
Q=0

(119)

here ωk(n) is the kth vibrational frequency in the nth electroni-
ally excited state (that may to a 0th order approximation be taken
rom the ground state force-field), En is the total energy of the
th electronically excited state and Qk is the kth normal mode.
he derivative is best obtained from the Cartesian derivatives by
simple linear transformation:

∂En
∂Qk

=
∑
p

Lpk

m1/2
p

∂En
∂Xp

(120)

here Xp is a Cartesian coordinate of an atom with mass mp and
pk is an eigenvector of the mass-weighted Hessian matrix that
escribes the kth normal mode.

If these displacements are fed into the full-dynamics
avepacket equations of Heller and co-workers, it has been
ur experience that excellent agreement with experimental
pectra can be obtained (Fig. 9 [263,274]). The central quantity to
e obtained are the first derivatives of the excited state energy
s discussed above. In such calculations, TD-DFT methods are
oderately successful (somewhat inferior to ab initio methods)

ut if an analytical TD-DFT gradient is available, the spectra can be
btained very efficiently. It is stressed that this way of calculating
bsorption (and fluorescence) bandshapes, rR intensities and
xcitation profiles is superior to the short time approximation that
as sometimes be used together with excited state gradients to
alculate rR intensities. Conversely, the calculated displacements
erve as excellent approximations for fitting procedures and
lso provide the signs of the displacements that are difficult to

etermine experimentally (Fig. 9).

As a recent example, we quote an extensive resonance-Raman
tudy on transition metal dithiolenes with the formula [M(L)2]−

274]. In these complexes, M = Co, Ni, Cu, Pd, Pt and L is a benzene-
ithiolate derived ligand. All these complexes have the metal in the
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ig. 9. Comparison of calculated and experimental absorption (left) and resonanc
urve on the left represents the experimental spectrum and the other traces are pr
ower left. On the right, the left panel corresponds to calculated (MR-DDCI2 + Q) rR sp
n the right (arbitrary intensity units on the y-axis of the right-hand side figure).

ormal oxidation state of +3 and show intense absorption bands in
he visible and near-infrared region. Since the complexes were sus-
ected to contain dithiolene radicals, the nature of the excitations
as of particular interest. If an absorption band could be identified

s a ligand-to-ligand charge transfer (LLCT) process, this would be
ndicative of a ligand-radical in the electronic ground state. Alter-
atively, if the excitation could be identified as ligand-to-metal
harge transfer excitation, the dithiolenes would be seen to behave
s innocent ligands. Obviously, the resonance Raman spectra of

hese complexes are very rich and display complex enhancements
atterns. However, on the basis of simplified correlated ab ini-
io calculations or TD-DFT calculations, the spectra of all systems
ould be reproduced with near-quantitative accuracy (Fig. 10). The
nalysis demonstrated that highly intense rR bands in the low-

(
i
f
u

ig. 10. Resonance Raman spectra of [Cu(L)2]− (left) and [Ni(L)2]− (right) upon excitation in
y TD-DFT and MR-DDCI2 methods are given underneath. At the bottom, least-squares fits
hemically predicted excited state displacements.
an (right) spectra for the 1Ag → 1Bu transition of trans-hexatriene. The upper left
ons of different quantum chemical methods compared to the best fit result on the
with excitation throughout the absorption band compared to experimental spectra

requency region (<500 cm−1) are the signature of LMCT transitions
hat mainly enhance the metal–ligand stretching modes. However,
trongly enhanced rR bands in the region around 1000 cm−1 are
ndicative of ligand radicals, since these modes dominantly belong
o C–S stretching vibrations that become enhanced upon LLCT exci-
ations.

.6. X-ray absorption spectroscopy
X-ray absorption spectra may be divided into three regions [17]:
a) the pre-edge region consisting of transitions from core-orbitals
nto valence orbitals, (b) the edge region consisting of transitions
rom core-levels into high lying empty orbitals close to the contin-
um and (c) transitions from the core-levels into the continuum

to the strongest absorption band. Experimental spectra are given on top. Predictions
to the spectra are given that result from minor (<10%) adjustments of the quantum
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iving rise to the extended X-ray absorption fine structure. While
he analysis of the EXAFS region results in accurate structural infor-

ation that can be compared with structure optimizations, the
nalysis of the pre-edge region is most informative with respect
o its electronic structure content. More recently, direct DFT cal-
ulations of pre-edge spectra have been performed. We will focus
ere on the calculation of metal- and ligand K-edge spectra which
ave mostly been pursued.

In principle, these calculations could be done just like an ordi-
ary TD-DFT calculation of the valence-to-valence transitions.
owever, there are several additional complications:

a) In the metal K-edge region, the wavelength of the radiation
is no longer large compared to the size of the absorbing sys-
tem and hence the approximation of constant electric field
over the size of a single molecule is no longer valid. Thus,
higher order transition moments such as the quadrupole tran-
sition moment become important. However, a straightforward
evaluation of this transition moment leads to problems of
gauge-noninvariance that must be overcome.

b) Excitations of core electrons are subject to significant relativistic
effects owing to the low energy of the core orbitals and the
associated high momentum of the core electrons.

c) If one would proceed to calculate the excitation spectrum all
the way from the near-infrared and visible regions down to the
X-ray region, very many roots would have to be determined
and this would lead to unrealistically long computation times.
Hence, a way is needed to focus attention on the pre-edge region
without having to deal with the valence-to-valence excitations.

There has been a considerable history of pre-edge calculations
n light atoms that have been based on the Slater transition state
oncept [275–281]. In these calculations potentially many indi-
idual SCF calculations have to be done in order to construct
he spectrum. The benefit is that the electronic relaxation of the
ore-hole is treated together with the relaxation of the valence
hell electronic structure. If relativistic corrections are properly
ccounted for, such calculations lead to fairly good predicted tran-
ition energies and intensities [277–281].

The second type of approach that has been particularly intensely
ursued by Solomon and co-workers is to connect the results of
round state DFT calculations to the intensity distribution in the
AS pre-edge peaks. For these analyses standardized effective val-

es for the radial transition moment integrals had to be defined
282–288].

In keeping with the linear response philosophy, recent efforts
ave been centered around a direct calculation of the entire
ore-to-valence spectrum without resorting to system dependent

c

H

ig. 11. Comparison of calculated (upper panel) and experimental sulfur K-edge spectra fo
rom Ni to Pd to Pt. Adapted from Ref. [289].
eviews 253 (2009) 526–563

alibration procedures. A standard protocol has been worked out
hat turned out to be simple and effective [289,290]. In these cal-
ulations, excitations are only allowed out of localized core-holes
nto the entire virtual space of MOs. Thus, by construction, the tran-
itions included in the excitation space within the standard TD-DFT
reatment fall into the K-edge region of the absorber atom of inter-
st. The initial localization of the core hole is consistent with the
udden approximation [291]. The construction covers the final state
ffects to the same extent as TD-DFT covers these effects in the
alence region but the relaxation of the core–hole is not allowed
or in this protocol. It has also been argued that such effects are
robably small [292]. The inclusion of relativistic effects and very

arge and flexible basis sets in the core region has been tried but not
ound to greatly improve the results. These calculations do not lead
o accurate values of absolute transition energies—even after rel-
tivistic corrections, the erroneous potential of the standard DFT
unctionals close to the nucleus prevents this anyways. However,
elative transition energies for series of complexes or different tran-
itions within the same species are usually very well predicted by
he calculations with an accuracy of a few tenths of an eV. Thus,
constant shift can be applied for each absorber at a given level

f DFT functional and basis set in order to obtain good predicted
ransition energies. The intensity distributions calculated with this
imple minded but effective approach are fairly good and overall the
alculations are efficient and successful [243,289,293]. It is readily
nticipated that one will see much more use of this approach in the
uture. Similar studies on the basis of two-component relativistic
D-DFT calculations have been reported by Ziegler and co-workers
177].

As an example the calculation of ligand K-edges for a series of
ransition metal dithiolenes is quoted [289]. As shown in Fig. 11,
xcellent agreement between the measured and theoretically cal-
ulated pre-edges in terms of the number of features, the energetic
hifts and the relative intensities of the bands has been obtained.
imilarly good agreement is often obtained in application studies
289,294–302].

.7. EPR and NMR spectroscopy

EPR and NMR experiments are parameterized by an effective
pin-Hamiltonian (SH) that only contains spin-degrees of freedom.
or an isolated spin-system with total spin S, the spin-Hamiltonian

an be written [303,304]:

Spin = ŜDŜ + ˇBgŜ +
∑
A

{ŜA(A) + Î
(A)

Q (A) − �ANB�(A)}Î(A) + · · ·

(121)

r a series of transition metal dithiolene monoanions with the central metal varying
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he individual terms refer to the zero-field splitting, the electronic
eeman-effect, the hyperfine coupling, the nuclear quadrupole

nteraction and the nuclear Zeeman effect respectively. Ŝ and Î
(A)

efer to the spin-operators for the fictitious total spin of the system
nd D, g, A(A), Q(A) and �(A) are numerical parameters (SH parame-
ers) that are obtained experimentally from fitting the observed
pectra. The spin-Hamiltonian works on a (usually) low dimen-
ional Hilbert space that is spanned by the product functions
SMS〉 ⊗ |I(1)M(1)

I 〉· · · ⊗ |I(M)M(M)
I 〉 where S, MS refer to the total spin

f the electronic system and its projection quantum number (MS = S,
− 1, . . ., −S) and analogously I(1),M(1)

I denotes the nuclear spin and
ts projection. Fortunately, (almost) all magnetic resonance experi-

ents can be completely described by the spin-Hamiltonian since
xact or at least accurate approximate solutions to the (time depen-
ent) Schrödinger equation are readily obtained. The contribution
f quantum chemistry is to relate the spin-Hamiltonian parameters
o the microscopic interactions that occur in the full (relativistic)

olecular Hamiltonian.
While there has been a longstanding tradition to interpret the

pin-Hamiltonian parameters by sum-over-states type treatments
ased on ligand field theory [305–307], modern quantum chem-

stry employs the language of analytic derivative theory as outlined
n Section 6. This is not to say that the ligand field treatments
re not extremely useful as qualitative guides. It is, however, of
tmost importance to not “mix up” the levels of argumentation
etween the spin-Hamiltonian, ligand field arguments and numer-

cal quantum chemical calculations. It should be remembered that,
hen taken literally, systematically accurate predictions can not

e delivered by ligand field type calculations even when they are
interspersed” with elements of DFT calculations. Perhaps the most
onvincing marriage of ligand-field and DFT methods has been
eveloped by Atanasov and Daul and has proven to be very useful

n the interpretation of molecular spectra [308–317].
The linear response treatment of SH parameters appears now to

e reasonably well understood for all of the parameters that occur
n the SH. We will briefly summarize the results in order to show
he application of the methods described in Section 6. One compli-
ation that had to be overcome in the derivation of the equations
resented below is that DFT based quantum chemical calculations
lways (and only approximately so) only deliver one particular MS
omponent of an S, MS multiplet (invariably the ‘principal’ com-
onent with MS = S). The properties of the remaining components
nd their interrelationship must then be deduced from applica-
ion of the Wigner–Eckart theorem [20,227,318–325]. As becomes
vident from the form of the SH, all of the SH parameters can be
elated to second derivatives of the total energy after supplement-
ng the BO Hamiltonian with the appropriate terms that describe
he interactions of the various spins with the magnetic field, with
he orbital motions of the electrons and amongst each other. Full
etails of the relevant operators have been collected in various
laces [11,12,323,326].

.7.1. Zero-field splitting
The ZFS is the least well developed SH parameter in EPR

pectroscopy. From quantum chemistry, this term has two contri-
utions that arise from the direct magnetic spin–spin dipole–dipole

nteraction (to first order in perturbation theory) and from the
pin–orbit coupling (to second-order in perturbation theory).

For the SS contribution McWeeny and Mizuno have shown [46]:
(SS)
kl

= − g
2
e

16
˛2

S(2S − 1)

∑
��

∑
��

{P˛−ˇ
�� P

˛−ˇ
�� − P˛−ˇ

�� P
˛−ˇ
�� }

× 〈��|r−5
12 {3r12,kr12,l − ıklr212}|��〉 (122)

A
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he integrals appearing in Eq. (122) look complicated at first glance
ut are readily calculated and owing to the factorization of the
wo-particle spin-density matrix, Eq. (122) can be implemented
or large scale application without creating storage or computation
ime bottlenecks. However, generally applicable programs have
nly appeared recently [327–333]. The importance of the spin–spin
erms has been clearly recognized for the ZFS of organic triplets
nd biradicals but it has been essentially discarded as an important
ontribution to the ZFS of transition metals. However, recent results
how that the SS terms also contributes a non-negligible fraction
o the ZFSs of transition metal complexes (up to ∼1–2 cm−1) and
eeds to be taken into account for quantitative results [328].

The formalism to achieve an analytic derivative formulation of
he spin–orbit coupling part of the SH has been worked out only

ost recently and is somewhat more involved than the treatment
resented in Section 6 [325]. The complications arise from the

act that the SOC mixes states of different total spin and hence
he derivatives of the density matrices with respect to the total
pin become more involved. Since the formalism and the associ-
ted arguments are somewhat lengthy [325,318], this contribution
ill not be covered in detail here. For alternative approaches see

330–333,334–342].

.7.2. g-Tensor
The g-tensor is well studied by now with a number of

mplementations and applications available (for reviews see Refs.
11,14,16,343–345]). One obtains the following expressions for the
our contributions:

kl = geıkl +�gRMCıkl +�gGC
kl +�gOZ/SOC

kl
(123)

gRMC = −˛
2

S

∑
�,�

P˛−ˇ
��

〈
ϕ�

∣∣∣−1
2

∇2
∣∣∣ϕ�〉 (124)

gGC
kl = ˛2

4S

∑
�,�

P˛−ˇ
��

〈
ϕ�

∣∣∣∣∣∑
A

ZAr
−3
A [rAr − rA,krl]

∣∣∣∣∣ϕ�
〉

(125)

g(OZ/SOC)
kl

= 1
2S

∑
��

∂P˛−ˇ
��

∂Bk
〈ϕ�|ẑSOMF

l |ϕ�〉 (126)

he first three terms represent first-order contributions while the
usually dominant – contribution is provided by the second-order

ontribution in the fourth term. This term involves the deriva-
ive of the spin-density matrix with respect to a component of
he magnetic field (thus the CP-SCF equations are solved for a
urely imaginary perturbation represented by the orbital Zeeman
perator ˇ

∑
k(−i∇k × rk)B) and the SOC coupling operator that

s represented by various approximations to the full two-electron
reit–Pauli SOC operator (spin–orbit mean-field approximation,
OMF; Refs. [346–349]).

.7.3. Hyperfine coupling
One finds for the three parts of the HFC the following expres-

ions:

(A;c)
kl

= ıkl
8�
3
PA
2S
	˛−ˇ(RA) (127)

(A;d)
kl

= PA
2S

∑
P˛−ˇ
�� 〈ϕ�|r−5

A (r2Aı�� − 3rA;�rA;�)|ϕ� 〉 (128)

��

(A;SO)
kl

= −PA
S

∑
��

∂P˛−ˇ
��

∂Î(A)
k

〈ϕ�|zSOMF
l |ϕ�〉 (129)
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ith PA = gegNˇeˇN. Thus, the first two terms are straightforward
xpectation values that represent the Fermi contact interaction
nd the electron-spin-nuclear spin dipolar interactions while
he SOC contribution is a response property [321]. In this case,
ne has to solve a set of coupled-perturbed equations with the
hree spatial components of the nucleus-orbit interaction operator
PA
∑

k(−i∇k × (rk − RA))r−3
kA

) taken as the perturbation. Since, the
olution of the coupled-perturbed equations becomes time con-
uming for larger molecules this should only be done for a few
elected heavier nuclei. For light nuclei, the SOC correction is usu-
lly negligible [350].

.7.4. Electric field gradient
The EFG tensor is straightforwardly calculated from:

(A)
�� =

∑
�,�

P�� 〈ϕ�|r−5
A (r2Aı�� − 3rA;�rA;�)|ϕ� 〉 (130)

nce available and supplemented by the nuclear contribution,
he EFG tensor can be diagonalized. The numerically largest
lement Vmax (in atomic units) defines the value of q which
s in turn used to calculate the quadrupole splitting parame-
er as e2qQ = 235.28VmaxQ where Q is the quadrupole moment
f the nucleus in barn. Transformed to its eigensystem, the
uadrupole splitting enters the SH in the following form:
351,352]:

ˆQ = ÎQ Î = e2qQ

4I(2I − 1)
Î

(−(1 − �) 0 0
0 −(1 + �) 0
0 0 2

)
Î (131)

he asymmetry parameter � is defined as:

= |Vmid − Vmin|
Vmax

(132)

t is to be noted that this is the only term which involves the total
lectron density rather than the spin density. The field gradient
ensor is consequently of a quite different nature than the hyperfine
oupling which depends on the same dipolar interaction integrals
ut in the case of the HFC they are contracted with the spin density

nstead of the electron density.

.7.5. Chemical shift tensor
The chemical shift tensor is closely analogous to the theory

f the g-tensor and consists of a first- and a second-order part.
owever, instead of the derivative of the spin-density, it involves

he derivative of the total electron density since the spin–orbit
perator is replaced by the nucleus-orbit operator (see reviews
n [353]):

kl = �(d)
kl

+ �(p)
kl

(133)

(d)
kl

= ˛2

2

∑
�,�

P��〈ϕ�|r−3
A [rAr − rA,krl]|ϕ�〉 (134)

(p)
kl

= ˛2

2

∑
��

∂P��
∂Bk

〈ϕ�|(−i∇ × (r − RA))lr
−3
A ϕ�〉 (135)

ll the one-electron integrals that appear in this section are
traightforward to calculate if Gaussian basis functions are used.

complication is met in taking the first derivatives of the elec-
ron density matrix with respect to a magnetic field because

he angular momentum operator occurring in the orbital-Zeeman
erturbation is referred to the global origin of the coordinate sys-
em. Hence, the results depend on the choice of origin which
s undesirable and unphysical. While this dependence is known
o vanish in the limit of a complete basis set, care has to be

c
t
f
t
t

eviews 253 (2009) 526–563

aken in practice where a complete basis set cannot be used.
he most satisfactory solution is to employ magnetic field depen-
ent basis functions (GIAO’s, Ref. [354–356] that are of the
orm ϕ̃A�(x,B) = ϕA�(x) exp(i(˛/2)(B × RA)r). As a consequence of
his Ansatz, the basis set depends on the perturbation and the

ore general form of the CP-SCF equations (Eq. (93)) must be
mployed.

.7.6. Performance of DFT
The accuracy of EPR parameter calculations with DFT is some-

hat variable. For organic radicals and biradicals including amino
cid radicals, usually very good results are obtained for g-tensors,
yperfine and quadrupole couplings and also for zero-field split-
ings. In such investigations, the EPR II or EPR III basis sets appear
o be adequate. Hybrid functionals such as B3LYP and PBE0 have
een found to be somewhat more accurate than GGA functionals,

n particular for hyperfine couplings. A recent calibration study has
hown that the meta-GGA hybrid TPSSh (and possibly also TPSS0)
eads to competitive performance [357].

For transition metals, the situation is more involved. The
-shifts, being a response property, are usually significantly under-
stimated by the standard functionals [320,358,359]. However,
his underestimation depends somewhat on the metal and the
xidation state. The worst results are usually obtained for Cu(II)
omplexes while other configurations such as Ni(III) or V(IV) appear
o work much better. The underestimation of the g-shift has been
ttributed to a combination of too covalent bonding and too high
–d transition energies (that essentially determine the stiffness of
he system with respect to external perturbations). In these calcu-
ations hybrid functionals like B3LYP are certainly to be preferred
320]. However, as pointed out by Kaupp and co-workers [358], ele-
ated levels of HF exchange are dangerous since they lead to strong
pin contamination and bring with it all of the disastrous failures
f HF theory for transition metals.

For zero-field splittings very little data exists and most of it is
ased on theoretical approaches that are significantly inferior to
he linear response treatment mentioned above. There is evidence
hat the new method leads to better results than the previous cal-
ulations and are comparable to the results obtained for g-tensors
325,360]. However, much more work is certainly necessary in
his area. Nevertheless, reasonable results have been obtained for

n(II) [245,361] and Mn(III) [328] complexes while the very large
ero-field splittings in Fe(IV)-oxo compounds that arise from very
ow-lying excited states of different multiplicity than the ground
tate [362–364] cannot be predicted to high accuracy by standard
FT methods.

For hyperfine couplings to the metal nucleus the additional
roblem is the significant contribution of the SOC part (that is neg-

igible for most ligand nuclei with the exception of sulfur, selenium
nd other heavier ligands). The SOC contribution to the hyperfine
oupling is closely related to the g-tensor and hence a similar under-
stimation is evident by present day DFT methods. On the other
and, the Fermi contact term is particularly pathological since it
epends on the indirect core level spin polarization arising from the
npaired spin density in the metal d-orbitals. This spin-polarization

s difficult to calculate to high accuracy and so far DFT calcula-
ions significantly underestimate it [321,365,366]. Again, increasing
he fraction of HF exchange helps but the same comments as for
he g-tensor above apply. Also, relativistic effects on the isotropic
yperfine coupling can no longer be neglected in the first, and of

ourse also in the second- and third transition rows [513–515]. Since
he three contributions to the hyperfine coupling feature very dif-
erent physical mechanisms (core-polarization for the contact term,
he valence shell spin-density distribution for the dipolar term and
he linear response for the SOC part) it is difficult to arrive at highly
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ig. 12. Comparison of calculated and experimental EPR parameters for the delocaliz
rom Ref. [367].

ccurate predictions. Again, results depend somewhat on the metal
nd oxidation state.

As a recent example for EPR calculations, a study is quoted
ere very detailed experimental information has been obtained

Fig. 12, Ref. [367]). The complication in such studies is that the
igh-resolution (2D, high-field) EPR spectra are very rich owing
o the many magnetic nuclei that contribute to them. The sim-
lation of the spectra was only achieved in a consistent way
hrough a combination of the quantum chemically calculated
arameters with the experimental measurements. In particular, the

rientations of the many hyperfine tensors were best established
rom the theoretical calculations. Overall, the agreement between
heory and experiment should be considered as satisfactory
Fig. 13).

ig. 13. Calibration curve for the prediction of Mössbauer isomer shifts from non-
elativistic B3LYP calculations with the CP(PPP) basis set. Adapted from Ref. [384].
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xed-valence Cu(1.5)· · ·Cu(1.5) complex [Cu2(GT)]3+ shown in the right. Data adapted

.7.7. Quadrupole splitting and NMR chemical shifts
Not much systematic work appears to have been done

n the quadrupole couplings of the metal nuclei, except for
7Fe that is described below. Transition metal complex NMR
roperties have been extensively investigated by Bühl et al.
368–375]. More recently, several groups have begun to calcu-
ate paramagnetic NMR spectra which is relatively straightforward
nce the EPR property calculations have been accomplished
376–378].

Overall, it may be concluded that DFT approaches are already
uite useful for the interpretation of magnetic resonance parame-
ers but further development is required before fully quantitative
ccuracy has been achieved. Whether or not this is possible
long the lines of the standard functionals is an open ques-
ion.

.8. Mössbauer spectroscopy

The combination of DFT calculations with 57Fe-Mössbauer spec-
roscopy [379,380] has been found to be a particularly fruitful
ombination in the study of iron enzymes and has quickly been
aken up by a number of groups [16,381–389]. In zero-magnetic
eld the two main quantities that are extracted for a given iron
ite are the quadrupole-splitting�Eq and the isomer shift ı that is
eferred to a suitable standard (metallic iron foil).

.8.1. Quadrupole splitting
From a theoretical point of view the calculation of the

uadrupole splitting is relatively simple since it can be calculated
irectly from the elements of the electric field gradient (EFG) tensor
t the iron nucleus as:√

EQ = 1

2
eQ Vz 1 + 1

3
�2 (136)

x, Vy and Vz are the principal components of the electric field gra-
ient tensors in a coordinate system with |Vz| ≥ |Vy| ≥ |Vx|, e is the
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If one pursues such an approach, one has to stick to a given com-
bination of density functional and basis set since the calibration will
change for each such combination. The important points to realize
are:
52 F. Neese / Coordination Chem

ositive elementary charge and Q(57Fe) is the nuclear quadrupole
oment (measured in barn).
The EFG tensor itself is readily calculated as an expectation

alue over the ground state electron density. One point of concern,
wing to the r−3 dependence of the field gradient operator, is the
nfluence of relativistic effects on the results. However, it has been
ound to be very limited in a systematic study of iron complexes
ogether with the ZORA treatment for relativistic effects [385]. Sev-
ral groups have performed calibration studies in order to arrive at
suitable value for the quadrupole moment of the 57Fe nucleus

nd a value of 0.16 barn now largely appears to be consensus. The
erformance of DFT for the prediction of 57Fe quadrupole split-
ings is somewhat variable. Depending on the series of complexes
tudied, errors may range from 0.3 mm/s up to 1.0 mm/s. Unfor-
unately, it has been found in several studies (e.g. [390]) that the
omputed quadrupole splittings react fairly sensitively to details of
he surrounding such as counter-ions. The sign of the computed
uadrupole splittings is usually in agreement with experiment
nless� approaches unity where the sign itself becomes essentially
eaningless.
Quadrupole splittings are often interpreted from ligand field

odels with simple rules for the contributions from each occu-
ied d-orbital. However, these models fail even qualitatively in the
ase of more covalent metal–ligand bonds. A worked out example
as been provided for the quadrupole splittings of Fe(IV)-oxo sites

n their S = 1 or 2 spin states. Here, ligand field considerations do
ot even provide the correct sign of the quadrupole splitting [391].

.8.2. Isomer shift
While the complications that are met in the computation of

uadrupole splittings are severe enough that full quantitative accu-
acy is seldom met, the situation is different for isomer shifts. From
heoretical considerations [380], the isomer shift is linearly related
o the electron density at the nucleus:

MB = a+ b[	(0) − c] (137)

here a and b are fit parameters to be determined by linear regres-
ion and c is a number that is merely introduced for convenience
onsequently, several workers have provided plots of the calcu-

ated electron density at the iron nucleus versus the experimentally
btained isomer shift for a range of complexes [16,381–389]. More
ecently Filatov has developed a linear response theory for the iso-
er shift and used it in conjunction with DFT or ab initio methods

392]. All of these plots show that very good linearity is obtained
hat allows the prediction if isomer shifts with an uncertainty that
s smaller than 0.1 mm/s. Some workers have preferred to construct
lots for a limited set of iron oxidation states and coordination
nvironments while others have argued in favor of a single, unique
alibration.

These calibration curves have already seen dozens if not hun-
reds of successful applications (e.g. [8,12,13,243,246,295,363,381–
87,389–391,393–421,16,422]). Importantly, the experience gained

n these applications indicates that the quality of the calibration
oes not depend on the charge-state of the iron centers, not on
heir spin state, not on their coordination number or the nature
f ligands or whether the iron is involved in spin-coupling or not.
hus, these calculations, despite their simplicity, are successful and
obust.

Nevertheless, some statements must be made:
(a) Since the electron density shows a cusp at the nucleus, it
appears to be necessary to carry out calculations with basis
functions that show the correct behavior at the nuclei. This
is not the case for the typically employed Gaussian basis sets
that decay too slowly for small distances (and too fast for

F
a
p
v

eviews 253 (2009) 526–563

large distances). Consequently, the basis set limit, known from
numerical Hartree–Fock calculations to be ∼11,900 a.u.−3, is dif-
ficult to reach with Gaussian basis sets. With good bases (say
19 uncontracted s-primitives) one reaches electron densities at
the nucleus that are around 11,820 a.u.−3. Obviously, the per-
centage error is small but the absolute error of several dozen
a.u.−3 is large compared to the limited variation of the electron
density over the chemical range of Fe(VI) to Fe(I) compounds
that amount to only ∼10 a.u.−3.

b) Secondly, the relativistic effects on the electron density at the
nucleus are already very large for iron. Proper account for rel-
ativistic effects shifts 	(0) to around 15703.951 a.u.−3 [423].
Thus, if one pursues a non-relativistic treatment, the electron
densities one calculations are off by thousands of a.u.−3 while
one interprets changes on the order of a fraction of 1 a.u.−3.
The situation is even worse, since with a point nucleus, the
relativistic orbitals (and also the quasi-relativistic one- or two-
component orbitals) diverge in the basis limit. Thus, in order
to obtain a systematically correct relativistic electron density
at the iron nucleus one needs to resort to a finite nucleus
model.

Based on these two comments one could conclude that the cal-
ulation of Mössbauer isomer shifts is a very involved subject where
ccuracy is difficult to achieve. The reason why this is not the case
s revealed in Fig. 14 which analyzes the contributions of the iron
s, 2s, 3s and 4s (valence shell) to the variation in the electron den-
ity at the nucleus from non-relativistic calculations. It is clear that
y far the largest contributions to the electron density of ∼11,800
omes from the Fe 1s and Fe 2s orbitals. However, these contribu-
ions are to a brilliant approximation constant in molecules and
ractically all variation occurs in the semi-core 3s and valence 4s
hells. These shells are mainly influenced by the effects of bonding
nd these in turn are well described by DFT. Consequently, even
he non-relativistically calculated 	(0) values accurately follow the
hemical variations and provide a reliable tool for Mössbauer prop-
rty predictions.
ig. 14. Origin of the observed variation in the electron density at the iron nucleus
ccording to B3LYP DFT calculations on a series of iron complexes. It is evident that
ractically all the variation that lead to the observed isomer shifts stems from the
alence (4s) and semi-core (3s) orbitals. Adapted from Ref. [384].
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The DFT potential provided by the standard functionals is not
nly wrong in the long range but is also in error close to the nucleus.
ince the different functionals differ in this respect the absolute
alues of the electron density differ strongly.

Different basis sets approach the basis set limit to a different
xtent and consequently, the calibration only holds for the spe-
ial basis set with which the calibration was performed. While
t was originally thought, that it might be important to provide
dditional flexibility in the s-part of the basis set in order to
llow the core-orbitals to properly distort in the molecular envi-
onment [384], subsequent studies showed that this is not the
ase and one obtains almost equally good results with the stan-
ard basis sets that offer only limited flexibility in the core region
383].

The slope one obtains from the linear regression varies with
unctional and basis set. However, in reality there is a definitive and
nown slope with an absolute value −0.1573 mm s−1 a.u.−3 [424].
his underlines the semi-empirical character of this simple minded
pproach to the theory of the isomer shift.

.8.3. Magnetic hyperfine structure
Since Mössbauer spectroscopy is sensitive to all SH parameters,

hey can also be obtained from an analysis of the spectra and the
ame comments as in Section 7.7 apply A detailed study of the
agnetic hyperfine structure in Mössbauer spectra and the perfor-
ance of DFT methods is available [385]. As pointed out above, the

ccuracy is moderate but can be improved by scaling procedures.
scaling factor of 1.8 is suggested for the isotropic 57Fe hyperfine

oupling calculated with the B3LYP functional and the CP(PPP) basis
et [384].

.8.4. Nuclear resonance vibrational spectroscopy (NRVS)
A modern development in Mössbauer spectroscopy that has

een fuelled by the progress in synchrotron techniques is the mea-
urement of vibrational spectra via Mössbauer transitions. The
nelastically scattered radiation (resembling the resonance Raman
ffect), contains vibrational side bands the intensity of which cor-
elates with the involvement of iron motion into the normal modes
hat are probed. The details of the theory are slightly more involved
nd will not be discussed here [412,425–432]. However, the major
ontributor to the NRVS intensity are the normal mode composi-
ion factors eAk. In terms of these factors, the kth normal mode can
e written as:

k =
M∑
A=1

eAkRA
√
mA (138)

hich implies that eAk is simply the Cartesian part of the kth eigen-
ector Lk of the mass weighted Hessian matrix that refers to atom
with mass mA. Thus, the eAk referred to the iron nuclei in the
olecule are readily obtained from the second-derivatives of the

otal energy. The construction of the theoretical spectrum at a given
emperature from these quantities is discussed for example in Refs.
412,432].

Since the force fields delivered by DFT calculations are usually
uite good, excellent agreement with experiment can be obtain in
uch calculations [412]. Recently, a general program package has
een developed and attached to the ORCA electronic structure pro-
ram that not only allows the direct calculation of NRVS spectra

rom DFT calculations but also allows for least square fitting of the
xperimental data starting from the vibrational modes and NRVS
ntensities predicted by quantum chemistry [432].

As an example, consider the NRVS spectrum of the low-spin
e(III) complex [FeIII(cyclam-acetate)(N3)]+ from Ref. [412] (Fig. 15).

o
o
c
m
n

he spectrum that has been predicted by BP86 DFT calculations together with the
ZVP basis set. Adapted from Ref. [412].

.9. Spin state energetics

A characteristic feature of open-shell transition metal ions is
hat several electronic configurations are accessible that may give
ise to a number of different spin-states. These spin states are often
lose enough in energy such that their correct prediction becomes
hallenging for theory. However, since it has been found that the
eactivity of different spin states of the same compound may be
ery different and that a reaction might as well proceed on two
or more) potential surfaces (the important ‘two-state’ reactivity
oncept [10]), the accurate description of such states is of obvious
mportance. Furthermore, the field of ‘spin-crossover’ complexes

here two spin states are in thermal equilibrium or there may be a
hermally or optically induced transition from one spin-state to the
ther has found considerable attention in the inorganic chemistry
ommunity [433].

The case is perhaps best illustrated with Fe(II) complexes that
ave also been extensively studied theoretically [434–447] In these
omplexes, the low-spin state (1A1g) corresponds to the electronic
onfiguration (t2g)6(eg)0 in an idealized octahedral notation while
he high spin state (5T2g) corresponds to ((t2g)4(eg)2). Note that
he HS state is orbitally degenerate and hence Jahn–Teller active
hich is a nontrivial complication that will, however, be ignored

or the purpose of the present discussion. Already ligand-field the-
ry is able to indicate the nature of the challenge: The electronic
nergy difference EHS–ELS is given by 20Dq − 5B − 8C where 10Dq
s the ligand field splitting parameter and B and C are the Racah
arameters. Thus, a large ligand-field splitting favors the LS state
hile strong interelectronic repulsion and a weak ligand field favors

he high-spin state. The considerable increase in interelectronic
epulsion in the LS state arises from the fact that the electrons
re ‘more crowded’ in the t2g subshell and more importantly that
here are more antiparallel spin pairs than in the HS state. Owing
o the existence of the Fermi correlation, electrons of like spin
epel each other less strongly than electrons of opposite spin. Obvi-
usly, a theoretical method that aims at a quantitative prediction

f the HS/LS energy gap must be very well balanced in order to
orrectly predict the interplay between 10Dq (being dominated by
etal–ligand bonding) and interelectronic repulsion (being domi-

ated by dynamic correlation effects within the d-subshell).
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From this discussion it becomes evident that wavefunction
ased ab initio methods face a severe problem: a lack of balance. In
he HF method only exchange is covered but no correlation. There-
ore, the HF method itself is strongly biased in favor of high-spin
tates. For example, HF theory even predicts [Co(NH3)6]3+ to have a
igh-spin ground state [448]. The enormous bias for this state must
e corrected for by the inclusion of dynamic correlation. However,

t is known that the correlation energy calculated with standard
avefunction methods converges only very slowly with increasing

ize of the basis set for the correlation of antiparallel spin pairs (and
nly slightly better for parallel spin pairs). Thus, humungous basis
ets must be used in wavefunction based calculations of spin state
nergetics in order to obtain quantitative results. For example, a
ecent study of Pierloot and co-workers on [Fe(NH3)6]2+ [449] fol-
owing up on earlier ab initio work [450], has used up to h-functions
L = 5) in the basis set. Clearly, such calculations on larger complexes
ill not become routine in the near future.

Unfortunately, experience has shown that standard DFT meth-
ds have an opposite bias in favor of the LS states [436]. This
ehavior may to some extent be related to the characteristic
verbinding that still frequently occurs also for GGA functionals and
lso to the self-interaction error. It is not at all surprising that hybrid
unctionals greatly profit from error compensation and yield better
redictions than either HF or ‘pure’ DFT methods.23 However, also
he B3LYP functional fails in certain instances to predict the correct
round state. Reiher and co-workers have proposed to decrease the
mount of HF exchange in B3LYP to 0.15 in order to arrive at better
redictions for Fe(II) systems. Later it was shown that this B3LYP*

unctional yields other properties with similar quality as the origi-
al B3LYP. However, the optimum amount of HF exchange appears
o depend on the metal-, oxidation-state and property one is inter-
sted in and countless examples of similar reparameterizations of
ybrid functionals can be found in the literature (e.g. [451]). It is
herefore probably fair to state that a ‘universal’ solution to the
pin-state problems with DFT has not yet been found and that a pro-
iferation of purpose specific functionals does not aid in increasing
he comparability of results among different studies.

.10. Exchange coupling constants and the ‘broken-symmetry’
pproach

A subject that has caused extended and ongoing controversies
s how to best calculate the electronic structure and properties of
wo (or more) interacting open-shell magnetic ions. This presents
o problem if the spins on the two sites (fictitious ‘site spins’ SA and
B)24 are ferromagnetically aligned to produce the maximum total
pin Smax = SA + SB since in this case a single Kohn–Sham determi-
ant is readily constructed that describes the system as good (or as

ad) as a corresponding open-shell monomeric species.

The problems start in the much more frequently met case,
hen the local spins are antiferromagnetically aligned to produce

he minimum total spin Smin = |SA − SB|. Even in the case that one

23 The dependence of the spin-state energies on the amount of HF exchange is
o a very good approximation linear [442], as expected from the Ansatz for the
ybrid functionals if the orbital relaxation effects with increasing HF exchange are
ot overly large.
24 It is evident that these site spins are poorly defined in terms of rigorous quan-
um mechanics since only the total spin-angular momentum can be measured in
xperiments. The assumption that such site spins are meaningful entities is of course
trongly implicated by chemical evidence and it would perhaps not be wise to refute
he usefulness of the concept that the interacting system can be composed of mag-
etically interacting ions that in the majority of cases can be assigned a meaningful
ite spin SA or SB. Problems arise in the case of hetero-metallic clusters and in par-
icular in the highly interesting mixed-valence systems. A thorough discussion of
uch systems is outside the scope of this chapter.
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hishes to describe such a system with a single electronic config-
ration, several determinants are necessary in wavefunction theory
o construct a configuration state function (CSF) that is an eigen-
unction of the total spin squared S2 = (SA + SB)2 operator with an
igenvalue of Smin(Smin + 1). Examples of such CSFs for one and two
npaired electrons on sites ‘A’ and ‘B’ are:

(1)
AF = 1√

2
(|a1b̄1| − |ā1b1|) (139)

(2)
AF =

√
3

6
(2|a1a2b̄1b̄2| − |ā1a2b̄1b2| − |ā1a2b1b̄2| − |a1ā2b1b̄2|

+2|ā1ā2b1b2|) (140)

here (the here unspecified) orbitals ai and bi are essentially
ocalized on fragments ‘A’ and ‘B’, respectively. Note that these
avefunctions are proper eigenfunctions of S2 with total spin S = 0

nd parallel coupling of the spins on the ‘A’ and ‘B’ sites, respec-
ively. The expressions above emphasize the multi-determinantal
ature of such wavefunctions and that one should not confuse the
otal spin S with its projection MS for which a single determinant
a1a2...aK b̄1b̄2...b̄K | (for K-unpaired electrons on each site) would
escribe “the antiferromagnetic state“. However, this latter deter-
inant is not an eigenfunction of S2 and hence it is not a proper

tarting point for a proper treatment of spin-coupling.

.10.1. Spin Hamiltonian
In many cases, the energy differences between the states that are

ominated by ferromagnetic alignment and by antiferromagnetic
lignment of local spins are close in energy (less than a few hun-
red wavenumbers). For the dimer case of this section, the possible
otal spins form the sequence: SA + SB, SA + SB − 1, . . ., −|SA − SB|. To a
ood approximation they can be represented by a phenomenolog-
cal spin-Hamiltonian type operator:

Spin = −2JŜAŜB (141)

hat works on a basis of direct product spin-functions |SAMA〉 ⊗
SBMB〉. Using the relationship Ŝ2 = (ŜA + ŜB)

2 = Ŝ2
A + Ŝ2

B + 2ŜAŜB the
ore useful form of the SH operator is:

Spin = −J(Ŝ2 − Ŝ2
A − Ŝ2

B) (142)

here the effective exchange coupling constant J measures the
trength of the “interaction” and is positive for ferromagnetic spin
lignment and negative for antiferromagnetic alignment. However,
t is important to note that there is no genuine ‘exchange inter-
ction’ in nature but that the spin-state energy differences arise
urely from electrostatic interactions covered by the BO Hamil-
onian. It is furthermore very important to clearly distinguish the
xchange-coupling type of spin-state energy differences from the
pin-crossover type spin-state energy differences. The latter arise
rom different orbital configurations for the two spin states and, as
iscussed above, are heavily influenced by differences in dynamic
orrelation energy of the two spin states. However, for the prob-
em of the exchange coupling type the different spin states arise
rom the same orbital configuration—a problem of an entirely dif-
erent quality that is influenced by many factors as will be discussed

elow.

Unfortunately, such multideterminantal wavefunctions such
s Eqs. (139) and (140) are unsuitable in combination with the
ohn–Sham construction.25 An obvious alternative to DFT meth-

25 Restricted open-shell Kohn–Sham treatments have been proposed that would
over such situations but they suffer from a lack of unitary noninvariance for rota-
ions between the partially occupied orbitals [452].
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ig. 16. Interpretation of the origin of antiferromagnetic coupling in wavefunction

ds are correlated multireference ab initio approaches. However,
hese face serious challenges in trying to simultaneously treat static
nd dynamic correlation in such systems. While excellent calcula-
ions can be done for not too many unpaired electrons (e.g. Cu(II)
r Ni(II) dimers) [453–464], it is probably fair to state the situation
s not fully under control and an accurate ab initio calculation on an
e(III)–Fe(III) dimer has yet to be accomplished (however, see the
ecent investigation by Marx et al. [465]). Thus, for at least some
ime to come one is practically obliged to resort to DFT methods
n order to treat antiferromagnetically coupled systems. In fact, it
s possible to do fairly reasonable calculations on the basis of the
o-called ‘broken-symmetry’ (BS) approach [466–469], the physical
ontents of which will be discussed below.

.10.2. Nature and origin of antiferromagnetic coupling
In order to illustrate the principle it is sufficient to study a model

imer with only one unpaired electron on each site (Fig. 16). Assum-
ng for simplicity that the system features a center of inversion
nd one uses an open-shell spin-restricted formalism to com-
ute the high-spin (triplet) state, the Kohn–Sham determinant will
e of the form � F = |(core) + −| where (core) denotes all the
oubly occupied orbitals. The symmetric and antisymmetric MOs
re formed from the singly occupied MOs (SOMOs) on each site
+,− = (a ± b)/(2 ± 2S)1/2 where ‘S’ is the overlap integral of the frag-
ent orbitals ‘a’ and ‘b’. One can pass from the delocalized MOs

o essentially localized MOs �a,b by forming �a,b = ( + ± −)/21/2.
hese ‘essentially localized’ MOs are not perfectly local since due
o the orthogonalization constraint �a has a tail extending to site
and vice versa (an example will be provided below). Obviously,

he antiferromagnetic state could initially by represented by the CSF
AF = (|(core)�a�̄b| − |(core)�̄a�b|)/21/2 where the overbar denotes
ccupation with a spin-down electron. Two points are to be noted:
a) as pointed out above, already this two-determinant Kohn–Sham
eterminant can not be properly represented in the Kohn–Sham
ramework; (b) if this was the entire story, the solution would

lways be ferromagnetic behavior since it is an elementary exer-
ise to show that the energy of �AF is always above that of � F.
n fact, in Hartree–Fock theory, the energy difference is simply
Kab ≡ 2〈�a�b|�b�a〉. Since Kab is always positive [470], the ‘direct’
ontribution to the exchange coupling constant J is always posi-

0

7

r

through configuration interaction of neutral and ionic singlet wavefucntions.

ive (and referred to as ‘potential’ exchange). In order to see how
ntiferromagnetism comes about we will once more rely on wave-
unction theory and ask for the appropriate translation into the DFT
ramework later. In fact, in wavefunction theory one can form in
ddition to the ‘neutral’ singlet state�AF also the two ‘ionic’ singlet
tates �Ia,b = |(core)�a�̄a|, |(core)�b�̄b|. The symmetric combina-
ion of these two CSFs can interact with�AF through ‘configuration
nteraction’ and leads to an energy lowering that is, necessarily, a
egative contribution to the exchange coupling constant J (and is
alled ‘kinetic exchange’). From second-order perturbation theory,
he energy lowering is −4F2

ab
/(Jaa − Jab) where Fab is the suitable

ock-matrix element between �a and �b and Jaa and Jab are the
oulomb integrals Jab = 〈�a�b|�a�b〉 and Jaa = 〈�a�a|�a�a〉 (Fig. 16).

In order to illustrate this principle consider a model calcula-
ion on a simple, hypothetical Cu(II) dimer ([Cu2(	-F)(H2O)6]3+)
Figs. 17 and 18).

It is now an elementary task for a quantum chemical program
o rigorously evaluate the integrals that contribute to the exchange
oupling constant. One finds that the ‘direct’ ferromagnetic term is
mall and accounts for only +17 cm−1 while the ‘kinetic’ antiferro-
agnetic contribution yields −57 cm−1. Thus, the total predicted

is only −40 cm−1. This value is much too small compared to rea-
onable values for compounds of this kind that typically amount
o more than −100 cm−1. The reason for this underestimation has
een deeply discussed by Malrieu and co-workers [457–459] and
taemmler and co-workers [471–476]. At the heart of the prob-
em is that the ionic configurations are much too high in energy
n such a simple picture. Their energies are greatly lowered if
hey are allowed to ‘relax’ in an extensive dynamic correlation
reatment. Consequently, in such calculations they will mix much

ore strongly with the neutral singlet configurations and hence
ncrease the antiferromagnetic coupling. Inclusion of these effects
ia the so-called difference dedicated configuration interaction
DDCI) [477,478] approach yields a J of −206 cm−1 and the fraction
f ionic character in the singlet ground state has increased from

.06% to 3.3%—more than a factor of five.

.10.3. The broken symmetry Ansatz
The very clever idea to simulate the effects of this configu-

ation interaction without resorting to actual CI calculations is
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Fig. 17. The ‘magnetic orbitals’ of t

o start from a single determinant wavefunction that reflects the
ntiferromagnetic state but is of the ‘wrong’ spin symmetry. This
avefunction is written:
guess
BS = |(core)�a�̄b| (143)

ontrary to common belief, this determinant is not the broken sym-
etry determinant. It has the following three properties: (a) its

nergy is always higher than that of � F, (b) it is a 50:50 mixture
f � F and �AF and (c) it has the same charge density as �AF (and
F) but a qualitatively wrong spin-density. In fact, one observes

or a wavefunction of this type, that there are regions of positive-
around site ‘A’) and regions of negative (around site ‘B’) spin-
ensity with the integral over all space being zero. It is crucial to
nderstand that this is qualitatively wrong since a proper singlet

avefunction has zero spin density at each point in space.

From this discussion, it is clear, that a wavefunction of the type
guess
BS could never describe antiferromagnetic coupling properly.
he crucial point, that appears to be widely underappreciated in
iscussions of the broken-symmetry method, is that after decid-

i
b
a
a
‘

ig. 18. Relaxation of the initial orthogonal magnetic orbitals�a and�b to the final broken-s
btained from a broken-symmetry calculation.
del complex [Cu2(	-F)(H2O)6]3+.

ng on the form of � guess
BS , one applies the variational principle to

e-optimize the orbitals [479]. Thus, after having found a stationary
oint, the true broken-symmetry wavefunction is of the form:

BS = |(core′)�a�̄b| (144)

here �a and �b have relaxed to their final form under the action
f the variational principle. They are typically less localized than �a

nd �b. Importantly, while �a and �b are orthogonal in their space
art, the same is not true for �a and �b. Since these two spin–orbitals
re always orthogonal by their spin-parts there is no further orthog-
nality restriction on their space parts. Thus, there is additional
ariational flexibility that the system uses to lower its energy and it
s only this additional flexibility that brings about the antiferromag-
etism. In fact, it is perfectly permissible and also occurs frequently
n practice that – in the limit of very strong subsystem interaction –
oth, �a and �b relax back to +. In this case, the BS determinant is
standard closed-shell determinant and one has to conclude that
standard two-electron bond has been formed between fragments

A’ and ‘B’.

ymmetry magnetic orbitals �a and �b. The bottom shows the erroneous spin-density
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first discussed in Refs. [479,494] one can put the invariance of
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This situation for the model system described above is shown
n Fig. 18 where it is obvious that after relaxation of the electronic
tructure, the tails on the bridging fluoride increase and the final
S orbitals are non-orthogonal by the space parts with an overlap
f ∼0.16.

Owing to the strong nonlinearity of the SCF equations, it is dif-
cult to foresee when this situation will occur. In fact, different
ensity functionals have very different propensity for symmetry
reaking. In general, the more HF exchange is in the functional the
ore likely is one to remain in a broken-symmetry type solution
ith �a and �b being localized fragment MOs. This simply reflects

he typical intrinsic bias of HF and DFT—overly delocalized elec-
ronic structure for DFT and overly local electronic structure for
F.

.10.4. Physical interpretation of the BS wavefunction
Since any situation between no relaxation at all and full relax-

tion to the closed-shell determinant is possible, it is clear that the
roken symmetry determinant is not an equal mixture of �AF and
F any longer. The situation has been analyzed in some detail in

ef. [479] where it is shown that�BS is a weighted linear combina-
ion of� F (describing a neutral configuration) and� Ia,b (describing
onic configurations). Thus, what is achieved by the broken symme-
ry formalism is something that is essentially physically correct: the
djustment of ionic and neutral components to the wavefunction
hrough the variational principle. The physically correct configu-
ation interaction description described above does essentially the
ame thing: mixing of neutral�AF and ionic� Ia,b in order to mini-
ize the total energy of the system. However, the BS formalism does

ot have enough flexibility in its Ansatz in order to allow the neutral
AF to enter in the final result. Rather, it is – and incorrectly so –� F

hat is mixed into �BS. Qualitatively this is reasonable since both
avefunction describe the neutral situation. Thus, there is every

eason to believe that the BS method yields a correct charge density
as good as that obtained from standard DFT calculations), but an
ncorrect spin density (Fig. 18). The occurrence of net spin density
n certain regions of space is clearly an artefact of the method. It is
owever, also not entirely unphysical since these plots indicate the
istribution of ‘effectively unpaired’ electrons [480–482] – merely
hey have an erroneous spin coupling in these broken-symmetry
alculations.

Thus, molecular properties that only depend on the charge den-
ity of the ground state are expected to be well represented by
S-DFT calculations while properties that depend on the spin den-
ity require projection techniques. Note however, that the common
ractice to discard a calculation on the basis of a spin-expectation
alue 〈S2〉 > S(S + 1) as ‘badly spin contaminated’ is inappropriate in
he context of BS-DFT: Rather it is desired and required that this spin
xpectation value is substantially higher than the correct value and
his simply reflects the variational adjustment of neutral and ionic
omponents that is necessary in order to obtain the correct result.

.10.5. Energy of the broken-symmetry solution
In order to establish the contact between the SH operator and

he broken-symmetry energy several routes have been proposed.

erhaps the most straightforward way is to assume that � F and
BS are both eigenfunctions of ŜA and ŜB and then to equate the

xpectation values of the effective Hamiltonian with the expecta-
ion values of the Born–Oppenheimer Hamiltonian.26 Thus, from

26 The assumption that the two states are eigenfunctions of (however defined) local
pin-operators is certainly difficult to defend at any level of rigor. For the argument
ade below it is sufficient if the expectation values of the local operators over � F

nd �BS are sufficiently similar. This is, however, not fully realistic. If anything the
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he two relations:

〈�BS|HSpin|�BS〉 = −J[〈Ŝ2〉BS − SA(SA + 1) − SB(SB + 1)]

= EBS = 〈�BS|HBO|�BS〉
(145)

〈�F |HSpin|�F 〉 = −J
[
〈Ŝ2〉HS − SA(SA + 1) − SB(SB + 1)

]
= EHS =

〈
�F|HBO|�F

〉 (146)

ne obtains:

= − EHS − EBS

〈Ŝ2〉HS − 〈Ŝ2〉BS

(147)

hich has been advocated by Yamaguchi and co-workers
483,484]. This equation has some appealing aspects. Let us start
ith the plausible assumption that �HS is an eigenfunction of

he total spin.27 We then have 〈Ŝ2〉HS = Smax(Smax + 1). In the
ases where, in addition the BS calculation converged back to
he closed shell solution we would have 〈Ŝ2〉BS = 0 and obviously
= − (EHS − EBS)/{Smax(Smax + 1)}. This extreme case corresponds to
ery strong subsystem interaction (i.e. bond formation). The other
xtreme case is met for no subsystem interaction. In this case,
he BS wavefunction remains at � guess

BS and the expectation value

Ŝ2〉BS = Smax thus implying J = −(EHS − EBS)/S2
max. Obviously, the

redictions differ by a factor of two in the two extreme cases. Both
xtreme cases have been suggested in the literature. The original
reatment of Noodleman [255,466–469,485–487] implies the small
nteraction limit while Alvarez et al. advocate the use of the strong
nteraction limit ([488] and references therein as well as the asso-
iated dispute in [489,490]). While for genuine antiferromagnetic
oupling the weak interaction case is certainly more realistic, it may
e appreciated that Eq. (147) nicely interpolates between the two

imits and includes both of them as special cases.
The calculation of the spin-expectation values that enter Eq.

147) is a somewhat difficult subject since Ŝ2 is a two-electron
perator. Standard practice is to evaluate it like in wavefunction
heory as an expectation value over the Kohn–Sham determinant.
his is, however, not correct since the expectation values should
e taken over the (unknown) many-electron wavefunction of the
eal system. Since 〈Ŝ2〉 must be a functional of the density as well,
xpressions have been suggested that allow the calculation the
xpectation value from the density alone [491,492]. Practically
peaking, the differences between the Kohn–Sham expectation
alue and the real 〈Ŝ2〉 values should be of limited importance for
he calculation of exchange coupling constants given all the approx-
mations that are already involved.

.10.6. Display of broken-symmetry solutions and the
orresponding orbital transformation

Given an arbitrary N-electron system and its high-spin and
roken symmetry wavefunctions, the question arises of how
o properly identify the SOMOs that are involved in the mag-
etic interaction. Frequently, these are not the highest occupied
rbitals due to spin-polarization effects of the type reviewed
y Noodleman and co-workers [493]. However, as apparently
he Kohn–Sham determinant with respect to unitary transfor-
ations between the spin-up and spin-down orbitals amongst

ach other to good use. In fact, as shown by Amos et al. long

xpectation values of SA and SB over�BS must be smaller than those of� F and hence
his equation might be expected to somewhat overestimate the exchange coupling
onstant.
27 In practice this is not the case in spin-polarized calculations. However, the devi-
tions from a spin-eigenfunction are usually small.



558 F. Neese / Coordination Chemistry Reviews 253 (2009) 526–563

nding

a
t
u
s
f
l
d
o
a
‘
o

F

e
T
b
t
t
i
t
m
c

〈

N
a
s

a
i
l
o
c
a
t
c
g
i
d
i
i
a
T

s
t

7

p
F
D
E
e
c
t
w
a
w
c
a

7

o
O
p
T
c
s
s
l
o
m
e
a
p
a
I
c
overestimated by the calculations. If the structure is relaxed tight
convergence criteria have to be used and if the relaxation effects
are large the underlying picture of a Heisenberg type situation is
lost.
Fig. 19. Determination of the magnetic orbital pairs through the correspo

go [495,496], one can define the transformation such that for
he transformed spin-unrestricted orbitals each occupied spin-
p orbital has a spatial overlap unequal zero with at most one
pin-down orbital. This is known as the corresponding orbital trans-
ormation (COT). Thus, the corresponding orbital transformation
eads to an ordering of orbitals into three subsets: (a) essentially
oubly occupied spin-up/spin-down pairs with a spatial overlap
f essentially unity (typically 0.98-0.999); the slight deviations are
consequence of spin-polarization, (b) 2|SA − SB| non-orthogonal

singlet coupled’ magnetic pairs and (c) unmatched spin-up
rbitals.

For the model system discussed above, the situation is shown in
ig. 19.

The non-orthogonal singlet coupled pairs are of course not prop-
rly singlet coupled but represent a �A�̄B broken symmetry pair.
hus, the COT leads to an illuminating display of the contents of the
roken-symmetry solution. In particular, the spatial overlap of the
wo orbitals being involved in the magnetic pair is an indicator of
he strength of the subsystem interaction. If it approaches zero, the
nteraction is in the weak limit while values close to unity indicate
he strong interaction limit. In fact, using the spatial overlaps of the

agnetic pairs, the spin-expectation value of the BS determinant
an be conveniently calculated as:

S2〉BS =
(
N˛ − Nˇ

2

)(
N˛ − Nˇ

2
+ 1

)
+ Nˇ −

∑
i

n˛i n
ˇ
i
|S˛ˇ
ii

|2

(148)

˛ and Nˇ are the total number of spin-up and spin down electrons
nd n�

i
is the occupation number of the corresponding orbital i with

pin 
.
We refer to this way of looking at the BS determinant as

‘valence bond reading’ of the electronic structure in a sim-
lar sense like Malrieu and co-workers have advocated it for
ooking at the results of CASSCF calculations [497]. The form
f the BS determinant revealed by the COT is strongly reminis-
ent of that used in Goddard’s generalized valence bond (GVB)
b initio method [498]. In this method and Ansatz of the same
ype is made but the singlet pairs are properly coupled and
onfiguration interaction between the components of the sin-
let pairs is allowed [498]. However, while the GVB method
s only very moderately correlated and contains essentially no

ynamic correlation, the BS energy contains dynamic correlation

n the effective way provided by DFT. In his early pioneer-
ng applications Noodleman even referred to his BS calculations
s being obtained with the ‘valence-bond X˛’ method [466].
hese considerations may help to rationalize the considerable

t
b

orbital transformation for the simple model system [Cu2(	-F)(H2O)6]3+.

uccess of the BS approach for ‘magnetically interacting’ sys-
ems.

.10.7. Performance of DFT
The numbers obtained from BS-DFT calculations are often sur-

risingly good when compared to experimental measurements.
or example, for the model system described above, a B3LYP BS-
FT calculation yields a J of −215 cm−1 based on the Yamaguchi
q. (147) which is in (fortuitously) close agreement with the more
laborate ab initio result. GGA functionals typically suffer from the
haracteristic overdelocalization and hence tend to overestimate
he exchange coupling.28 For example, a BP86 calculation together
ith the Yamaguchi equation yields a J of −517 cm−1 which is about
factor of two too large. This result is typical and explains why some
orkers prefer to invoke the strong interaction limit in their BS-DFT

alculations. The physical justification of this error compensation
ppears to be open to debate.

.10.8. Comparison with experiment
In closing this section it should be pointed out the comparison

f measured and calculated numbers if often not unambiguous.
ne point of concern is, that the measurement of exchange cou-
lings usually proceeds via thermal depopulation experiments.
his means that the system is always in thermal equilibrium and
onsequently, the measurement is an adiabatic one. Thus, each spin
tate has relaxed to its own equilibrium geometry during the mea-
urement. This does, however, destroy the regularity of the spin
adder assumed by the Heisenberg Hamiltonian. Most calculations,
n the other hand, are performed only at a single geometry which
ost often is the high spin geometry. In many if not most cases, the

nergy lowering due to structure relaxation is only on the order of
few or a few dozen wavenumbers. However, the exchange cou-
lings that one tries to predict are also on this order of magnitude
nd hence some ambiguity arises as to what the best approach is.
f the structure is taken from the high-spin calculation, an artifi-
ial bias for this state is created and the antiferromagnetism will be
28 Some workers have reported that the PW91 functional provides better predic-
ions for exchange coupling constants than BP86 [6,393] but the reasons for this
ehavior are not clear.
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.10.9. Alternative approaches to antiferromagnetic coupling
There has been a multitude of alternative DFT approaches to the

valuation of exchange couplings. Here we only note the promis-
ng application of the “spin-flip TD-DFT” concept [253,499–501] as

ell as a ‘constrained DFT’ approach [502] both of which appear to
rovide predictions of similar quality as the BS approach.

.10.10. More complicated situations
A lucid analysis of more complicated magnetic coupling situ-

tions like mixed valence systems with more than one-unpaired
lectron on each site has recently been provided by Guihery and
o-workers. In particular, the crucial role of ‘non-Hund’ states (local
ow-spin states) for inducing non-Heisenberg behavior has been
nalyzed in detail [503–506].

. Concluding remarks

In this chapter, a relatively comprehensive account has been
iven of the calculation of molecular spectra on the basis of DFT
t the present state of the art. Starting from a brief exposition of
he foundations of DFT, the main density functionals in present
se have been described. The subject of time-dependent and time-

ndependent linear response theory has been treated in some
etail followed by a brief discussion of the computational real-

zation of DFT. These foundations have then been used in order
o formulate the linear response theory for a wide variety of
pectroscopic techniques that can now all be tackled with DFT
ethods. The exposition of each individual technique was nec-

ssarily brief but it is hoped that the connection to the general
heory has become evident. Furthermore, a – certainly partially
ubjective – discussion of the strengths and weaknesses of DFT for
ach of the techniques covered in this chapter has also been pro-
ided together with selected examples that illustrate the type of
greement or problem that one is likely to encounter in practical
pplications.

It may be considered pleasing that a common framework –
amely DFT in conjunction with analytic derivative/linear response
heory – accounts for so many molecular properties. The success of
FT in predicting these properties is also significant. Property cal-
ulations of the type indicated here already prove to be enormously
seful in many application studies and in conjunction with experi-
ental investigations. In favorable cases, the calculated properties

re accurate enough to reliably distinguish structural alternatives
or reaction intermediates or other species that are not amenable
o experimental structure elucidation. However, in many cases,
emaining problems have also been evident and it would be highly
esirable to arrive at predictions that are significantly more accu-
ate than the ones that are presently within reach. How to modify
FT in order to achieve this goal is presently not clear since progress

owards systematically more accurate functionals than the now
ell established standard GGA or hybrid functionals has been slow

n the past 10–15 years.
Thus, there is renewed interest in wavefunction based methods

hich are believed to converge systematically towards the correct
nswer. However, in particular when it comes to open-shell tran-
ition metals, these methods have a long way to come before they
an be reliably applied to ‘real life’ problems. First of all, their com-
utational cost is intrinsically still very high. Secondly, they need
o be applied in conjunction with very large and flexible basis sets

nd third, the HF wavefunction is very often a very poor starting
oint such that very extensive correlation treatments will be nec-
ssary. It will be interesting to see whether the development of such
ethods can be pushed far enough such that they become standard

esearch tools in (bio)inorganic chemistry.
eviews 253 (2009) 526–563 559

In the context of DFT there are many subjects that warrant much
urther development. Such challenges include the role, implica-
ions and removal of the self-interaction error, functionals that
re consistent with exact exchange, that cover medium range
lectron–electron correlation, weak interactions and that show the
orrect long range behavior, the treatment of multiplet effects,
lectronic relaxation and excited states, the treatment of system
ynamics, very large systems and the proper treatment of magnetic
nd relativistic effects as well as their interplay—to name only a few
reas where currently much effort is concentrated.

Taken together, the tremendous international efforts in the
evelopment and application of new theoretical methods are
xpected to greatly enhance the impact of theoretical chemistry
n the further development of chemistry. Thus, there appears to be
very reason to look forward to the future marriage of theory and
xperiment in (bio)inorganic- and coordination chemistry.
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