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This review provides a detailed account of density functional theory (DFT) and its application to the cal-
culation of molecular properties of inorganic compounds. After introducing some fundamental quantum
mechanical concepts, the foundations of DFT and their realization in the framework of the Kohn-Sham
construction are described. Following a brief exposition of the computational machinery required to carry
out large-scale DFT calculations, the application of analytic derivative theory to DFT is developed in some
detail. The cases covered include geometric, electric, magnetic and time-dependent perturbations. The
developed theoretical apparatus is then applied to the calculations of molecular structures, vibrational
energies as well as a wide variety of properties including absorption, circular dichroism, magnetic circular
dichroism, resonance Raman, X-ray absorption, Méssbauer and electron paramagnetic resonance spec-
troscopies. Finally, the important subjects of spin state energetics and exchange couplings in oligomeric

Exchange coupling

transition metal clusters is discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introductory remarks

The present volume is devoted to the use of density functional
theory (DFT) in (bio)-inorganic chemistry. In fact, DFT has enjoyed
an enormous popularity in this field over the past two decades (for
reviews see [1-16]) and has found many users that range from hard-
core theoretical chemists to experimentalists who wish to employ
DFT alongside with their experimental studies. Parallel with the
impressive development of computational hardware the quantum
chemical software that is required to perform DFT calculations has
progressed to a state where calculations can be performed with
high efficiency and in a user friendly manner. Consequently, at least
a dozen of major program packages are available, either commer-
cially or free of charge, that allow for DFT calculations on large
molecules (Table 1). The notion of a ‘large’ molecule in quantum
chemistry is a moving target. At the time of writing molecules with
around 100 atoms can be treated routinely with DFT methods and
molecules with around 200 atoms with some effort. Even larger
molecules belong to a specialist domain and will usually require
‘linear-scaling’ or mixed classical/quantum mechanical (QM/MM)
techniques in order to be approachable. Such techniques have been
extensively developed but have not yet found their way into the
standard arsenal of the practicing computational chemist.

The present chapter is intended to provide the theoretical back-
ground that is necessary to appreciate the physical content of DFT. It
is neither intended to be a complete guide into the technical aspects
of DFT nor it is intended to be a comprehensive description of the
entire theory of DFT. Rather, the aim of the chapter is to provide the
main lines of thought that led to present day DFT, to briefly touch
the most frequently used methods and to describe how the exist-
ing DFT methods can be used to calculate structures, energies and
spectroscopic parameters of molecules of bio-inorganic interest.

It is hoped that the material contained in this chapter proves to
be useful for theoretical Ph.D. students at the beginning of their the-
sis work and for spectroscopists who already had contact with DFT

calculations and wish to learn more about the background of the
calculations that they are doing. The physical principles of the vari-
ous spectroscopies that are treated in this chapter can, of course, not
be described and the reader is referred to several excellent compila-
tions [17,18]. Extended examples of DFT applications will be amply
covered in the other articles of this volume and will therefore only
receive a cursory treatment here.

2. Theoretical background
2.1. The molecular Hamiltonian

The molecular Hamiltonian operator that describes the vast
majority of chemistry is deceptively simple—it just contains the
Coulombic interactions between the charged nuclei and electrons
together with the kinetic energy of the electrons. In atomic units!
it reads for a system with N electrons and M nuclei [19,20]:

Te + Ven + Vee + Van
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1 One atomic unit of energy (1 Ey,) is equivalent to ~27.21 eV or ~627 kcal/mol. The
atomic unit of length is equivalent to 0.529 A. In these units the numerical values of
h and 47meg are unity.
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Table 1
Alphabetic list of major program packages used for performing DFT calculations

Program Leading authors Homepage Commercial
ADF Baerends, Ziegler http://www.scm.com/ Yes
DALTON Helgaker, Jorgensen, Ruud, Agren, Salek http://www.kjemi.uio.no/software/dalton/dalton.html No

DGauss Andzelm, Wimmer http://cachesoftware.com/index_main.php Yes

DeMon Salahub, Casida, Koster http://www.demon-software.com/public_html/index.html No

DMol Delly http://www.accelrys.com/products/mstudio/modeling/quantumandcatalysis/dmol3.html Yes

Gamess Gordon, Schmidt http://www.msg.ameslab.gov/GAMESS/ No
Gaussian Frisch, Pople, Gill http://www.gaussian.com/ Yes

Jaguar Friesner http://www.schrodinger.com/ProductDescription.php Yes
NWChem Kendall, Windus http://www.emsl.pnl.gov/docs/nwchem/ No

ORCA Neese http://www.thch.uni-bonn.de/tc/orca/ No

QChem Head-Gordon, Gill http://www.q-chem.com/ Yes
TurboMole Ahlrichs, Hdser, Furche, Hattig http://www.cosmologic.de/QuantumChemistry/main_turbomole.html Yes

where i, j sum over electrons at positions r; and A, B over nuclei at wavefunction W(x|R). It is defined by

positions R4 with nuclear charges Z,. The term (—1/2)V,-2 = (1/2)pl.2

is the quantum mechanical form of the kinetic energy operator of N(N-1)

the ith electron with momentum p;. Note that this Hamiltonian cor- I(x1,%;) = - V(x1,%, ..., XNIR)

responds to the Born-Oppenheimer (BO) approximation in which

the kinetic energy of the nuclei is dropped and the nuclear positions xW(X1,X2,...,XN|R)" dx3...dxy 3)

enter as fixed parameters in the equations. The BO approximation
is assumed to be valid throughout this chapter.

Associated with the N-electron Hamiltonian is a time-
independent N-electron Schrodinger equation:
HBolI’(X1, ...,XNIR1,...,Ry) =E¥(xq,...,XNnIR1, ..., RM) (2)
Here «x; collectively denotes the three spatial degrees of freedom
(r;) and the spin-degree of freedom (o;) for the ith electron. Eq.
(1) constitutes a high-dimensional differential equation that can -
in principle - be solved at any nuclear configuration R=Rj,...,Ry
for the exact eigenstates Wy(X|R),¥1(X|R),... (X=x1,...,Xy) With
energies Eg, E1, . . . that represent the ground- and the electronically
excited states of the system as a function of molecular geometry.

The interpretation of the many-electron wavefunction is:

Y(xIR)¥(XIR)" dx =

The integral evaluates to the probability of finding a pair of elec-
trons in the arrangement (x4, X, ) irrespective of the positions of the
remaining electrons. The normalization factor is chosen such that
the integral of I'(x1, ;) over all arrangements (X1, X, ) returns the
number of electron pairs. Analogously, the single particle density
matrix is defined by

y(xl,x’l)zN/ W(x1, %2, ..., RN IR)P(X], X2, ..., XNIR)"dx; ... dxy
(4)

Here we have applied a small trick and have introduced a new set
of primed variables x| that only enters into ¥* but not into 1.

probability for finding the electrons in an infinitesimal volume

element dx around configuration x if the nuclei are at rest at
positions R and the system is in the electronic eigenstate I

The set of many-electron wavefunctions W; define the maximum
amount of information that can be gained about the molecular sys-
tem according to the laws of quantum mechanics. Unfortunately,
the complexity of the N-electron problem defeats exact solution
and consequently, approximations are needed. The best approxi-
mations that can nowadays be generated provide energies within
<1kJ/mol of their exact values [21-25]. However, the associated
methods are computationally so demanding that they can only be
applied to very small systems that are irrelevant to (bio)inorganic
chemistry.

2.2. Reduced density matrices

The many electron wavefunctions W(x|R) are objects of bewil-
dering complexity that can not be pictured or easily understood.
We will now drop the subscript ‘I' and refer to the electronic ground
state until otherwise noted. As a matter of fact, these many-electron
wavefunctions contain far more information than is necessary in
order to deduce all observable properties of the system. Since the
BO Hamiltonian does not contain more than two-particle operators,
it is in fact sufficient to know the distribution of pairs of electrons.
This information about the pair distribution function is contained
in the second-order reduced density-matrix associated with the

The reason for this somewhat unusual manipulation will become
apparent below. The ‘diagonal element’ of the first order density
matrix p(x) = y(x, x) is simply the electron density at configuration
x as it may be measured by electron diffraction techniques. As long
as we disregard relativistic effects, p(x) can be decomposed into
contributions from spin-up and spin-down electrons as

p(r) = /,O(X)ds = p*(r)+ p(r) (5)

where the ‘integration’ over the spin-variable s amounts to a sum-
mation over the two possible argument s=4(1/2) of a function
defined in one-particle spin-space. The electron density p(r) simply
represents N times the probability for finding an electron at position
r irrespective of its spin. The spin-density p®=8(r)= p*(r)— pB(r)
represents the distribution of unpaired spins and is normalized to
Ne — Ng.

Note that y(x;, /) can be obtained from a generalization of
(%1, x;) to I'(xq, x5, X, X)) as

2
V(xl,xa)=H/F(XLXz,XQ,Xz)dXz (6)
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In terms of these density matrices, the exact energy E = (¥/|H|{) can
be written as

1 5 , _
E = Vi - 2/,‘1_x/v y(n,r])clx—zAj/p(r)zArl»Al dr
-

+//1"(r1,r2)r1‘21 dx; dx; (7)

The spin-free density matrices used in this expression are obtained
by simply integrating over the spin-variables:

/

1

yr,r)= / y(x1,&))ds = yo(r, ¥) + yP(r, 1) (8)

I'(rq,ry) = //F(xlsXZ)dsl dsy = I'*(ry,12) + TPP(ry, 1)

+T%(r, 1) + TP (ry, 1)) 9)

From this discussion, it becomes apparent that once the pair-
distribution function I" is known, all properties of the system (in
the given electronic state) can be calculated exactly by evaluating
the appropriate one- and two-electron integrals. Obviously, I, y
and in particular p are much simpler objects than the N-electron
wavefunction itself. Hence, an old dream of quantum chemistry
is to directly calculate these density matrices without the “detour”
of the many electron wavefunction. Perhaps one could formulate a
variational principle that allows the variation of a trial I” in order to
obtain a ‘best’ approximation to the true /" within the given Ansatz.
However, so far this dream has been proven to be elusive although
there has been progress along these lines [26]. The reason is the
N-representability problem: in order to obtain a physically allowed
I it must be derivable (in principle) from a physically allowed N-
electron wavefunction ¥. The necessary and sufficient conditions
on I to be N-representable, are, however, not known.

In DFT one does not attempt to calculate or approximate I.
Instead, it will be motivated below that - in principle - it is enough
to know p(r) in order to fully determine the exact E.

2.3. Hartree—Fock theory

If one proceeds along a systematic route the most obvious
choice is to use the variational principle in order to obtain an opti-
mum approximate ¥ from which I', y and E are calculated. The
term in the Hamiltonian that prevents an exact solution is the
electron-electron interaction. Without this term, the Hamiltonian
would be simply a sum of one-particle contributions and its eigen-
functions would be a product of single-electron wavefunctions, e.g.
Y(xq,....8v)=1V1(%1),. .., ¥n(xN). However, such a Hartree product
violates the Pauli principle and hence the appropriate form for a
system of noninteracting electrons is a single Slater determinant:

Y1(X1) Y1) ¥n(x1)
1 | ¥1(x2) va(x2) Yn(x2)

WSD(X],...,XN)Z \/ﬁ . . . (10)
Yi(xn)  Ya(xn) Yn(xN)

Which, from the mathematical properties of determinants, is prop-
erly antisymmetric with respect to interchange of two sets of
electronic variables and is usually abbreviated by [/, . . ., ¥y|.2 The

2 If one wants to specify the spin of a given one-electron function one writes it
with an overbar in order to indicate a spin-beta spin factor, e.g. |1 ¥1...¥nYn| for
a closed shell system.

single-electron wavefunctions ; that enter into Eq. (10) are, as
of yet, unspecified, but should form an orthonormal set. They are
called orbitals. The expectation value of the BO operator over such
a Slater determinant is:

1
{(Wsp|Hpo|Wsp) = VNN + Z(‘Pilhll/fi) + EZ(WW]‘H%VG) (11)
i ij

where the one- and two-electron integrals are defined as3:

(Yilhiy) = /vf;‘(X)h(X)wi(X)dx (12)

Wiy = Wiy — Wil

//1/’?(?‘1 Wi (%2, [Vi(%1)¥(x2) (13)

—i(%2)¥(1)] dxq dx;

Obviously, there are two types of electron-electron repulsion
integrals. The Coulomb-integral J;= (Y¥;yj|¥;¥;) represents the
electrostatic interaction of two-smeared out charge clouds |/;|?
and |12 while the second integral Kjj= (y;¥j|; ;) represent the
self-repulsion of an ‘interference-density’ ;1. As will be elabo-
rated in Section 7.10, these ‘exchange’ integrals solely arise from
the antisymmetry requirement of the wavefunction and have noth-
ing to do with a genuine ‘exchange interaction’ between electrons.
Both types of integrals are inherently positive. Since J;; =Kj; the
negative sign of the exchange interaction cancels the spurious ‘self-
interaction’ terms arising from the J; integrals.

The basic idea of Hartree—Fock theory is to use this independent
particle model as an Ansatz for the full, interacting many electron
system. By means of the variational principle:

E < <lptrial|H‘l1/trial>
B <11/trial|l1/trial>

One seeks the single determinant that yields the lowest energy.
Thus, one varies the functional E[{1/}] with respect to the form of
the orbitals. The energy that one obtains is an upper bound to the
true ground state energy of the system. However, one cannot per-
form a free variation of the orbitals, since these are required to stay
orthonormal in the process. This is usually achieved by means of
Lagrange multipliers [20]. The result is that all of the orbitals have
to satisfy the same pseudo-one-electron self-consistent field (SCF)
equations:

Fyi(x) = &¥i(x) (15)

The operator F is the Fock-operator. It is a rather complicated
integro-differential operator. For an arbitrary pair of orbitals ¥p,¥q,
the matrix elements of the Fock-operator are:

WplFIYa) = WplhlWa) + > WithpllVivrg) (16)

(14)

The interpretation of the orbital energy ¢; = (;|F|¥;) is that it pro-
vides the average energy of an electron that occupied ¥; in the
field of the nuclei and the average field of the other electrons. By
Koopmans’ theorem, it is approximately equal to minus the energy
required to remove the electron from this orbital (i.e. —&; approx-
imates an ionization potential). It is obvious from Eq. (10) that
the Fock-operator depends on its own eigenfunctions. Hence, the
Hartree-Fock equations constitute a complicated set of nonlinear

3 We will also simply write (pq|rs) = (Yp¥q ¥ s).
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equations that cannot be solved directly.# Rather, the HF equations
are solved by iterative methods as described in Section 5.

A very useful form of the HF equations can be readily derived
and reads:

FP-PF=0 (17)

where F is the Fock operator and P is the so-called density operator
P = Y".1¥i) (¥ that has the property of being idempotent (P? = P).

Hartree-Fock theory is surprisingly successful. Despite the
crude Ansatz for the many-electron wavefunction HF theory is
capable to recover around 99.9% of the exact ground state energy.
However, the remaining fraction of ~0.1% still amounts to several
Hartrees (>1000 kcal/mol) for a medium sized molecule. Thus, on
a chemically relevant energy scale (~1mE, =103 E), the error
of the HF approximation is, unfortunately, gigantic. Of course, in
chemistry, what matters are energy differences rather than total
energies. For these, the HF approximation can be much better and
many chemically meaningful results can be obtained with it, in par-
ticular, if the number and identity of the bonds that are involved in
the chemical process under study does not change drastically. Yet,
the errors of the HF approximation in chemistry are still so large
that it is seldom used in actual investigations.

While there are many ways to approach the subject, the most
common definition of the correlation energy is, that it is the energy
that is missing from the Hartree-Fock energy. Thus:

EC = Eexact — EnF (18)

In this definition, the correlation energy is always negative (except
for one electron systems where it is zero). Physically speaking, the
correlation energy arises from the electron-electron interactions
that are not covered by the mean-field approach provided in the HF
treatment. Thus, electron-electron correlation is an ‘instantaneous’
interaction and is of short range.

Much progress has been made in quantum chemistry with the
development of ‘post-HF’ methods that recover sizeable fractions of
the correlation energy (today these are essentially Coupled-Cluster
and many-body perturbation theory [27,28], and their ‘multirefer-
ence’ generalizations [29-35]). In fact, if high accuracy is required,
these are the methods of choice. However, they have presently still
not been developed to the stage where one could routinely treat
molecules of interest for (bio)inorganic chemistry owing to the
high- and steeply rising computational effort that is characteris-
tic of these approaches.® Thus, these methods will not be covered
in this chapter (see [36-38] for reviews in an inorganic chemistry
context).

3. Foundations of DFT

Owing to the enormous rise in popularity in chemistry and
physics DFT was rewarded with the Nobel prize for chemistry in
1998 to Walter Kohn (for developing DFT) and to John Pople (for
his developments of computational methods in quantum chem-
istry in general). In fact, Kohn stated [39] “DFT has found many useful
applications when moderate accuracies (typically in the range 10~3 to
10-1) are required. It is not a precision method which, in principle,

4 It is not even known how many different solutions the Hartree—Fock equations
have nor is it possible to mathematically prove the existence of such solutions.
However, such fundamental questions are of no concern in the present context.

5 In fact, these approaches are only highly accurate in conjunction with very large
and flexible basis sets of at least triply-polarized triple-¢ quality. Such basis sets are
not yet affordable for larger molecules. Correlated ab initio calculations with smaller
basis sets cannot claim to have achieved high-accuracy and must be viewed with
caution.
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Fig. 1. Electron density of the CO molecule in the X-Y plane. The density shows
characteristic cusps at the nuclear positions from which the position of the nuclei
and their nuclear charge can be deduced.

can be pushed to arbitrary accuracy”. Viewed from this perspective,
the success of DFT is truly remarkable and must be considered as
very fortunate for the development of theory in chemistry. DFT, as
we know it today, rests on the theorems of Hohenberg and Kohn
which were formulated in the 1960s [40]. However, it should be
recognized that DFT has been pursued by theoreticians since the
cradle days of quantum mechanics. In fact, important ingredients
that are used in practically all presently used functionals have been
formulated in the 1930s by a combination of mathematical rigor
and physical intuition [41]. The only thing that was not realized at
that time was that these methods are approximate realizations of
a formally exact theory.

3.1. Everything from the density?

It was stated in Section 2.2, that the true ground state energy
could be calculated from the second-order density matrix if it could
only be calculated without having to know the many electron wave-
function ¥. DFT is based on a considerably more powerful theorem
that proves that - in principle - the exact energy could be deter-
mined from the knowledge of the electron density p(r) alone. It
might still be considered surprising that such a theorem exists and
since DFT is based on this theorem it is appropriate to investigate
how it comes about. At first glance it seems counter-intuitive that
one would be able to calculate the interactions of electron pairs
without knowing the actual distribution of the pairs (a two-electron
entity) but only the distribution of the electrons (e.g. p(r); a one-
electron entity).

The basic ideas are disarmingly simple and the mathematical
elaboration of the theory (which we will not go into in this chap-
ter [42]) is frustratingly complex. Consider the plot of the electron
density of the CO molecule in Fig. 1.

Itis arather smooth function except at the positions of the nuclei
where p(r) has a cusp (Fig. 1). The cusp is finite and has values [43]:

(19)

. a -
P_{% Lﬁ +ZZA] p(r)=0
where p(r) is the spherically averaged electron density. Qualita-
tively, the argument runs as follows (Fig. 2): (1) The BO Hamiltonian
is completely determined by specifying the number of electrons
and the ‘external potential’, v (in our case simply V) which in turn
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Fig. 2. The route from the density to the exact energy and wavefunction.

is fully specified once the nuclear positions and nuclear charges
are known. (2) Given N and v, the Schrodinger equation has a
unique ground state energy E (now regarded as a functional of N
and v, E[N, v]) and associated many electron wavefunction ¥.5
(3) Since one can deduce N from the integral over p(r) and the
nuclear positions and charges from the cusps of p(r) one can fully
reconstruct the Hamiltonian from only the knowledge of o(r).
Since the Hamiltonian determines the energy, the wavefunction
and also all associated properties, it must be possible to construct
a functional E[p] that provides the exact energy given the exact
density. The existence of this functional is the subject of the first
Hohenberg-Kohn theorem [44].

How would one start to construct such a functional? The obvious
starting point is to see which terms in the exact energy expression
can already be expressed in terms of p(r) directly. A quick inspec-
tion shows that this is only true for the nuclear-electron attraction
term (disregarding the trivial nuclear-nuclear repulsion term). The
electronic kinetic energy involves a differential operator and con-
sequently we need to know the more general first-order density
matrix y(r, r’) while the two-particle density I"(x1, x,) seems to be
required in order to calculate the electron-electron repulsion. The
most discouraging part is the latter interaction.

Insight into its dependence on the density can be obtained by
studying the Hartree-Fock energy in terms of density matrices:

1 1
Enr = VNN—ZZA / p(r)r,ldr + 5 //P("1 )p(ra)ry,) dry d"z—i
A

1 ,
//V(rl,rz)y(r],rz)r;zl drydr; - 5/ V2y(r,¢)dr
/=r

3.1.1. A point of concern

While the existence of the universal functional is remarkable,
one should probably not overlook one fact: the one thing that we
have so far achieved is to reconstruct the many electron Hamil-
tonian from the density. We are then faced with the fact that we
can not solve the associated many-electron Schrédinger equation
exactly. However, we knew the Hamiltonian before and could not solve
the associated Schrodinger equation! The Hamiltonian is given by Eq.
(1) in this review, in Eq. (1) of the famous book by Parr and Yang
[44]and in pretty much “Eq.(1)” of any other exposition of quantum
chemistry. Viewed from this perspective DFT brings oneself back to
the start with one additional step: the reconstruction of the Hamil-
tonian from the density which, so far, has no practical relevance.
The common situation is that the number and identity of atoms as
well as the number of electrons in the system is known in advance
and at least a reasonable guess of the initial nuclear positions is
available.

Thus, depending on the taste of the reader, the existence of
the universal functional might be taken as an inspiration for the
development of new approximate approaches and as a source of
physical insight - or - as an elaborate excuse for pursuing more or
less elegant approximate methods that have, in their essence, been
developed by physical reasoning much earlier.

(20)

r

Voxlol Jie!

This expression reveals that a part (in fact, typically 80-90%) of the
electron-electron repulsion energy can be written asJ[ o], the quasi-
classical self-interaction energy of the charge-cloud p(r). However,
even in the Hartree-Fock model - that by definition contains no
correlation - the exchange and kinetic energy terms require the
knowledge of the entire one-particle density matrix. Yet, the first
HK theorem states that it must be possible to somehow write these
terms and the missing electron correlation in terms of the density.
Thus, we may write:

E[p] = Van + Venlpl +J1 o] + Tl p] + Excl o] (21)

where T[p] is the (unknown) kinetic energy functional and E{ [ o]
is the (unknown) exchange-correlation functional. These latter two
functionals are “universal” in the sense that they have a common
(but unknown) form for every system.

If it is presumed that these functionals would be known, the
second Hohenberg-Kohn theorem provides the necessary recipe
to obtain the exact energy. It states that for any trial density p, the
value of E[p] > E[ p] where the equality holds if p matches the exact
p. Thus, minimization of E[p] over the range of allowed p would
yield the exact ground state density, energy and hence all other
properties of the system.

6 This discussion does only apply to orbitally non-degenerate states. The treat-
ment of spin-degeneracy presents no problem. Since the eigenfunctions of the BO
Hamiltonian are also eigenfunctions of the total-spin squared operator S?, the con-
dition is that the ground state is only 25+ 1-fold degenerate.

K T

3.2. The Kohn-Sham construction

One of the most difficult early problems has been to develop
an accurate expression for the kinetic energy in terms of the den-
sity. Models like the well-known Thomas-Fermi method provide
such an explicit expression [44]. However, it is unfortunately not
accurate enough for chemical applications. Practically speaking, the
kinetic energy predicted by the Hartree-Fock method is not a poor
approximation to the exact kinetic energy. Thus, one may won-
der whether it would not be possible to use some aspects of HF
theory in constructing an appropriate expression that would still
maintain the formal exactness of DFT. Indeed, the Kohn-Sham con-
struction provides such a recipe [45]. Consider a fictitious system of
non-interacting electrons. Such a system is described exactly by a
single Slater determinant {gs(x)=|¥;. . .¥n|. The electron density
associated with this determinant is:

PKS(")=Z/I1/G(X)I2 ds

In order to make the connection to the formal DFT theory, it
is required that pgs(r)=p(r); the fictitious system and the real
system are required to share the same density. One may then
re-write:

(22)

E[p] = Vnn + Ts[ o] + Venlp] +J1 0] + Exclp] (23)
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where the non-interacting kinetic energy (presumably the largest
part of T[ p]) is calculated from the Kohn-Sham orbitals:

Tlol =~ > WiV (24)

i

This expression is, indirectly, a functional of the density since the
Kohn-Sham orbitals themselves are also functionals of the density.”
The exchange correlation functional is then redefined as

Exclp] = Exc[p]+ Tlp] - Ts[p] (25)

It now contains the (presumably small) part of the kinetic energy
that is not covered by Ts[p]. The big step forward achieved with
this construction is that the second Hohenberg-Kohn theorem can
now be applied to yield through variation of the density the single-
particle (Kohn-Sham) equations:

{392 +ver)} i) = o) (26)

Importantly, the ‘effective potential’ seen by the electrons is given
by

Ve(F) = =) _Zalr = Ral ™" + / P =171 + Vxe(r)  (27)
A

The exchange-correlation potential is the functional derivative of
the exchange-correlation energy with respect to the density2:

Vie(r) = % (28)

Obviously, the KS equations closely resemble the HF equations. The
only difference is the replacement of the (nonlocal) exchange term
by the (local) exchange-correlation potential. Thus, most of the
powerful machinery worked out for Hartree-Fock calculations can
be transferred with limited modifications to density functional pro-
grams. Yet, if the exchange-correlation potential would be exactly
known, the KS procedure would yield the exact ground state energy.
However, despite its frequent use, this is an empty statement unless
the form of Exc[p] is actually specified.

Aparticular Ansatz that has provided much insight is to write the
two-particle density of the real system in terms of the two-particle
density of the non-interacting system (known from HF theory)
and a correction. The correction is called the ‘exchange-correlation
hole’:

I(ry,12) = p(r1)p(r2)[1 + hxc(ry, r2)] (29)

A number of properties of the (unknown) function hyc(rq,r,) are
known and can be put to good use in the construction of density
functionals. However, a thorough description of these properties is
outside the scope of this article [20,46,47].

4. Realization of DFT

The large majority of approximations to Exc[p] are derived on
the basis of physical reasoning, intuition, reference to model sys-

7 This is most easily seen if one considers the orbitals to be the natural orbitals of
the density. See Parr and Yang, chapter 7, p. 143.

8 The functional derivative may be defined by expanding the functional in p+§8p
and keeping only linear terms in §p. See Parr and Yang, Appendix A.

tems or fitting to experimental data. It is customary to neglect the
kinetic energy contribution to Exc[p].

4.1. Ab initio DFT

One obvious suggestion that, unfortunately, does not work is to
simply calculate the exchange energy as in Hartree-Fock theory
(but from the Kohn-Sham orbitals) and simply add a correla-
tion functional. First, the KS construction shows that the exchange
potential must be local while the HF exchange is nonlocal. In fact,
the construction of the exact, local exchange functional is surpris-
ingly difficult but much progress has been made over the years.
The most important approaches carry the acronyms OEP (opti-
mized effective potential [48]) and LHF (localized Hartree-Fock
[49]). Unfortunately, these exact exchange treatments are not com-
patible with the known correlation functionals and consequently,
the results obtained for energetic quantities such like atomiza-
tion or reaction energies are not good. The procedures required to
obtain the exact exchange functional are also still not economical
in terms of computational requirements and consequently some
of the advantages of DFT over wavefunction-based theories are
lost. Nevertheless, more progress along the lines of combining
exact, local exchange with suitable correlation functionals is to be
expected in the future.

A suitable route to “ab initio” DFT that systematically converges
to the exact solution (as wavefunction theory) has been pursued in
recent years by Bartlett and co-workers. As aresult correlation func-
tionals and potentials are available that are consistent with many
body perturbation and coupled cluster theories [50-55]. Compari-
son of these potentials with the ones that are in present use reveals
that the widely used potentials do not agree well with the ab ini-
tio ones. One example is shown in Fig. 3 where it is evident that
minus the correlation potential predicted by the PBE functional for
the Argon atom agrees better with the ab initio derived potential
than the one that is actually used. The PBE exchange potential on
the other hand follows the exact potential reasonably well except
for the structure at the shell boundaries where the PBE potential is
too smooth and at long distance from the nucleus where it falls off
too quickly [511,512]. This may serve as a reminder that the success
of the standard functionals to be discussed below largely rests on
the compensation of large errors.

A second promising route for the construction of new XC poten-
tials is to reconstruct them from accurate densities, for example
obtained for small model systems from elaborate wavefunction
based approaches. Several such methods have been devised and as
a consequence the shape of the XC-potential is known for several
systems [56,57]. However, despite significant trials [58-66] these
fittings have not yet led to functionals that are systematically more
accurate than the standard approaches described below.

4.2. Self-interaction

The immediate consequence of departing from exact exchange
is one of the important features of DFT (which is perhaps to
a significant part responsible for its successes and its failures):
self-interaction. In HF theory, the diagonal exchange terms Kj
cancel the self-interaction terms J;;. The same must hold for
the exact exchange potential, though in a less obvious way. It
does not, however, hold for non-exact approximations to the
exchange such as the ones that are currently used. Since the self-
interaction is unphysical, methods have been devised to remove
it [67,68]. However, they have met with mixed success [69-74]
and it is often argued that the self-interaction actually simulates
to some extent long-range (so called ‘static’) correlation effects
[72,73,75,76].
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Fig. 3. Comparison of ab initio derived exchange potentials (red) with the commonly used PBE potential for the Ar atom. Left: exchange potential. The y-axis is in atomic

units. Reproduced with permission from [508].

4.3. Standard functionals

The most common part of departure of most approximations in
current use is the uniform electron gas. This is a model system of
finite volume with a smeared out positive background charge that
renders the entire system electrically neutral and that features a
constant electron density p=N/V (V is the volume into which the
electrons are confined). Since this system is a cornerstone of present
day DFT, we briefly summarize how one obtains the leading term
in the exchange functional.

Assuming periodic boundary conditions, the Hartree-Fock
orbitals for this artificial system are plane waves v (r)=V-1/2 eikr
with the ‘wave-vector’ k=2/(V!/®)n, where n is a collection of
three integer quantum numbers. In the limit of large N, k may be
treated as a continuous variable. The calculation of the exchange
potential then proceeds as follows:

Kyn(ry) Z / Va(r)Yirary,) draygr
q

_ V—3/22/ei(k—q)r2r]—21 dr, eldr
q

_ V—3/2Z/ei(k—q)(rz—r])r]—zl dr, eikry
q

_ Wk(';})4ﬂ Z(k _q)2
q

where the crucial third line follows by inserting e~{k-@)r1 gilk-a)r1 —
1. What remains is to sum (integrate) over all g which is achieved
by using the volume element in k-space V/8m3 dk. Integration in
spherical coordinates then yields:

k= ()5 (1) waro) 31)

with S(x)=1+(1—-x2)/2xIn((1+x)/(1=x)) and kg is the highest
occupied ¥4 (Fermi-level). The total exchange energy evaluates to:

1
Ex :_5/’;5 (%) dk )

_ V.4
= —4”3kF

This result needs to be re-expressed in terms of the density. Since
exchange only works for electrons of like spin, we have:

> vy => v
k k

LV dr,s 1

V8n3d 3 F 6n2
One finds that kg = (672 p4 )13

Pa(r) =
(33)

3
kz

2
and hence the exchange energy per

electron is:
E 3/6\1/3
w=-1(3) @ +p (34)

This is how the famous p!/3 law for the exchange functional may
be formally derived. Of course, a molecule does not at all resemble
a homogenous electron gas (unlike a metal) and consequently, it
is not at all clear that a method based on such an oversimplified
model system should work—but fortunately it does.

The bold suggestion is to now apply the inhomogeneous electron
gas exchange equation locally. Thusitis assumed thatin an inhomo-
geneous system (where the electron density is not homogeneous)
the same equation still holds at each point in space and therefore
one finds the exchange energy by integrating over all space. This
leads to the definition of the local exchange functional:

1/3
Exlp] = / pmep)dr =3 (2) / (o) + ) dr

T
(35)
Which means that the local exchange potential becomes®:
(SEx 6 1/3 1/3
o _ — (=
=52 =—(3) A (36)

and analogously for the spin-down (8)-potential. This famous result
carries the names of Dirac [41] and Slater [77] who derived it
long before the Hohenberg-Kohn theorems were known. Slater’s
reasoning has been that the exchange term in the HF equations

for orbital ¥; ({ij w;‘(xz)lpi(xz)dxz} Yj(%1)) could to a good
approximation be replaced by a local potential Vx(r)y;(r) if one

9 The local exchange functional like almost all other functionals in common use
are of the form Ex[p] = | f(p)dr where fis some function of p. For such functionals
SEx[8p(r)=0f|0p and similarly if f contains gradients of the density. See Yang and
Parr, Appendix A.
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averages the potentials for the individual orbitals y; which leads
to:

Vi) = - / y(ry, r)y(ra, ry)ry,) dry (37)

(r1,11)
Slater then applied this much more general equation to the
homogeneous electron gas for which y(r{,ry) = (1/67r2)k§ and
y(ri,ry)=Vv-1 quiq{fz—ﬁ) to arrive at Eq. (36).

Simplistic as this local density approach is, it is surprising that
it gives exchange energies that are only underestimated by ~10%
compared to their HF values. However, this 10% still presents a large
error in the total energies. Hence, early workers multiplied this local
exchange by an empirical constant & which defined the so-called
Xa-method—an approximation to Hartree-Fock theory that existed
before the Hohenberg-Kohn theorems had been derived.

However, there would be little point in stopping the develop-
ment at the Xo-approximation since the ultimate goal is to proceed
beyond the HF method. Thus, one needs to incorporate correlation
into the model. Following the same logics as before, the correlation
energy of the uniform electron gas can be studied. There is no ana-
lytic solution but accurate numerical results that can be expressed
through parametric equations. As pointed out by Kohn in his Nobel
lecture [39], the first such expression was proposed by Wigner and
reads:

EV[p] = / PP [pldr = - / o) dr (38)

With rg=(3/(4mp))!? is the Wigner-Seitz-radius and ¢ denotes
the correlation (or exchange) energy per particle. A more accu-
rate parameterization must take into account that the correlation
between electrons of the same spin and of opposite spin is dras-
tically different. This arises, because of the exchange—electrons of
identical spins avoid each other already because of the antisymme-
try of the wavefunction (Fermi hole), while the same is not true for
electrons of opposite spin. Hence, opposite spin-pairs contribute
more strongly to the correlation energy than parallel spin-pairs.
This is a very important effect that, for example, has considerable
consequences for the spin-state energetics in transition metal com-
plexes as will be pointed out in Section 7.10.9.

For example, the parameterization of the uniform electron gas
exchange and correlation energies due to Gunnarson and Lundqvist
[78] is:

5clpas ppl = 5¢lrs, £] = 5¢lrs, 0] + {e5elrs, 1] — 5lrs, O1f()

(39)
fO) = 5+ +(1- 0" - 2) (40)
egtirs. 01 = 2 (9) " L _cogtrs /) (1)
Gx) = (1+23)In (1+%)-x2+%x—% (43)

where ¢=(pq — pﬁ)p—‘ is the spin-polarization and cy=0.0333,
c1=0.0203, ro=11.4, r; =15.9. These expressions are only written
down here in order to provide a flavor of how typical density func-
tional expressions look like. Many other parameterizations have
been proposed in the literature with the most popular local den-
sity expressions being due to Perdew and Wang [79-82] and Vosko
et al. [83].

Experience shows that correlation energies for molecules
predicted by the local density approximation (LDA) in its spin-
polarized form (LSD) are overestimated by about a factor of two
compared to accurate wavefunction based values. Since the abso-
lute values for exchange energies are much larger than correlation
energies (vide infra), the errors for exchange and correlation tend
to cancel to a certain extent. Nevertheless, the LSD method is only
moderately successful in chemistry since it has a distinct tendency
for overbinding while it still predicts surprisingly good geometries
[36].

The next logical step after the LSD approximation is to take
further terms into account that take care of the inhomogeneity
in the electronic distribution. Such terms depend on the deriva-
tives of the electron density. The initial attempts to incorporate
them met with little success. However, following the development
of the so-called ‘generalized gradient approximation’ (GGA), DFT
became highly popular in chemistry [510]. For GGA’s the exchange
correlation functional is written as:

ESSM pas s V 0as Vg1 = ERPl pa, 0] + AExcl pas £p. V Pus Vp]
(44)

where, for example, the gradient correction for the exchange func-
tional proposed by Becke is [84]:

Bx(r)?
1+ 68x(r) sinh™" x(r)

AExclpas pp. V par Vgl = —p'3(r) (45)
With x=1|v|/p*? being a ‘reduced gradient variable’ and 8 is an
empirical constant that takes the value 0.0042 from fitting to the
exchange energies of rare gas atoms.

A number of similar approaches based on modifications of
the GGA approach have been derived, implemented and tested. A
noticeable exception is the correlation functional of Lee, Yang and
Parr (LYP) [85] that has been derived from a parameterization of the
correlation energy of the Helium atom by Colle and Salvetti [86].
The functional takes a rather involved form that will not be writ-
ten down. It has the nice feature of being self-interaction free for
one-electron densities and it produces correlation energies that are
among the best currently available from DFT [87].

The foregoing discussion exemplifies the route that the main-
stream of DFT has followed: start from the uniform electron gas and
try to incorporate the effects of density inhomogeneity by a mix-
ture of derivation, physical reasoning and data fitting. The resulting
expressions are often rather complicated and reveal their physical
content only to experts. Some workers prefer ‘non-empirical’ func-
tionals over those that contain fitted parameters. Non-empirical
means in this context, that these functionals have been derived
with reference to a model system without introducing empirical
parameters—namely the slowly varying, inhomogenous electron
gas. How relevant this model is for chemistry is, however, open
to debate. It is not even obvious that a perfect modeling of the
slowly varying electron gas would produce results that are superior
to those of the standard functionals.

It has been extensively tried to produce better functionals by
fitting more and more parameters to more and more experimental
data points [63-66,88-91]. These attempts have been, subject to
debate, only moderately successful and there has not yet emerged
a highly parameterized functional that has found widespread use
in the chemical community and that has proven to be uniformly
superior to the standard functionals. It appears that the maximum
accuracy that is achievable within the GGA framework has probably
been reached.

Further corrections based on higher derivatives have only
recently gained more popularity and have been termed meta-
GGA'’s. Perhaps the most successful attempt is the TPSS functional



F. Neese / Coordination Chemistry Reviews 253 (2009) 526-563 535

that incorporates the kinetic energy density [92-96]:
1 2
wr) =5y V¥ (46)
i

The TPSS functional has been implemented into several major codes
now and has been shown to perform well for transition metal con-
taining systems [97].

A significant boost in the application of DFT to chemistry has
been achieved in 1993 by Becke who proposed the use of so-
called hybrid functionals [98,99] that incorporate a fraction of the
non-local HF exchange. While this admixture has been motivated
by the so-called ‘adiabatic-connection’ method, it remains largely
empirical in character and many workers have chosen to adjust the
fraction of exact exchange to fit their needs and whishes. By far the
most popular of these hybrid functionals is the B3LYP method, that
can be written as [100]:

ER3YP = aEXF + (1 — a)ERP + bERS® + ERP + c(EE™ — ERP)  (47)

where the empirical constants a, b, ¢ have the values 0.20, 0.72 and
0.81, respectively. The accuracy of energetic predictions with the
B3LYP functional for small molecules has been really astonishing
and is competitive with correlated wavefunction approaches. Since
the B3LYP functional also proved to be one of the best functionals for
property predictions it rapidly became the ‘workhorse’ of applied
quantum chemistry. However, some points must be made: (a) the
high accuracy pertains to the basis set limit and does not carry over
to the small double-¢ type basis sets that are often used in applica-
tion studies; (b) the benchmarks are usually done on collections of
small molecules that do not contain open-shell transition metals.
The results of such studies are not necessarily representative of real
life chemistry applications.

In fact, more recently detailed benchmark studies have revealed
significant points of concern about the application of the B3LYP
functional.

Several authors found that the errors of the B3LYP predic-
tions increase disproportionately with increasing molecular size. In
particular, Grimme, who reported a detailed comparison of wave-
function and DFT methods for atomization energies (Table 2) and
used large basis sets, found many errors in his test set that exceed
20 kcal/mol [101]. This did not occur for other functionals and the

Table 2
Performance of different standard functionals in extensive thermochemical tests (in
kcal/mol)

Density functional

BP86  PBE TPSS TPSSH B3LYP PBEO
G2/97 test set (N=156)
Mean deviation 0.39 0.17 0.73 0.39 033 -0.25
Mean absolute deviation 2.79 2.87 3.06 2.74 2.12 2.28
Maximum deviation 24.2 25.9 21.7 19.8 14.5 14.7
Second test set (N=67)
Mean deviation —4.6 -266 -452 -355 -6.91 -0.88
Mean absolute deviation 8.77 7.74 8.45 7.02 8.46 4.63
Maximum deviation 87.4 79.0 703 529 779 36.9

Numbers taken from Grimme [101] (N denotes the number of molecules in the test
sets).

study concluded that of the investigated functionals PBEO [102,103]
performed the best and very similarly to a hybrid version of TPSS
with 25% HF exchange (which may be called TPSSO).

Several authors found discouragingly large errors (exceeding
10 kcal/mol) even in seemingly simple systems — for example for
the isomerisation energies of hydrocarbons (Fig. 4). This discon-
certing situation was interpreted in a paper by Grimme [104]. In
comparing wavefunction and DFT results, he concluded that the
errors of the DFT methods arise from correlation effects at medium
electron-electron distances, i.e. from electrons occupying adjacent
bonds. Such correlation effects are not included in the standard DFT
models since the correlation energy is calculated from the values of
the densities and gradients at a given point in space. Thus, the DFT
correlation effects are too short-sighted and hence the stability of
branched structures is significantly underestimated (Fig. 4).

It is readily anticipated that similar situations must be prevalent
throughout chemistry and hence one is well advised to view the
theoretical results always with much care and seek feedback from
experiment wherever possible.

A small collection of standard functionals that find frequent
use in chemistry is shown below in Table 3 together with some
comments.

We finally wish to mention a last class of density functionals for
which some promising results have been obtained. They have been

Octane Iso-Octane
AE = +1.9%0.5 kcal/mol Exp.
+1.4 kcal/mol SCS-MP2
-11.5 kcal/mol HF
-8.4 kcal/mol B3LYP
-9.9 kcal/mol BLYP

Fig.4. Unexpectedly large errors from standard DFT calculations for the isomerization energy from octane (left) toiso-octane (right). The sign of the experimental isomerization
energy is dominated by correlation effects since the HF method predicts the wrong sign but already a modest correlated wavefunction-based method (SCS-MP2) gives good
agreement with experiment. DFT misses on the medium range “bond/bond” electron correlation effects and hence underestimates the stability of the branched isomer (taken

from [509]).
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Table 3

Some standard functionals

Name Type Comments

BLYP GGA One of the earliest GGA functionals.
Usually inferior to BP86 and PBE. Predicts
too long bonds

BP86 GGA Excellent geometries and vibrational
frequencies. Energetics is usually not
highly accurate but performs often well in
spectroscopic investigations

PWO1 GGA One of the older GGA functionals with
excellent accuracy for exchange couplings

PBE GGA A GGA version designed to replace PW91.
Very popular in physics. Often similar to
BP86

OLYP GGA Violates the uniform electron gas limit but
gives improved results for molecules

B3LYP Hybrid De facto standard in chemistry for
structures, energies and properties. See
discussion in the text

PBEO Hybrid Excellent accuracy; competitive with B3LYP

TPSS Meta-GGA Improvement over PBE

TPSSh Hybrid meta-GGA Probably improvement over PBEO; perhaps

increase fraction of HF to 25% (TPSS0)

proposed in 2006 by Grimme and contain - in addition to a fraction
of exact exchange - also a fraction of wavefunction based correla-
tion energy calculated from second-order many-body perturbation
theory (MP2) [105-109]. Thus, this class of functionals has been
called ‘double hybrid’ functionals [108]. The energetic benchmarks
reported by Grimme have demonstrated outstanding accuracy with
an average error for the so-called G2 set of molecules of <2 kcal/mol
which is usually only achieved with the best wavefunction based
methods. The method contains two adjustable parameters for the
fraction of HF exchange (53%) and the fraction of MP2 correla-
tion (27%) [105,106,108,110,111]. Analytic gradients have recently
been reported for this new class of functionals [108] and excel-
lent accuracy was obtained for structures of main group molecules
and transition metal complexes, although at somewhat elevated
computational cost relative to standard DFT methods (see Section
5). Most recently, excited states have also been treated with this
methodology [109]. Further improvements to this method (as well
as for standard functionals) are obtained by adding an empirical
van der Waals correction to the DFT energies which compensates
for the poor behavior of the functionals in the long range regime
[110,112-114]. Owing to the large amount of HF exchange and the
perturbative estimate of the correlation contribution it might be
expected that open-shell transition metal containing systems may
be more challenging to treat with these functionals. These ques-
tions clearly warrant more detailed studies.

In order to put these results into perspective some num-
bers for exchange and correlation energies are collected for the
ground state of the neutral neon atom ('S) in Table 4. As ref-
erence serves an accurate wavefunction based calculation with
the CCSD(T) (coupled-cluster theory with single- and double
excitations together with a perturbative estimate for triple exci-
tations) method and a very large basis set. This calculation yields
a Hartree-Fock exchange energy of —12.098 E;, which is close
to the Hartree-Fock limit. The calculated correlation energy of
—0.379E, is quite close to Clementi’s experimental estimate of
—0.393 E;, [115]. In fact, adding a relativistic correction using the
Douglas-Kroll-Hess method [116], the CCSD(T) total energy of
—129.064 E}, is close the experimental total energy of —129.056 E},
obtained by summing the first ten ionization potentials. Compared
to the CCSD(T) values, the DFT results show a rather large scatter.
Some functionals (like PBE) underestimate both the correlation and
the exchange energy while others (like TPSS) underestimate cor-

Table 4
Total, correlation and exchange energies of the Neon atom using the ab initio CCSD(T)
method and various density functionals (deviations from the wavefunction results
in mEy,)

EtOt ECOH EX

CCSD(T) ~128.9260 ~0.379 ~12.098

BPS6 —128.9776 (—52) ~0.388 (- 9) ~12.104 (-6)
PBE —128.8664 (+60) —0.347 (+32) ~12.028 (+70)
BLYP ~128.9730 (—47) ~0.383 (- 4) ~12.099 (~1)
TPSS —128.9811 (~55) —0.351 (+28) ~12.152 (~54)
B3LYP —128.9426 (~17) ~0.452 (—73) ~12.134(-36)
B2PLYP ~128.9555 (—30) ~0.392 (-13) ~12.103 (-5)

All calculations with uncontracted Partridge-3 basis set together with polarization
functions from aug-pw-pCV5Z(-h) basis set (—67 mE, core-correlation contribu-
tion). All DFT results are from self-consistent Kohn-Sham densities.

relation and overestimate exchange. The best individual exchange
and correlation energies are predicted by the BLYP functional. The
significant error in the BLYP total energy must then stem from the
shortcomings in the kinetic energy—the difference between T and
Ts is nowhere explicitly accounted for in any of the investigated
functionals. These numbers are merely shown in order to provide
some feeling of how variable the DFT results with different func-
tionals are and how large the individual contributions become. No
conclusions about the performance of these functionals in chemical
applications should be drawn from this data.

5. The computational machinery of DFT

Since the Kohn-Sham orbitals (unlike the density) assumes a
complicated shape they are almost always expanded in terms of a
set of pre-fixed basis functions ¢10:

Vi) =D Cuivu(®) (48)
w

As a consequence, the solutions of the Kohn-Sham equations only
become equivalent to the true Kohn-Sham orbitals if the set of
@ approaches mathematical completeness. We will not enter a
detailed discussion of basis sets at this stage but only make a few
(subjective) remarks.

Most present day calculations are performed with Gaussian
basis functions for which computational techniques are very well
developed. Alternatives involve Slater type orbitals (ADF code),
plane waves (CPMD or PQS codes) or numerical basis func-
tions (DMol code) which have certain advantages. However, the
Hartree-Fock exchange term or the MP2 contribution to the dou-
ble hybrid functionals can presently only be efficiently calculated
with Gaussian basis functions.

Experience indicates that the results converge relatively quickly
towards the basis set limit [120]. By present day standards calcula-
tions should be performed with basis sets of at least triple-¢ quality
with at least one set of polarization functions. For accurate results
three sets of polarization functions'! and perhaps one set of diffuse
functions should be employed. If basis sets of this size are used, the
results reflect the properties of the functional and not the properties
of the basis set.

Specific properties [for example isotropic hyperfine couplings
in EPR spectroscopy, NMR chemical shifts, excitations of Rydberg

10 However, basis set free methods have been developed as well [117-119].

1 These are typically two 2p1d for hydrogens and 2d1f for main group elements.
For transition metals one should add at least 2p1f. The def2-TZVP and def2-TZVPP
basis sets developed by Ahlrichs and co-workers [121] can be recommended for all
electron calculations. Smaller basis sets of polarized double-{ quality (def2-SVP) are
also available for less accurate calculations.
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character or weak interactions] require special basis set with added
flexibility in the core or outer regions of the molecule. Basis sets for
such calculations have only partially been standardized.

Inserting the basis function expansion into the Kohn-Sham Eq.
(26) yields a matrix pseudo-eigenvalue equation:

F(c)c; = &;S¢; (49)

where ¢; is a vector with elements c,;, S is the overlap matrix
with elements S, = (¢ |¢v) and F is the Kohn-Sham matrix. It will
be written in a general form that includes pure Kohn-Sham and
Hartree-Fock theory as special cases:

Fuy = hyy 4+ Juv(P) — capKpuw(P) + CDFVXC[:O] (50)

where cyf is the fraction of HF exchange possibly included in the
functional and cpp=0 for Hartree-Fock theory. In this equation
h is the one-electron matrix, P the density matrix and VXC the
exchange-correlation matrix with elements:

1 _
hyy = <(pu ’_jvz - ZAZArAl v> (51)
Jun(P ZPKT [k |VT) (52)
Ku(P) = ZPKT<HK|TV) (53)
Puv =Y CuiCui (54)

i

- SExclpas pgl

ViSO = /%(m)wwu(ra)dr (55)

o=a, B. These terms represent rather different computational
requirements. The one-electron integrals are not very numerous
and present no computational challenge.

As is obvious from Section 4.3, the exchange-correlation terms
are of a complicated form and to find closed-form solutions of the
associated integrals is next to hopeless. Hence, these terms are best
handled by numerical integration. Thus, the integral is approxi-
mated by a finite sum over grid points rg with weights wg that
are chosen according to some prescription:

V§S”~ngwu(rg o) XC“)(“")”/’] ¢u(rgo) (56)

Fortunately, the numerical integration problem did not turn out
to be a difficult one [122] and most schemes are modifications of
the original proposal by Becke [123], see for example Ref. [124]. If
properly coded, the computational effort for the quadrature scales
only linearly with the size of the molecular system [125] but the
prefactor varies considerably between different implementations.
Experience shows that the error in the calculated exchange corre-
lation energies is of the same order as the error in the numerically
integrated electron density. Hence, a useful target accuracy is to
integrate the electron density to an accuracy of at least 10~3 elec-
trons which is readily achieved with about 1000-2000 integration
points per atom.
The Coulomb matrix is

];w ZPKI(MKWT (57)

Juw(P) = / @ (%1)pu(%1 )ZPKr / @ic(X2) Qe (X2)r )} dxy (58)

KT

J;w(P)=/Sﬂu(?ﬁ)(ﬁv(xl)Z/Illfi(xz)lzrledxz (59)
];w(P)Z/(/’M(Xl )%(M)/P(rz)rﬁldxz (60)
Juw(P) = /Qﬂu(?ﬁ)f/’v(xl)Vc[P](Xl)dX1 (61)

This equation emphasizes that this term represents the interac-
tion of the charge density ¢, (¥) ¢, (¥) with the Coulomb potential
created by the total charge density distribution. The first line
implies an exact analytic integration involving four-index, four-
center electron-electron repulsion integrals. While these integrals
can be efficiently computed over Gaussian basis functions, the
number of integrals is very large and grows with the fourth power
of the molecular size. Fortunately, negligible charge distributions
¢u (%) @y (%) can be efficiently recognized and screened out before
the actual computation of the integrals (it is readily shown that
{UKIVT)| < A/ (UVIvie)/(kT|TK)) [126,127]. Due to the fast decaying
nature of the basis functions the product ¢, (x)p,(x) is only sig-
nificant for ¢,(x) being located close to ¢, (x) thus leading to an
overall linearly increasing number of significant charge distribu-
tions with increasing molecular size. Since the Coulomb operator
is of long range, it appears that the effort to evaluate the Coulomb
term is asymptotically quadratically scaling with molecular size.
However, following the introduction of multipole expansions, the
fast-multipole method (FMM) allows for the linear scaling eval-
uation of the Coulomb term [128-131]. Unfortunately, however,
irrespective whether one uses a linear scaling formulation or not,
the prefactor for the computation of the Coulomb term by exact
analytic integration is high and usually dominates the compu-
tational effort for a DFT or HF calculation. Consequently many
techniques have been developed in order to speed this part of the
computation up. These include pseudo-spectral techniques [132]
or the solution of Poisson’s equation [119]. However, one of the
earliest techniques that has been employed also turns out to be
the most efficient one. It has first been applied in the DFT context
by Baerends, Ellis and Ros [133], elaborated by Dunlap [134,135],
brought to its current form by Vahtras and Almlof [136] and effi-
ciently standardized for general chemistry applications by Ahlrichs
and co-workers [137,138]. The technique is called ‘density fitting’
(DF) or ‘resolution of the identity’ (RI) approximation. The idea is
to fit the charge distributions ¢, (x)@,(x) to an auxiliary basis set
np(x) like:

AR ATIC) (62)
P

As shown by Vahtras and Alml6f [136], the coefficients cfw are best
determined by minimizing the residual self-repulsion’2:

Ryuw = / <¢M(X)¢U(X)—ZCZVW(X)> o
P
<§0u X)pu(X Zcﬂvnq ) dx; dx, (63)

12 The original work used three-center overlap integrals instead of three-center
repulsion integrals. The work of Vahtras et al. [136]. showed that this approxi-
mation is an order of magnitude less accurate than the method described here
and consequently larger and more accurate expansion bases have to be used. This
was rationalized by Dunlap [139] who pointed out that the minimization of the
self-repulsion is equivalent to fitting the electric field generated by the charge dis-
tribution.
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which immediately leads to a linear equation system:

> Veocy = (@upulnp) (64)
PQ

With the two- and three-index electron-electron repulsion inte-
grals:

Vpq = /HP(M ) o (%2) dxq dx; (65)

(‘Pu‘Pv\TIP)=/90u(X1 Jou(X1)rp, np(x) dxq dxy (66)

Inserting this approximation into the expression for the Coulomb
matrix yields:

Juv = > (@upulne)Y Vig Y Pecl@ipring) (67)
P Q

KT

The evaluation involves the three steps: (a) calculation of density
in the auxiliary basis (Pq = ZKtPKT(go,((pme)), (b) solution of the
linear equation system g=V-! P and (c) contraction with the three
index integrals to give the Coulomb matrix j,, = ZP((ﬂu_(ﬂ\;“}P)gp.

Comments: (1) the calculation of the three index repulsion
integrals is much more economical than the calculation of the
four-index integrals and there is an order of magnitude fewer of
them.!3 (2) As shown by Ahlrichs and co-workers [137,138], the
solution of the linear equation system is best approached via the
Cholesky decomposition of V, (3) experience shows that if the
auxiliary basis sets are well designed'® the error of the fitted
Coulomb energy is only ~10~° E,/atom. (4) The fitted Coulomb
energy is an upper bound to the true Coulomb energy and the
fitting is ‘robust’ in the sense of Dunlap [140]. (5) The advan-
tages of the RI approximation increase with increasing size of the
orbital expansion basis. (6) Without any pre-screening the compu-
tational effort for the construction of the Coulomb matrix is reduced
from O(N*) to O(N?) and using straightforward pre-screening tech-
niques to O(N2). (7) The error of the approximation is very smooth
and the errors for structural parameters and energy differences is
negligible 8) the most efficient implementations of this concept
[138,141-143] lead to a reduction of the computational cost for the
Coulomb problem of the factor 10-100.'> Quite large systems can
be treated with present day DFT programs such as the one shown
in Fig. 5.

The contributions by the Hartree-Fock exchange terms that
enter into hybrid density functionals are more difficult to approx-
imate with high accuracy. One of the possibilities that is exploited
in the Jaguar code are pseudo-spectral techniques that lead to effi-
cient calculations [ 132,144-147]. Fortunately, however, the analytic
calculation of the exchange term scales almost linearly with sys-
tem size (or can be relatively easily designed to scale perfectly
linearly [148]). This is readily seen from Eq. (53) if one assumes
that the density matrix element connecting ¢,,(x) and ¢,(x) decays
exponentially with distance as it appears to do for ‘insulators’ (sys-
tems with sufficiently large HOMO-LUMO gap; Kohn’s conjecture
[149]).

3 The leading term is 4Naux /N7, where Ny is the number of auxiliary func-
tions and Np,s the number of basis functions. For a reasonably large calculation
Naux ~3000 and N ~ 1000 such that there is roughly a factor of 100 fewer three-index
integrals than four index integrals.

4 Pparticularly good and accurate auxiliary basis sets have been designed by
Ahlrichs and co-workers [137,138]. They are typically only 2-3 times larger than
the orbital expansion basis set.

15 A multipole accelerated versions for very large systems has been developed by
Sierka et al. [142].
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Fig. 5. Example of a large DFT calculation. A BP86 single point calculation of the
entire Crambin protein with 642 atoms and more than 4000 basis functions can
be completed on a standard personal computer in less than 14 h elapsed time using
modern algorithms (calculations done with the ORCA program on a 2.0 GHz Opteron
CPU). Superimposed is the electrostatic potential of this system derived from the
calculation.

Given the developments in computational hard- and software,
DFT calculations with several thousand basis functions (several
hundred atoms) can now be routinely carried out on standard per-
sonal computers or in parallel fashion on computer clusters. This
enormously widens the range of systems are amenable to study by
DFT methods. Since the diagonalization of the Kohn-Sham matrix
becomes a computationally significant step in large calculations
(scaling as O(N3)), techniques have been devised to avoid it. The
specialist literature must be consulted for a thorough exposition of
such linear-scaling approaches [125,128-131,148,150-157].

6. Theory of molecular property calculations with DFT

We are now in a position to present the calculation of properties
of interest of (bio)inorganic chemistry by means of DFT methods.
The theory will be presented in the coherent framework of analytic
derivative/linear response language which turns out to be the most
systematic framework for property calculations.

We assume that we have solved the Kohn-Sham problem
already in some of the approximate ways that were described in
the previous sections using some molecular coordinates as input.
Next, we wish to predict the equilibrium geometry or spectro-
scopic properties or we want to refine our results by including some
smaller terms in the Hamiltonian. Each of these situations can be
considered as a small perturbation of the system which will want
to adapt to the new situation in the presence of the perturbation.
Thus, we have to study the immediate vicinity of the solution of the
Kohn-Sham problem and have to examine the restoring forces that
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act on the system in the presence of the perturbation. Specifically,
the perturbation might be the change of the nuclear coordinates,
an external electric field, an external magnetic field or the sudden
‘turn-on’ of relativistic corrections to the Hamiltonian. In addition,
the perturbation may or may not be time dependent.

Based on the foregoing discussion it is evident that the ‘immedi-
ate vicinity’ of the solution is best explored by performing a Taylor
expansion in the neighborhood of the initial Kohn-Sham solution
which in turn implies that we have to calculate the derivatives (or
partial derivatives) dE/dA of the total Kohn-Sham energy where A
denotes the perturbation. We will first treat the time-independent
case and then turn to the more general (and more complicated)
time-dependent case in Section 6.4.

6.1. First derivatives

The point of departure is the energy functional:

L=VNN+Ts + Ven +] — cupK + Exc +OC (68)

1
L=Vnn+ Zpuvh,u.v + EZP}LUPK‘[(u’LKlv‘w — CHF(UK|TV))
wy VKT

+ Exclp] - Zé‘ij(cmswcuj - &) (69)
ijuv

The last term represents the orthogonality constraint (OC) that was
forced upon the orbitals in the variation process and the matrix &;
represent the Lagrange multipliers that turned out be the orbital
energies in the canonical representation that diagonalizes &. Each
of the terms may depend on the perturbation A. However, there is
one important simplification: since we have determined the total
energy by variation of the MO coefficients c,; that enter into the
matrix P it is known that dL/90P,, = 0. Hence, since the derivative
with respect to A certainly contains a term (0L/0P;.,)(9P,.v/0A) we
know that we can ignore the A dependence of the density matrix, or,
expressed differently, the fluctuations in the density matrix due to
the perturbation. Hence, the derivative of the total energy becomes
[158]:

2L PVan hy,
M0 —  oro0 +D P 9% 00

v

3P,y O
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In taking the derivative of the density, it is sufficient to take the
perturbation dependence of the basis functions into account:

0
ZP,N{% 5 a";\”} (73)

Which means that the exchange correlation contribution to the
derivative becomes simply ZWPWfvxc(r)a/ax(%%)dr.

This is the complete expression for the gradient of the
Kohn-Sham energy with respect to an arbitrary perturba-
tion. It contains the derivatives of the one- and two-electron
integrals and the nuclear-nuclear repulsion energy. The
dependence of the integrals arises from the (possible)
dependence of the basis set on the perturbation. The basis
functions certainly depend on the perturbation in the
case that the perturbation represents the movement of a
nucleus since the basis functions are ‘glued’ to their parent
nuclei.’®

Hence, in the special case that the perturbation is simply the
addition of a term Ah,, to the Hamiltonian and the basis functions
do not depend on the perturbation, the derivative simplifies enor-
mously to:

oL
25 = > Puvl@ulhzlon) (74)
)

Thus, in this particular case, the Hellmann-Feynman theorem
holds. It also holds in the limit of a complete basis set. This simple
expression is for example valid for the calculation of electric multi-
pole moments, the electric field gradient at a given nucleus, as well
as the spin-dipolar and Fermi contact contributions to the hyper-
fine coupling tensor. The appropriate matrix elements for these
properties have been reviewed in detail recently [11].

6.2. Second derivatives

The second derivatives with respect to the perturbations A and
0 are found by differentiation of Eq. (69) [159]:

PSuw\ 1 Pk |VT) — Chp(1ak|TV))
+ Wi g5 ) +3D_PurPer 9% 00

JLVKT

Wy 0Suy Z 3(PwPu) A({p|vT) — chppklTv)) (75)
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S8E[p] 9 p(r)
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oL aV, oh 1 O({K|VT) — cHp{uK|TV))
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OExclp] ap
+
/ dp(r)
With the ‘energy weighted density matrix’:

Wy = *Zﬁicmcm' (71)
i

VKT

ZWMV By (70)

The derivatives of the one-electron matrix elements contain contri-
butions from the basis function and from the operator derivatives:

ohyy /[ dpy oy oh
Ry —< |hlgy ) + ¢M|h|ﬁ + ‘/’/l.|ﬁ|‘ﬂv (72)

8p(ry)dp(ry) or 06

This expression appears somewhat formidable but has clearly rec-
ognizable parts: the first line contains simply second derivative
integrals which involves the second derivatives of the basis func-
tions as well as the first- and second derivatives of the one- (and
two-) electron operators. The second line contains the derivative
of the density matrix - that can no longer be avoided - and the
third line contains the second derivative of the exchange correla-
tion contribution. The latter consists of two parts. The first part is
straightforward and simply involves the second derivative of the

16 This is not the case if the basis set consists of plane waves. In this special case all
contributions from the basis set derivatives are absent from the gradients which
means that it can be computed with very high efficiency. Thus, forces are very
cheap and plane wave approaches lend themselves very well to molecular dynamics
approaches.
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density:

9 p(r) P(@hev) Py 3@l ev)

590 =2 \ P anss t o (76)
m)

While the second part involves the second functional derivative
of the exchange correlation potential. This quantity is known as
the ‘exchange-correlation kernel'. Since the XC potential measures
the rate of the change of the energy with respect to a change of
the density at position ry, the kernel measures the rate of change
of the potential at r; with a change of density at position r,. For
the standard functionals described in this review, the second func-
tional derivative always leads to a § function §(r; —r;) and hence
only a three-dimensional integral is to be evaluated by numerical
quadrature. It is readily appreciated from the complicated expres-
sions for the XC-energy, that the expressions for the XC potential
and even more so for the XC kernel become rather involved.
However, they are easily handled by widely available computer
algebra programs (e.g. MAPLE V: http://www.maplesoft.com/;
Mathematica: http://www.wolfram.com/) that are also able to
generate computer code for the explicit evaluation of these
terms.

Assuming that all technical difficulties in the evaluation of the
integral derivatives have been overcome, the remaining difficulty
is the calculation of the derivatives of the density matrix ele-
ments which comes down to the calculation of the derivatives of
the MO coefficients. This concerns the important problem of how
the Kohn-Sham orbitals of the system change if a perturbation is
applied. This subject is of fundamental importance and will be stud-
ied in the next section. In fact, if the basis functions do not depend
on the perturbation, the second derivative assumes a rather simple
form:

Phyy
a)\ae Z( "onen

nv

OP;y Ohyy
a0 BA) 77

This equation covers most of the so-called ‘static-response prop-
erties’. One says that the first term is of ‘first-order’ and the
second-term of ‘second-order’. This nomenclature arises since in
sum-over-states based pictures the equivalent of the first term
arises as an expectation value over the ground state wavefunc-
tion while the second term involves the first-order wavefunction
that is represented by an infinite sum over electronically excited
states.

6.3. The coupled perturbed SCF equations

It became apparent in the previous section that the derivatives
of the density matrix elements are an indispensable ingredient in

OFu(c) ahw O((uK|vT) — cHE (K| TY))
oA - ZP” ER

This expression is differentiated and re-arranged to obtain:

oF v 0
Z( l{;)\( )Cvz‘f‘(Fuv(C)—Ssuv) C(Ul))

v

88 0S
i ZSWCW + 6 33‘;) ; (79)

The next step is to make an Ansatz for the perturbed MO coeffi-
cients. Since the entire set of unperturbed molecular orbitals spans
the same space as the original orbitals but forms an orthonormal
set it is convenient to expand the perturbed MOs in terms of the
unperturbed ones:

oc,,i
S = Y i 0
p

where the indices p, g, 1, s run over all molecular orbitals (occupied
and unoccupied), the indices i, j refer to occupied orbitals and the
indices a, b to unoccupied ones. The condition that the perturbed
MOs remain orthonormal leads to an important condition on the
matrix elements of the matrix U. This is seen by differentiating the
orthonormality condition:

Zczpswcuq = 8pq (81)
nv

That leads to:

Uk + U, +Sh) =0 (82)

Since the energy is invariant with respect to unitary transforma-
tions between orbital pairs within the occupied space and within
the virtual space respectively, the corresponding blocks of the U-
matrix can be fixed from the conditions:

1
AL

Uj = -5 (83)
U = — Lo (84)
ab = _E ab

While
A . )

Uk =-U%—S (85)

Which shows that only the Uy; block of the U-matrix is to be deter-
mined. The perturbed overlap integrals are:

as
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Spa = Z up g € (86)
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The derivative of the Kohn-Sham matrix takes a somewhat involved

form:

> /V 1o 2 )+¢M(pufxc[p]ZPma((p”%)dr

(87)
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the calculation of molecular properties. It is thus important to find
out how such derivatives can be obtained efficiently.

The point of departure are the Kohn-Sham equations in their
basis set form:

ZF,U.U(C)CVI' = Sizsuvcvi (78)
vV v

pIKT

However, the first line involves nothing but the derivative of the
one-electron operator and the derivatives of the basis functions.
It can be abbreviated as F,(f‘v) and shifted to the right-hand side.
The second line contains the response of the Kohn-Sham operator
with respect to the perturbation. It is this dependence on its own
solutions which renders perturbation theory with self-consistent
field wavefunctions more complicated than standard perturbation
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theory. The perturbed KS equations are further simplified by multi-
plying them from the left by c};, and summing over all u. The result
is:

Uk(ea — i +ZU§;{<ab\iJ> + (ablficlif) — cur (abli))

Z aJ|zb + (ajlfclib) — curajlbi))

F(“+ss(“ ZS(’\)* (ak|ijy + (ak|fxclij) — cur(akl|ji)} (B8)
2 XC HF

ZS(” (ajlik) + <aJlfxc|lk> — cur (ajlki))

At this point it is advantageous to split the U-coefficients explicitly
into a real and an imaginary part:

Uai = Xgi +iyw (89)

Assuming that the perturbation is either purely real or purely imag-
inary leads to the final response equations:

xli(ea — &) + RIO (@) = —b1) (90)

Vilea— &)+ RV*) =
The right-hand sides are defined by

—bMm (91)

ATE) = Re(FLY) — 5500)) — S RE)se) (92)
. 1 im-
b™ = Im(F) — eiS4)) — S RGM(s0m) (93)

Here s denotes the real and imaginary part of the (ij) block of the
perturbed overlap integrals. If the basis functions do not depend on
the perturbation, the right-hand sides simplify considerably: the
last two terms are zero and Fg;\) = (alh, |i). The ‘response operators’
are defined by

R (%) = > "Xk (2(prigs) + 2(prificlas) — cur((prisa) + (psira))}
rs

(94)

Roq ") = cuey_yis((prisa) — (psirg))) (95)

s

It is clear from inspection that the real-response operator is sym-
metric while the imaginary response operator is antisymmetric.
Importantly, the imaginary response operator only contains contri-
butions from the Hartree-Fock exchange. Thus, if no HF exchange
is present, the linear equation system for a purely imaginary per-
turbation has the simple solution y,; = —bé’}“)/(sa —&;) as would
have been expected if the Kohn-Sham operator would not be a
self-consistent operator.
The perturbed density matrix finally becomes:

oP
8? = ZU;,CMPCW' + UpiChiCop (96)

Thus, for a purely imaginary perturbation:

P, .
B =) a0 — CuaCu) (97)
ia
And hence:
3p(r)density—matrix B aP/w
" Z S ourpu(r) = (98)

This shows that a purely imaginary perturbation does not lead to
a first order change in the electron density which explains why all
local potentials (like the Coulomb and exchange-correlation poten-
tials) do not contribute to the response of the system with respect
to an imaginary perturbation. This would be different in extensions
of DFT that introduce a dependence of the XC potential on the cur-
rent density [160-166]. However, such methods have not yet found
their way into chemistry.

Since the number of orbitals pairs is usually so large that the lin-
ear equation system can not be solved directly, iterative techniques
are employed in practice [167]. To this end, the response operators
are usually calculated in the AO basis and are transformed back
to the MO basis.!” Since the computational effort that is involved
is similar to a single SCF iteration, the solution of the coupled-
perturbed Kohn-Sham equations is typically as expensive as one
SCF calculation.!8

6.4. Time-dependent perturbations

If the perturbation is time dependent the formalism is quite a
bit more complicated. We will concern ourselves here with only
the most straightforward treatment in which the basis functions
do not depend on the perturbation and the exchange correlation
potential is assumed to be time-independent (adiabatic approx-
imation). The foundations of time-dependent density functional
theory have been laid out by Runge and Gross [170] and have
recently spawned a detailed dispute that we will not enter into
[171].

Just like there is a time-dependent HF treatment, there also is
a time-dependent KS treatment. The best way is to start from the
following form of the TD-KS equations [172]:

PO &
FP-PF =i (99)

where P(t) = Zinpi Y{(¥;(t)| is the idempotent KS density oper-

ator and F is the Kohn-Sham operator. The static KS equations
are readily recovered if the right-hand side is set to zero. Let us
assume that we have solved the static KS problem and now turn on
a time-dependent perturbation. Such a perturbation can always be
written as a sum over its Fourier components. Thus, it is sufficient
to investigate a perturbation that oscillates at a single frequency w:

1(;\ e-iot | A+ giot)

V() = 5

(100)
Here A is some operator that describes the nature of the perturba-
tion (for example the electric dipole operator if one is interested
in the interaction of the molecule with the electric vector of a
light wave). We now need to expand the TD-KS equations to first
order in the perturbation. However, in the time-dependent case,
we need to make an Ansatz for the U-coefficients that reflects the
time-dependence. A suitable one takes the form:

(l.') Xw A —zwt YE;:)»* e+iwt}

(101)
where the X and Y coefficients have now to be determined. The
static case discussed above is readily recovered if the frequency of
the perturbation is set to zero.

17 However, this is not necessary. There are variants of CP-SCF theory that avoid
orbitals altogether and directly solve for the perturbed densities. In this case no
transformations to the MO basis are necessary [168,169].

18 However, the CP-SCF equations are linear while the SCF equations are nonlinear.
Thus, often the CP-SCF equations converge in fewer iterations than the SCF equations.
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The right-hand side of the perturbed TD-KS equation then
becomes:

p(1)
i<b ap

at
While the left hand side is readily obtained from the discussion for
the static case. We will not perform the algebra in detail but simply
quote the result that reads:

wa *[(kjlcb) + (kilfxclcb) — cur(jclkb)]

(102)
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(e - + Vi + wa [{kjlcb) + (kjlfxcleb) — cur(ikich)]
+ ZY‘” [ (kjlchy + (kjlfxclch) — cug(iclkb)] = —a)Yl‘;j;’\ (104)

ke

Here (V}; denotes a matrix element of the time-independent part of
the perturbation. It is customary to write these equation in a more
neat form by defining the “super-matrices”:

(kjlfxclcb) — cur(jclkb)
(kjlfxclcb) — cu(jk|cb)

Note that A+ B is related to the real response matrix while A — B is
related to the imaginary response matrix. Since in this formalism,
X and Y become “vectors” (compound label bj), the TD-KS response
equations can be written:

(3 5) (6 5)) () (%)

These equations are of the form: R(w)U=—V. It is interesting to ask
at which frequencies these equations lead to an infinite solution.
This must happen if w is adjusted such that an eigenvalue of R(w)
becomes zero. This ‘resonance’ then implies that w equals an exci-
tation frequency of the system. Hence, one has directly calculated
the difference in energy between the ground- and an excited state
without ever calculating the excited state itself! Obviously, such a
resonance occurs if the equation:

(32) () (6 5) ()

is satisfied. Hence, the ‘critical’ @’s are obtained as the solution of a
large non-standard eigenvalue problem. They can be solved by non-
standard iterative techniques that are of no concern in the present
context [173]. However, there are two special cases that deserve
mentioning. The first special case is met when the perturbation
is real (e.g. an electric field type perturbation) and there is no HF
exchange (or any other non-local potential) in the functional. Then
one can re-arrange the equations to a standard eigenvalue problem:

(105)
(106)

Apjck = (ep — &j )(Sb_] ck + (kjlcb) +
Bpj,ck = (kjlcb) +

(107)

(108)

HeiZef = 0% Zegy (109)

With:

Her=(A-B)/*(A+B)A-B)'"? (110)

Zetr = (A— B) 2(XP 4 Y@ (1)
1/2

The matrix square roots present no problem, since (A — B)

Oke,bjr/Eb — &j-
The second special case is met if the B matrix is simply neglected.
This leads to Y=0 and the resulting standard eigenvalue problem:

AXPH = X @ (112)

bj, ck =

nicely resembles the configuration-interaction with single-
excitations (CIS) method that is well known from wavefunction
theory [174]. It is often referred to as Tamm-Dancoff approxima-
tion (TDA) [175]. Newer developments of TD-DFT can be found in
the works of Ziegler, Autschbach and co-workers [176-192] and by
Rinkevicius and Vahtras [193].

7. Applications of molecular property calculations with DFT

Thousands of papers have been published that describe applica-
tions of DFT to transition metal chemistry including (bio)inorganic
chemistry. The majority of these papers focus on structural,
energetic and kinetic quantities. Authoritative reviews of these
approaches have been provided by Siegbahn and co-workers [1,2]
and an excellent introduction is provided by the book of Koch
and Holthausen [43]. Consequently, no attempt will be made to
describe these important applications. Rather this section will be
mainly concerned with the application of the formalism outlined
in the previous sections to the calculation of molecular spectra and
related properties. The calculation of molecular properties other
than the total energy allows the close connection of theory and
experiment and often leads to important clues about the geomet-
ric and electronic structure of the systems being studied. In many
instances, spectroscopic features react much more sensitively to
subtle structural variations than the total energies themselves (for
an example see [14,194]). Consequently, the calculation of spec-
troscopic properties is an important area of investigation that is
described below.

7.1. Geometries and transition states

Almost every DFT investigation starts by optimizing the geom-
etry of the species under investigation. All algorithms to find
stationary points on the potential energy surface require the
availability of analytic first derivatives to be effective. These are
calculated from Eq. (69) with the perturbation A being taken as the
movement of a given nuclear coordinate. In order to be efficient,
all 3M derivatives are calculated simultaneously which typically
requires less time than the preceding SCF calculation.

Usually all structural parameters are relaxed in searching for
stationary points on the potential energy surfaces. However, some-
times it is advantageous to freeze selected structural parameters:
(a) if the structure used is part of a much larger structure (e.g. a
model for a protein active site) and there are constraints provided
by the part that is not included in the model; (b) if the optimizations
lead to a qualitative wrong structure; (c) if a ‘relaxed surface scan’ is
performed. Such scans are utilized to obtain insight into the shape
of potential energy surfaces or to determine an initial guess for a
transition state. Algorithms to find minima (to be confirmed by a
frequency calculation) are well established in quantum chemistry
while optimization of transition states (characterized by a single
negative frequency) requires considerable experience and insight
into the system being studied [195,196].

The accuracy of optimized structures with DFT is usually excel-
lent to good when compared with accurate X-ray diffraction data.
For some recent benchmark results see, for example Refs. [108,197]
and Table 5. The most extensive transition metal benchmark calcu-
lations for 3d, 4d and 5d metals that also compare ECP and scalar
relativistic all electron approaches is found in Ref. [198]. Scalar rel-
ativistic all-electron Gaussian basis sets for third-row transition
metal complexes have been developed in Ref. [199].

In applications to 3d transition metal complexes experience
indicates that the weaker metal-ligand bonds (e.g. neutral amines,
phosphines, thioethers or pyridines) are typically overestimated
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Table 5

Statistical assessment of the performance of some common density functionals for
the bond distances of the light (31 molecules made of H-Ne) and heavy element test
sets (33 molecules containing atoms from Na-Ar), respectively

BLYP BP86 PBE TPSS B3LYP B2PLYP SCS-MP2
Light element test set
MD -13 -11 -1.0 -0.8 0.1 -0.1 -0.3
MAD 13 11 11 0.9 0.6 03 0.6
Min. -32 -31 -29 -31 -23 -1.6 -2.5
Max. 0.0 0.5 0.6 0.5 2.9 1.2 2.0
BLYP BP86 PBE TPSS B3LYP B2PLYP CCSD(T)
Heavy element test set
MD -2.5 -18 -17 -14 -0.7 -0.5 0.0
MAD 2.5 1.8 17 14 0.8 0.6 0.1
Min. -6.7 -3.7 -34 -39 -31 -18 -0.9
Max. -04 -04 -0.3 -0.2 0.8 0.3 0.3

Given are the mean deviation (MD) and mean absolute deviation (MAD) as well as
the minimum (min.) and maximum (max.) errors. All values are in pm (data taken
from [108]).

by nonrelativistic all-electron DFT calculations with standard func-
tionals by about 3-5pm (sometimes more) (Table 6), while the
strong bonds to anionic or strongly (back)bonding ligands like (02,
S%2-, OH-, NO*, CO, N3-, ...) are typically predicted with excel-
lent accuracy (errors of ~1-3 pm) by DFT methods. As an example
of how the results depend on functional, basis set and relativistic
treatment, consider a geometry optimization on the simple com-
plex [Cu(en),]?* (en = ethylenediamine) (Table 6).

The results of this calculation are representative of the typical
performance of DFT based optimizations and the significant points
may be summarized as follows:

Under the plausible assumption that the large decontracted
TZVPP basis set is a suitable reference point, it is seen that double-¢
bases are too small for quantitative results but that one approaches
basis set saturation already at the level of a singly polarized triple-¢
basis set such as TZVP.

Table 6
Representative geometry optimization results for [Cu(en);]?* using a variety of dif-
ferent basis sets and density functionals

Method Additions to Hgo Basis set R(Cu-N) (pm)
BP86 None SV(P) 207.5
BP86 ECP? LANL2DZ 207.4
BP86 None TZVP 206.8
BP86 None TZVPP(decr)® 206.7
B3LYP None TZVPP(decr)® 206.7
TPSS None TZVP 206.5
BP86 DKH2¢ SV(P) 206.4
BP86 ECP? SDD 205.8
BP86 DKH2¢ TZVP 205.5
BP86 ZORA4 TZVPP(decr)® 205.4
TPSS DKH2¢ TZVP 205.2
B3LYP DKH2¢ TZVPP(decr)® 205.2
BP86 DKH2¢ TZVPP(decr)® 205.0
BP86 DKH2 +VDWe TZVPP(decr)® 204.9
BP86 DKH2 + COSMOf TZVP 202.8
BP86 DKH2 + COSMOf TZVPP(decr)” 202.1
BP86 DKH2 + COSMOf+VDWe TZVPP(decr)® 202.0
Exp [507] 201.5

@ Effective core potential.

b Fully decontracted basis set.

¢ Second-order Douglas-Kroll-Hess all electron calculation.

d Zeroth order regular approximation.

¢ Includes a correction for the Van der Waals interaction [112].

f Includes a continuum model of the surrounding using the conductor like screen-
ing model [200] with an effective dielectric constant of infinity. This provides perfect
screening of the net charge of the dication by considering it as a perfect conductor.
Results for a finite dielectric constant of 80 resembling water are very similar.

The well-known relativistic bond contraction amounts to about
1-2 pm in the first transition row. Since it can be treated at neg-
ligible additional computational cost, it may be recommended for
all-electron calculations to include such a correction. Apparently,
even the standard, non-relativistically contracted basis sets can be
used in such calculations if they are at least of TZVP quality. How-
ever, even after the relativistic correction, the overestimation of
the metal-ligand bond distances for the weaker bonds is not fully
remedied.

Possible compensation by net charges through a continuum
solvation model such as the COSMO [200] or PCM [201] models fur-
ther improves the results while van der Waals corrections that are
important for modeling weak interactions appear to play a minor
role. The best results are obviously obtained by a simultaneous
inclusion of relativistic effects and charge compensation models,
both of which can be included in the calculations at very limited
extra cost compared to a standard all-electron geometry optimiza-
tion with a triple-¢ quality basis set. It is noticeable that even for a
given functional, the quality of the result is very variable—the worst
BP86 calculation with the LANL2DZ ECP/basis set provides a result
that is in error by 5.5 pm compared to experiment while the best
calculation with the same functional approaches the experimental
bond distance to within 0.5 pm.

About two thirds of the relativistic effect (perhaps often
more) can be recovered through effective core potentials. The
Stuttgart-Dresden potentials [202-206] appear to be quite pop-
ular while very small ECP and the associated valence basis sets like
LANL2DZ [207-209] - despite their popularity — appear to be too
small to deliver reliable results.

The differences between different density functionals are typ-
ically not large. Hence, a suitable strategy is to select the most
efficient functional for the geometry optimizations and to invest
the time that has been saved in a better basis set or a more realistic
model of the system that one wants to investigate. As alluded to
in Section 5, calculations without HF exchange can be done with
outstanding efficiency at essentially no loss of accuracy when the
density fitting approximation is employed. Hence, there appears
to be little reason to pursue computationally expensive geometry
optimizations with hybrid density functionals since equally good
and often better results are obtained with GGAs. Since the GGAs
like PBE and BP86 also deliver excellent vibrational frequencies it is
a computationally attractive and logical route to only switch to the
computationally much more expensive hybrid functionals for the
final total energy and property calculations where they have clear
advantages over GGA functionals.

7.2. Vibrational frequencies and IR spectra

The prediction of harmonic vibrational frequencies on the basis
of DFT has been rather extensively pursued [43]. They follow
directly from the equations presented in Section 6.2 if the two
perturbations are both taken to be nuclear movements.

In fact, harmonic frequencies predicted by GGA functionals such
as BP86 and PBE agree surprisingly well with observed fundamen-
tals with errors being usually well below 10% [210-212]. It has been
shown that this good agreement arises from a cancellation of errors
- the underestimation of harmonic frequencies and the neglect of
anharmonicities in these calculations [213]. Harmonic frequencies
are better predicted by hybrid functionals but to explicitly calculate
anharmonic corrections to harmonics vibrational frequencies is a
very difficult task. Consequently, the systematic error cancellation
that occurs with GGA functionals appears to be fortunate and such
calculations are of great help in the assignment of experimental
spectra. Secondly, the zero-point energy contributions to the free
energy are quite accurately predicted by DFT methods.
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IR intensities are straightforward to calculate from the eigen-
vectors if the Hessian matrix and the derivative of the electric
dipole integrals with respect to nuclear coordinates. A compila-
tion of benchmark results can be found in the book by Koch and
Holthausen [43].

7.3. Raman spectroscopy

It is well known that the intensity of Raman active vibrational
modes can be calculated from the derivatives of the polarizabil-
ity tensor with respect to the normal coordinates of the system
[214]. However, the polarizability tensor itself is a second derivative
property according to Eq. (77) with both perturbations being repre-
sented by the electric dipole operator!® [120]. Consequently, Raman
intensities and depolarization ratios are third derivative properties.
Owing to the ‘2n+1 rule’ [20] they can, however, still be calculated
from the second derivative data assembled during the frequency
calculation and the solution of the first order CP-SCF equations with
respect to an external electric field [215-219]. However, Raman
spectroscopy itself finds limited use in (bio)inorganic chemistry
and consequently the subject will not be further discussed here.

7.4. Optical spectroscopy (UV/vis, CD, MCD)

The calculation of transition energies from time-dependent
density functional linear response theory has been described in
some detail in Section 6.4. It is emphasized again that the lin-
ear response approach directly yields the transition energy rather
than the total energies of the ground- and excited states. Thus, the
excited states themselves are never explicitly calculated. Rather,
their energies are deduced from the poles of a frequency dependent
ground state property. Thus, one may wonder how one should cal-
culate transition properties such as transition dipole moments and
excited state properties such as the dipole moment of the excited
states?

The answer to the second question is simply: in the same way as
for the ground state. Thus, for the ground state it has been greatly
elaborated in Section 6 that all properties can be calculated from the
analytic derivatives of the total energy. Thus, the same procedure
applies to the excited states as well. The total energy of the excited
state is simply the sum of the ground state energy and the transition
energy predicted by the TD-DFT procedure. The derivatives of this
total energy then define all excited state properties. However, it is
evident that the excited state derivatives are more difficult to calcu-
late than the ground state derivatives because the excited state total
energy is not fully stationary. By this statement we mean that the
ground state total energy is stationary with respect to variations
of the MO coefficients and the transition energies are stationary
with respect to the variations in the X and Y amplitudes. However,
the transition energies are not stationary with respect to varia-
tions of the MO coefficients. Hence, there are additional CP-SCF
equations (so-called Z-vector equations) that need to be solved in
order to obtain what s called the excited state relaxed densities that
take the part of the ground state density in property calculations.
A lucid discussion and an impressive implementation of excited
state derivatives (firstimplemented by Amos and co-workers [220])
based on TD-DFT (into the TurboMole program) has been given by
Furche [221-223].

19 Thus, the dipole moment itself is the first derivative of the total energy with
respect to the external field strength. The polarizability is the second derivative and
therefore represents the change of dipole moment induced by an external electric
field.

Thus, the problem remains how to calculate transition prop-
erties from TD-DFT. Fortunately, this turns out to be rather
straightforward because TD-DFT fully determines both, the tran-
sition density and the transition current density [223]. For a given
eigenvector ‘On’ for a transition from the ground to the nth excited
state they are given by:

PO (XY = (XA + YO Wi(X)ralX)

ia

510) = 5 DO = YOm0+ T (114)

(113)

With 7 being the kinematic momentum operator. From these tran-
sition quantities one readily calculates the electric and magnetic
transition dipole moments (in atomic units) as:

nel = —/pon(x)rdx (115)

umag — %/r x O (x) dx (116)
Since j contains the momentum p, the magnetic dipole moment
contains the familiar angular momentum operator L. Thus, the oscil-
lator strength fO" and the rotary strength RO" are given by:

fOTl — §w0n|Me1|2 (117)

RO — lm(uel Mmag) (118)

These quantities are the central ones for the calculation of absorp-
tion and CD spectra. The latter has been quite extensively developed
for organic molecules and also for inorganic complexes by Ziegler,
Autschbach and co-workers [190-192,224,225]. The results for
transition energies are typically similar between the full TD-DFT
and TD-DFT in the Tamm-Dancoff approximation [175] while the
former treatment delivers better transition moments. On the other
hand, the full response treatment occasionally leads to instabilities
and the predictions for singlet-to-triplet transitions are often not
of high accuracy.

MCD spectra have been studied by Ziegler, Seth, Autschbach and
co-workers on the basis of TD-DFT [179,189,226]. Their methods
have been mainly developed for MCD A- and B-terms and proved
to be valuable. C-terms — the most significant for (bio)inorganic
chemistry - have been treated as well [179], but based on the
general discussion in Ref. [227] these methods are not yet fully
general and more development work appears to be necessary. The
challenge is substantial since essentially the entire ground state
spin-Hamiltonian (see below) needs to be well predicted alongside
with the transition energies and the transition properties.

The situation has changed most recently when a general method
for the calculation of MCD spectra was introduced on the basis
of multireference configuration interaction methods (MRCI-MCD)
[228].

The method extends and generalizes earlier semi-empirical
work [229,230] as well as the theory of Ref. [227]. While the com-
putational effort of such methods excludes the application to truly
large systems, it covers all of the correct physics and is applicable
to at least medium sized systems. As an example, the calculated
absorption and MCD spectra of [Fe(CN)g]3~ are shown in Fig. 6. The
spectra are dominated by ligand-to-metal charge transfer transi-
tions that are not easy to calculate by ab initio methods. This may
be ascribed to very large electronic excitation and differential elec-
tron correlation effects that occur upon increasing (or decreasing)
the formal d-electron count on the metal. In particular, the high-
negative charge of the cluster was only crudely modeled by con-
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Fig. 6. Calculated (broken line) versus experimental (full lines) absorption (bottom)
and MCD spectra of [Fe(CN)g]>~. For theoretical and computational details see Ref.
[228].

tinuum solvation models. Given these constraints, the agreement
is qualitatively excellent and quantitatively at least reasonable.

Following the first efficient implementations [231-236] TD-DFT
has quickly become very popular and is nowadays frequently used
(e.g.[109,237-249]). The method is very attractive indeed since its
computational cost is at most equal to that of a CIS calculation and
is considerably faster for HF exchange free functionals if the density
fitting technique is employed [221,236,250-252]. Initially there was
much excitement since it looked like as if TD-DFT was an accurate
technique for excited state calculations. However, the situation has
been found to be more complex and we note below some of the
typical problems that have been found with TD-DFT calculations
(see also [14]):

(a) TD-DFT linear response calculations in the adiabatic approx-
imations do not include any double excitations. Thus, these
will be systematically missing from the spectrum although
they appear prominently in the d-d spectra of transition metal
spectra. Consequently, single excitations that mix strongly with
double excitations are poorly described by TD-DFT. A 1 typical
example is the complex [Ni(H,0)g]%* shown in Ref. [14] but the
problem is omnipresent in transition metal spectroscopy.

(b) Just like DFT ground state calculations fail for orbitally degen-
erate states, TD-DFT calculations cannot properly resolve the
multiplet structure for systems with orbitally degenerate
ground states. Some progress has recently be made for spin flip
transitions [253].

(c) TD-DFT calculations do not account for electronic relaxation
effects (e.g. the change of orbitals in the excited state). This
typically leads to overestimation of transition energies. These
effects have been fully included in the older DFT based cal-
culations of excited states that were based on Delta-SCF and
Slater transition state approaches. Consequently, TD-DFT pre-
dicted transition energies are frequently inferior to Delta-SCF

Fig. 7. Structure of the [Mn(N)(cyclam-acetate)]* cation used in the TD-DFT calcu-
lations described in the text.

or transition state calculations. However, these latter calcula-
tions are laborious since a full SCF calculation is needed for
each excited state, they may face convergence problems or
variational collapse and lead to non-orthogonal wavefunctions
which complicates the calculation of transition properties.2%

(d) The erroneous long-range behaviour of the functionals leads
to orbital energies that are much too high (5-6 eV compared to
accurate ab initio Kohn-Sham calculations) and also to very poor
results for Rydberg states. However, such states are of limited
importance for spectroscopy in condensed phases.

(e) The self-interaction error of DFT becomes much more severe
for excited states. In charge transfer transitions or transitions
of neutral-to-ionic valence character, the transferred electron
does not see the proper +1 charge that is “left behind” but more
positive charge. Consequently, such transitions are calculated
much too low in energy—sometimes by several electron volts.
These problems become less severe with hybrid functionals
since the Hartree-Fock exchange removes some of the self-
interaction error. However, as pointed out above, at the same
time the transitions move to higher energy.

Atypical example for the problems that TD-DFT calculations fre-
quently face has been analyzed several years ago [258] and is shown
in Fig. 7. The low-spin d? (closed-shell S=0 with the ground state
electronic configuration (dxy)?(dxzyz)(dx2—y2)°(d;2)°) complex
[MnVN(cyclam-acetate)]* has been spectroscopically characterized
and is known to feature only four electronic transitions in the visi-
ble region that are all of the d—d type [258]. A closely related MnVN
complex has been studied by polarized single-crystal absorption
and MCD spectroscopies [259]. The transitions occur exper-
imentally at 11,800cm~! ('A; — 3E(dxy — dxzyz)), 16,700cm~!
(A1 > "E(dxy = dxzy2)), 19,900cm™! (1A; — 3E(dyxy — dy2_y2)) and
37,700cm~! (1A; — 3E(dyy — dz3)). These transition energies are
well predicted by TD-DFT calculations using either the BP86
or B3LYP functionals with errors of only ~2000-3000cm™!.2!
However, the DFT calculations predict in addition a series of

20 The convergence problems are far less pronounced for transition state calcula-
tions in which one-half electron is moved from the donor to the acceptor orbital
[254-257]. In these calculations the transition moment is straightforwardly calcu-
lated from the matrix elements between the two half-occupied orbitals. From this
perspective, transition state calculations may be preferred over Delta-SCF calcula-
tions.

21 For example, the d-d transitions predicted with the B3LYP functional within
the Tamm-Dancoff approximation and in combination with the TZVP basis set are
11,500 (3E), 17,900 ('E), 19,400 ('A;) and 34,000 ('A;) cm~! which is in excellent
agreement with experiment.
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ligand-to-metal charge transfer transitions arising from the axial
carboxylate. This series starts already at 13,000cm~! in the BP86
calculations and smoothly extends to the far UV with at least 15
such states being calculated below 40,000 cm~!. The nature and
energies of these transitions are absurdly low and there is no exper-
imental evidence for them. Such transitions are expected to occur
above 35,000-40,000cm~! [260]. The B3LYP functional is much
better in this respect since due to the HF exchange it is less plagued
by the self-interaction error. The predicted d-d transition energies
are similar to those of the BP86 functional but the LMCT series
starts ‘only’ at 26,500 cm~! which is still much too low and con-
sequently, there are ‘only’ six artificial states interspersed into the
d-d spectrum.

This simple example shows that TD-DFT predicted spectra are
often quite good except that they are plagued with artifacts like
erroneous or missing states. In fact, TD-DFT in the adiabatic approx-
imation and in combination with the standard functionals misses
on one of the most important aspects of theoretical electronic
spectroscopy—the balanced treatment of excited states of different
character.

Taken together, the combination of all of these problems lead to
predicted optical spectra for open shell transition metals that are
not fully reliable and sometimes, as in the example shown, even
absurd. The situation is usually but not always better for closed-
shell species and for systems with strong metal-ligand bonds such
as organometallics. However, in general one has to apply TD-DFT
calculations with utmost caution and one is well advised to seek
critical feedback from experimental data. Uncritical trust in the
results of TD-DFT calculations is not justified.

7.5. Resonance Raman spectroscopy and absorption bandshapes

The resonance Raman (rR) effect arises from a strong enhance-
ment of the Raman intensities if laser excitations occurs within an
absorption band [214,261,262]. In this case, the response of the sys-
tem to the perturbation is highly nonlinear and it is better to step
outside the linear response formalism developed above. Several
competing formalisms have been developed for the calculation of
R intensities and absorption bandshapes (for a relatively compre-
hensive list see references in [38,263]) A very convenient technique
has been developed by Heller and co-workers who outlined a
general time-dependent formalism that allows the calculation of
absorption (and fluorescence) bandshapes, IR intensities and rR
excitation profiles [264-267]. The formalism has the appealing fea-
ture that the computational effort scales only linearly with respect
to the number of vibrational modes.22 For the special case that
the vibrational modes are treated in the harmonic approxima-
tion and the Franck-Condon approximation is invoked, closed form
solutions to the desired integrals are known [271]. Without going
into any detail of the somewhat intricate mathematical procedures
[38,263] The central quantity that appears in these calculations is
the displacement of the equilibrium energy minimum along each
vibrational mode in the electronically excited state (Fig. 8).

These quantities are directly related to bonding changes and
hence give much insight into the electronic structure of the system.
They may be viewed as the optical spectroscopy equivalent of the
spin-Hamiltonian parameters mentioned in the next section. They
can be determined by fitting experimental data [272,273] or from
quantum chemical calculations. Our recent suggestion has been to

22 Direct calculation of multi-dimensional Franck-Condon factors on the other
hand scales with the number of excited quanta to power 3Noms and quickly become
impossible for larger molecules (however, see recent developments by Berger [268]
and Grimme [269,270,269]).
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Fig. 8. Schematic description of the most important parameters that enter the cal-
culation of resonance Raman intensities. The ground- and excited state potential
energy surfaces are represented by harmonic potentials where the excited PES is
shifted by A, along the kth normal mode. Excitation of the ground state wavepacket
to the excited state leads to a non-stationary state that evolves with time on the
excited PES as described by Heller’s theory. The resonance Raman intensity is directly
related to Ay.

estimate these quantities from ground state force fields and excited
state gradients as [263]:

O,
0Qy 00

Where wy(n) is the kth vibrational frequency in the nth electroni-
cally excited state (that may to a Oth order approximation be taken
from the ground state force-field), E, is the total energy of the
nth electronically excited state and Qy is the kth normal mode.
The derivative is best obtained from the Cartesian derivatives by
a simple linear transformation:

3En _ ka 8En
Qe Z m)/2 Xp
p

where X, is a Cartesian coordinate of an atom with mass m, and
Ly is an eigenvector of the mass-weighted Hessian matrix that
describes the kth normal mode.

If these displacements are fed into the full-dynamics
wavepacket equations of Heller and co-workers, it has been
our experience that excellent agreement with experimental
spectra can be obtained (Fig. 9 [263,274]). The central quantity to
be obtained are the first derivatives of the excited state energy
as discussed above. In such calculations, TD-DFT methods are
moderately successful (somewhat inferior to ab initio methods)
but if an analytical TD-DFT gradient is available, the spectra can be
obtained very efficiently. It is stressed that this way of calculating
absorption (and fluorescence) bandshapes, rR intensities and
excitation profiles is superior to the short time approximation that
has sometimes be used together with excited state gradients to
calculate rR intensities. Conversely, the calculated displacements
serve as excellent approximations for fitting procedures and
also provide the signs of the displacements that are difficult to
determine experimentally (Fig. 9).

As a recent example, we quote an extensive resonance-Raman
study on transition metal dithiolenes with the formula [M(L),]~
[274]. In these complexes, M = Co, Ni, Cu, Pd, Pt and L is a benzene-
dithiolate derived ligand. All these complexes have the metal in the

2

Aqiln) = ~w}(n) (119)

(120)
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Fig. 9. Comparison of calculated and experimental absorption (left) and resonance Raman (right) spectra for the 'Ag — 'B, transition of trans-hexatriene. The upper left
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lower left. On the right, the left panel corresponds to calculated (MR-DDCI2 + Q) 1R spectra with excitation throughout the absorption band compared to experimental spectra

on the right (arbitrary intensity units on the y-axis of the right-hand side figure).

formal oxidation state of +3 and show intense absorption bands in
the visible and near-infrared region. Since the complexes were sus-
pected to contain dithiolene radicals, the nature of the excitations
was of particular interest. If an absorption band could be identified
as a ligand-to-ligand charge transfer (LLCT) process, this would be
indicative of a ligand-radical in the electronic ground state. Alter-
natively, if the excitation could be identified as ligand-to-metal
charge transfer excitation, the dithiolenes would be seen to behave
as innocent ligands. Obviously, the resonance Raman spectra of
these complexes are very rich and display complex enhancements
patterns. However, on the basis of simplified correlated ab ini-
tio calculations or TD-DFT calculations, the spectra of all systems
could be reproduced with near-quantitative accuracy (Fig. 10). The
analysis demonstrated that highly intense rR bands in the low-

frequency region (<500 cm~1) are the signature of LMCT transitions
that mainly enhance the metal-ligand stretching modes. However,
strongly enhanced rR bands in the region around 1000cm~"! are
indicative of ligand radicals, since these modes dominantly belong
to C-S stretching vibrations that become enhanced upon LLCT exci-
tations.

7.6. X-ray absorption spectroscopy

X-ray absorption spectra may be divided into three regions [17]:
(a) the pre-edge region consisting of transitions from core-orbitals
into valence orbitals, (b) the edge region consisting of transitions
from core-levels into high lying empty orbitals close to the contin-
uum and (c) transitions from the core-levels into the continuum
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Fig. 10. Resonance Raman spectra of [Cu(L);]~ (left) and [Ni(L), ]~ (right) upon excitation into the strongest absorption band. Experimental spectra are given on top. Predictions
by TD-DFT and MR-DDCI2 methods are given underneath. At the bottom, least-squares fits to the spectra are given that result from minor (<10%) adjustments of the quantum
chemically predicted excited state displacements.
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giving rise to the extended X-ray absorption fine structure. While
the analysis of the EXAFS region results in accurate structural infor-
mation that can be compared with structure optimizations, the
analysis of the pre-edge region is most informative with respect
to its electronic structure content. More recently, direct DFT cal-
culations of pre-edge spectra have been performed. We will focus
here on the calculation of metal- and ligand K-edge spectra which
have mostly been pursued.

In principle, these calculations could be done just like an ordi-
nary TD-DFT calculation of the valence-to-valence transitions.
However, there are several additional complications:

(a) In the metal K-edge region, the wavelength of the radiation
is no longer large compared to the size of the absorbing sys-
tem and hence the approximation of constant electric field
over the size of a single molecule is no longer valid. Thus,
higher order transition moments such as the quadrupole tran-
sition moment become important. However, a straightforward
evaluation of this transition moment leads to problems of
gauge-noninvariance that must be overcome.

(b) Excitations of core electrons are subject to significant relativistic
effects owing to the low energy of the core orbitals and the
associated high momentum of the core electrons.

(c) If one would proceed to calculate the excitation spectrum all
the way from the near-infrared and visible regions down to the
X-ray region, very many roots would have to be determined
and this would lead to unrealistically long computation times.
Hence, a way is needed to focus attention on the pre-edge region
without having to deal with the valence-to-valence excitations.

There has been a considerable history of pre-edge calculations
on light atoms that have been based on the Slater transition state
concept [275-281]. In these calculations potentially many indi-
vidual SCF calculations have to be done in order to construct
the spectrum. The benefit is that the electronic relaxation of the
core-hole is treated together with the relaxation of the valence
shell electronic structure. If relativistic corrections are properly
accounted for, such calculations lead to fairly good predicted tran-
sition energies and intensities [277-281].

The second type of approach that has been particularly intensely
pursued by Solomon and co-workers is to connect the results of
ground state DFT calculations to the intensity distribution in the
XAS pre-edge peaks. For these analyses standardized effective val-
ues for the radial transition moment integrals had to be defined
[282-288].

In keeping with the linear response philosophy, recent efforts
have been centered around a direct calculation of the entire
core-to-valence spectrum without resorting to system dependent

calibration procedures. A standard protocol has been worked out
that turned out to be simple and effective [289,290]. In these cal-
culations, excitations are only allowed out of localized core-holes
into the entire virtual space of MOs. Thus, by construction, the tran-
sitions included in the excitation space within the standard TD-DFT
treatment fall into the K-edge region of the absorber atom of inter-
est. The initial localization of the core hole is consistent with the
sudden approximation [291]. The construction covers the final state
effects to the same extent as TD-DFT covers these effects in the
valence region but the relaxation of the core-hole is not allowed
for in this protocol. It has also been argued that such effects are
probably small [292]. The inclusion of relativistic effects and very
large and flexible basis sets in the core region has been tried but not
found to greatly improve the results. These calculations do not lead
to accurate values of absolute transition energies—even after rel-
ativistic corrections, the erroneous potential of the standard DFT
functionals close to the nucleus prevents this anyways. However,
relative transition energies for series of complexes or different tran-
sitions within the same species are usually very well predicted by
the calculations with an accuracy of a few tenths of an eV. Thus,
a constant shift can be applied for each absorber at a given level
of DFT functional and basis set in order to obtain good predicted
transition energies. The intensity distributions calculated with this
simple minded but effective approach are fairly good and overall the
calculations are efficient and successful [243,289,293]. It is readily
anticipated that one will see much more use of this approach in the
future. Similar studies on the basis of two-component relativistic
TD-DFT calculations have been reported by Ziegler and co-workers
[177].

As an example the calculation of ligand K-edges for a series of
transition metal dithiolenes is quoted [289]. As shown in Fig. 11,
excellent agreement between the measured and theoretically cal-
culated pre-edges in terms of the number of features, the energetic
shifts and the relative intensities of the bands has been obtained.
Similarly good agreement is often obtained in application studies
[289,294-302].

7.7. EPR and NMR spectroscopy

EPR and NMR experiments are parameterized by an effective
spin-Hamiltonian (SH) that only contains spin-degrees of freedom.
For an isolated spin-system with total spin S, the spin-Hamiltonian
can be written [303,304]:

Hspin = SDS + BgS + Z{sAtA) 1YW e WY 4 ..
A

(121)
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Fig. 11. Comparison of calculated (upper panel) and experimental sulfur K-edge spectra for a series of transition metal dithiolene monoanions with the central metal varying

from Ni to Pd to Pt. Adapted from Ref. [289].
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The individual terms refer to the zero-field splitting, the electronic
Zeeman-effect, the hyperfine coupling, the nuclear quadrupole

interaction and the nuclear Zeeman effect respectively. § and i(A)
refer to the spin-operators for the fictitious total spin of the system
and D, g, A®, Q® and oA are numerical parameters (SH parame-
ters) that are obtained experimentally from fitting the observed
spectra. The spin-Hamiltonian works on a (usually) low dimen-
sional Hilbert space that is spanned by the product functions
ISMs) ® |I(UM )- - |I<M)M )y where S, Ms refer to the total spin
ofthe electromc system and its projection quantum number (Ms =S,
S—1,...,—S)and analogously I(1), M ) denotes the nuclear spinand
its projection. Fortunately, (almost) all magnetic resonance experi-
ments can be completely described by the spin-Hamiltonian since
exact or at least accurate approximate solutions to the (time depen-
dent) Schrodinger equation are readily obtained. The contribution
of quantum chemistry is to relate the spin-Hamiltonian parameters
to the microscopic interactions that occur in the full (relativistic)
molecular Hamiltonian.

While there has been a longstanding tradition to interpret the
spin-Hamiltonian parameters by sum-over-states type treatments
based on ligand field theory [305-307], modern quantum chem-
istry employs the language of analytic derivative theory as outlined
in Section 6. This is not to say that the ligand field treatments
are not extremely useful as qualitative guides. It is, however, of
utmost importance to not “mix up” the levels of argumentation
between the spin-Hamiltonian, ligand field arguments and numer-
ical quantum chemical calculations. It should be remembered that,
when taken literally, systematically accurate predictions can not
be delivered by ligand field type calculations even when they are
“interspersed” with elements of DFT calculations. Perhaps the most
convincing marriage of ligand-field and DFT methods has been
developed by Atanasov and Daul and has proven to be very useful
in the interpretation of molecular spectra [308-317].

The linear response treatment of SH parameters appears now to
be reasonably well understood for all of the parameters that occur
in the SH. We will briefly summarize the results in order to show
the application of the methods described in Section 6. One compli-
cation that had to be overcome in the derivation of the equations
presented below is that DFT based quantum chemical calculations
always (and only approximately so) only deliver one particular Mg
component of an S, Ms multiplet (invariably the ‘principal’ com-
ponent with Mg =S). The properties of the remaining components
and their interrelationship must then be deduced from applica-
tion of the Wigner-Eckart theorem [20,227,318-325]. As becomes
evident from the form of the SH, all of the SH parameters can be
related to second derivatives of the total energy after supplement-
ing the BO Hamiltonian with the appropriate terms that describe
the interactions of the various spins with the magnetic field, with
the orbital motions of the electrons and amongst each other. Full
details of the relevant operators have been collected in various
places [11,12,323,326].

7.7.1. Zero-field splitting

The ZFS is the least well developed SH parameter in EPR
spectroscopy. From quantum chemistry, this term has two contri-
butions that arise from the direct magnetic spin-spin dipole-dipole
interaction (to first order in perturbation theory) and from the
spin-orbit coupling (to second-order in perturbation theory).

For the SS contribution McWeeny and Mizuno have shown [46]:

(SS) ge aﬂaﬁ a,Ba,B
Dy = 16525—122 Pler ™ = P Poe )
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The integrals appearing in Eq. (122) look complicated at first glance
but are readily calculated and owing to the factorization of the
two-particle spin-density matrix, Eq. (122) can be implemented
for large scale application without creating storage or computation
time bottlenecks. However, generally applicable programs have
only appeared recently [327-333]. The importance of the spin-spin
terms has been clearly recognized for the ZFS of organic triplets
and biradicals but it has been essentially discarded as an important
contribution to the ZFS of transition metals. However, recent results
show that the SS terms also contributes a non-negligible fraction
to the ZFSs of transition metal complexes (up to ~1-2cm~') and
needs to be taken into account for quantitative results [328].

The formalism to achieve an analytic derivative formulation of
the spin-orbit coupling part of the SH has been worked out only
most recently and is somewhat more involved than the treatment
presented in Section 6 [325]. The complications arise from the
fact that the SOC mixes states of different total spin and hence
the derivatives of the density matrices with respect to the total
spin become more involved. Since the formalism and the associ-
ated arguments are somewhat lengthy [325,318], this contribution
will not be covered in detail here. For alternative approaches see
[330-333,334-342].

7.7.2. g-Tensor

The g-tensor is well studied by now with a number of
implementations and applications available (for reviews see Refs.
[11,14,16,343-345]). One obtains the following expressions for the
four contributions:
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The first three terms represent first-order contributions while the
- usually dominant - contribution is provided by the second-order
contribution in the fourth term. This term involves the deriva-
tive of the spin-density matrix with respect to a component of
the magnetic field (thus the CP-SCF equations are solved for a
purely imaginary perturbation represented by the orbital Zeeman
operator ﬁzk(—ivk x r,)B) and the SOC coupling operator that
is represented by various approximations to the full two-electron
Breit-Pauli SOC operator (spin-orbit mean-field approximation,
SOMEF; Refs. [346-349]).

7.7.3. Hyperfine coupling
One finds for the three parts of the HFC the following expres-
sions:
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With P4 =gegnBefn. Thus, the first two terms are straightforward
expectation values that represent the Fermi contact interaction
and the electron-spin-nuclear spin dipolar interactions while
the SOC contribution is a response property [321]. In this case,
one has to solve a set of coupled-perturbed equations with the
three spatial components of the nucleus-orbit interaction operator
(PAZk(—in x (1 — RA))r,;f) taken as the perturbation. Since, the
solution of the coupled-perturbed equations becomes time con-
suming for larger molecules this should only be done for a few
selected heavier nuclei. For light nuclei, the SOC correction is usu-
ally negligible [350].

7.74. Electric field gradient
The EFG tensor is straightforwardly calculated from:

V/(ﬁ;) = prr((ﬂx\rgs(r/z\(suv = 3ra;uTaw)l@r)

K, T

(130)

Once available and supplemented by the nuclear contribution,
the EFG tensor can be diagonalized. The numerically largest
element Vpax (in atomic units) defines the value of g which
is in turn used to calculate the quadrupole splitting parame-
ter as e2qQ=235.28VmaxQ where Q is the quadrupole moment
of the nucleus in barn. Transformed to its eigensystem, the
quadrupole splitting enters the SH in the following form:
[351,352]:
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The asymmetry parameter 7 is defined as:

n= |Vmid*Vmin| (132)

Vmax

It is to be noted that this is the only term which involves the total
electron density rather than the spin density. The field gradient
tensor is consequently of a quite different nature than the hyperfine
coupling which depends on the same dipolar interaction integrals
but in the case of the HFC they are contracted with the spin density
instead of the electron density.

7.7.5. Chemical shift tensor

The chemical shift tensor is closely analogous to the theory
of the g-tensor and consists of a first- and a second-order part.
However, instead of the derivative of the spin-density, it involves
the derivative of the total electron density since the spin-orbit
operator is replaced by the nucleus-orbit operator (see reviews
in [353]):
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All the one-electron integrals that appear in this section are
straightforward to calculate if Gaussian basis functions are used.
A complication is met in taking the first derivatives of the elec-
tron density matrix with respect to a magnetic field because
the angular momentum operator occurring in the orbital-Zeeman
perturbation is referred to the global origin of the coordinate sys-
tem. Hence, the results depend on the choice of origin which
is undesirable and unphysical. While this dependence is known
to vanish in the limit of a complete basis set, care has to be

taken in practice where a complete basis set cannot be used.
The most satisfactory solution is to employ magnetic field depen-
dent basis functions (GIAO’s, Ref. [354-356] that are of the
form @7} (x, B) = ¢/} (x) exp(i(a/2)(B x Ra)r). As a consequence of
this Ansatz, the basis set depends on the perturbation and the
more general form of the CP-SCF equations (Eq. (93)) must be
employed.

7.7.6. Performance of DFT

The accuracy of EPR parameter calculations with DFT is some-
what variable. For organic radicals and biradicals including amino
acid radicals, usually very good results are obtained for g-tensors,
hyperfine and quadrupole couplings and also for zero-field split-
tings. In such investigations, the EPR II or EPR III basis sets appear
to be adequate. Hybrid functionals such as B3LYP and PBEO have
been found to be somewhat more accurate than GGA functionals,
in particular for hyperfine couplings. A recent calibration study has
shown that the meta-GGA hybrid TPSSh (and possibly also TPSSO)
leads to competitive performance [357].

For transition metals, the situation is more involved. The
g-shifts, being a response property, are usually significantly under-
estimated by the standard functionals [320,358,359]. However,
this underestimation depends somewhat on the metal and the
oxidation state. The worst results are usually obtained for Cu(II)
complexes while other configurations such as Ni(IlI) or V(IV) appear
to work much better. The underestimation of the g-shift has been
attributed to a combination of too covalent bonding and too high
d-d transition energies (that essentially determine the stiffness of
the system with respect to external perturbations). In these calcu-
lations hybrid functionals like B3LYP are certainly to be preferred
[320]. However, as pointed out by Kaupp and co-workers [358], ele-
vated levels of HF exchange are dangerous since they lead to strong
spin contamination and bring with it all of the disastrous failures
of HF theory for transition metals.

For zero-field splittings very little data exists and most of it is
based on theoretical approaches that are significantly inferior to
the linear response treatment mentioned above. There is evidence
that the new method leads to better results than the previous cal-
culations and are comparable to the results obtained for g-tensors
[325,360]. However, much more work is certainly necessary in
this area. Nevertheless, reasonable results have been obtained for
Mn(II) [245,361] and Mn(III) [328] complexes while the very large
zero-field splittings in Fe(IV)-oxo compounds that arise from very
low-lying excited states of different multiplicity than the ground
state [362-364] cannot be predicted to high accuracy by standard
DFT methods.

For hyperfine couplings to the metal nucleus the additional
problem is the significant contribution of the SOC part (that is neg-
ligible for most ligand nuclei with the exception of sulfur, selenium
and other heavier ligands). The SOC contribution to the hyperfine
couplingis closely related to the g-tensor and hence a similar under-
estimation is evident by present day DFT methods. On the other
hand, the Fermi contact term is particularly pathological since it
depends on the indirect core level spin polarization arising from the
unpaired spin density in the metal d-orbitals. This spin-polarization
is difficult to calculate to high accuracy and so far DFT calcula-
tions significantly underestimate it[321,365,366]. Again, increasing
the fraction of HF exchange helps but the same comments as for
the g-tensor above apply. Also, relativistic effects on the isotropic
hyperfine coupling can no longer be neglected in the first, and of
course also in the second- and third transition rows [513-515]. Since
the three contributions to the hyperfine coupling feature very dif-
ferent physical mechanisms (core-polarization for the contact term,
the valence shell spin-density distribution for the dipolar term and
the linear response for the SOC part) it is difficult to arrive at highly
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Fig. 12. Comparison of calculated and experimental EPR parameters for the delocalized mixed-valence Cu(1.5)- - -Cu(1.5) complex [Cuy(GT)]** shown in the right. Data adapted

from Ref. [367].

accurate predictions. Again, results depend somewhat on the metal
and oxidation state.

As a recent example for EPR calculations, a study is quoted
were very detailed experimental information has been obtained
(Fig. 12, Ref. [367]). The complication in such studies is that the
high-resolution (2D, high-field) EPR spectra are very rich owing
to the many magnetic nuclei that contribute to them. The sim-
ulation of the spectra was only achieved in a consistent way
through a combination of the quantum chemically calculated
parameters with the experimental measurements. In particular, the
orientations of the many hyperfine tensors were best established
from the theoretical calculations. Overall, the agreement between
theory and experiment should be considered as satisfactory
(Fig. 13).
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Fig. 13. Calibration curve for the prediction of Mdssbauer isomer shifts from non-
relativistic B3LYP calculations with the CP(PPP) basis set. Adapted from Ref. [384].

7.7.7. Quadrupole splitting and NMR chemical shifts

Not much systematic work appears to have been done
on the quadrupole couplings of the metal nuclei, except for
57Fe that is described below. Transition metal complex NMR
properties have been extensively investigated by Biihl et al.
[368-375]. More recently, several groups have begun to calcu-
late paramagnetic NMR spectra which is relatively straightforward
once the EPR property calculations have been accomplished
[376-378].

Overall, it may be concluded that DFT approaches are already
quite useful for the interpretation of magnetic resonance parame-
ters but further development is required before fully quantitative
accuracy has been achieved. Whether or not this is possible
along the lines of the standard functionals is an open ques-
tion.

7.8. Méssbauer spectroscopy

The combination of DFT calculations with °? Fe-Méssbauer spec-
troscopy [379,380] has been found to be a particularly fruitful
combination in the study of iron enzymes and has quickly been
taken up by a number of groups [16,381-389]. In zero-magnetic
field the two main quantities that are extracted for a given iron
site are the quadrupole-splitting AEq and the isomer shift § that is
referred to a suitable standard (metallic iron foil).

7.8.1. Quadrupole splitting

From a theoretical point of view the calculation of the
quadrupole splitting is relatively simple since it can be calculated
directly from the elements of the electric field gradient (EFG) tensor
at the iron nucleus as:

1 / 1
AEineQVZ 1+§772

Vi, Vy and V; are the principal components of the electric field gra-
dient tensors in a coordinate system with |V;| > |Vy| > |Vy|, e is the

(136)
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positive elementary charge and Q(°’Fe) is the nuclear quadrupole
moment (measured in barn).

The EFG tensor itself is readily calculated as an expectation
value over the ground state electron density. One point of concern,
owing to the r—3 dependence of the field gradient operator, is the
influence of relativistic effects on the results. However, it has been
found to be very limited in a systematic study of iron complexes
together with the ZORA treatment for relativistic effects [385]. Sev-
eral groups have performed calibration studies in order to arrive at
a suitable value for the quadrupole moment of the >’Fe nucleus
and a value of 0.16 barn now largely appears to be consensus. The
performance of DFT for the prediction of >’Fe quadrupole split-
tings is somewhat variable. Depending on the series of complexes
studied, errors may range from 0.3 mm/s up to 1.0 mm/s. Unfor-
tunately, it has been found in several studies (e.g. [390]) that the
computed quadrupole splittings react fairly sensitively to details of
the surrounding such as counter-ions. The sign of the computed
quadrupole splittings is usually in agreement with experiment
unless n approaches unity where the sign itself becomes essentially
meaningless.

Quadrupole splittings are often interpreted from ligand field
models with simple rules for the contributions from each occu-
pied d-orbital. However, these models fail even qualitatively in the
case of more covalent metal-ligand bonds. A worked out example
has been provided for the quadrupole splittings of Fe(IV)-oxo sites
in their S=1 or 2 spin states. Here, ligand field considerations do
not even provide the correct sign of the quadrupole splitting [391].

7.8.2. Isomer shift

While the complications that are met in the computation of
quadrupole splittings are severe enough that full quantitative accu-
racy is seldom met, the situation is different for isomer shifts. From
theoretical considerations [380], the isomer shift is linearly related
to the electron density at the nucleus:

dmp = a+b[p(0) —c] (137)

Where a and b are fit parameters to be determined by linear regres-
sion and c is a number that is merely introduced for convenience
Consequently, several workers have provided plots of the calcu-
lated electron density at the iron nucleus versus the experimentally
obtained isomer shift for a range of complexes [16,381-389]. More
recently Filatov has developed a linear response theory for the iso-
mer shift and used it in conjunction with DFT or ab initio methods
[392]. All of these plots show that very good linearity is obtained
that allows the prediction if isomer shifts with an uncertainty that
is smaller than 0.1 mm/s. Some workers have preferred to construct
plots for a limited set of iron oxidation states and coordination
environments while others have argued in favor of a single, unique
calibration.

These calibration curves have already seen dozens if not hun-
dreds of successful applications (e.g.[8,12,13,243,246,295,363,381-
387,389-391,393-421,16,422]). Importantly, the experience gained
in these applications indicates that the quality of the calibration
does not depend on the charge-state of the iron centers, not on
their spin state, not on their coordination number or the nature
of ligands or whether the iron is involved in spin-coupling or not.
Thus, these calculations, despite their simplicity, are successful and
robust.

Nevertheless, some statements must be made:

(a) Since the electron density shows a cusp at the nucleus, it
appears to be necessary to carry out calculations with basis
functions that show the correct behavior at the nuclei. This
is not the case for the typically employed Gaussian basis sets
that decay too slowly for small distances (and too fast for

large distances). Consequently, the basis set limit, known from
numerical Hartree—-Fock calculations to be ~11,900 a.u.—3, is dif-
ficult to reach with Gaussian basis sets. With good bases (say
19 uncontracted s-primitives) one reaches electron densities at
the nucleus that are around 11,820 a.u.=3. Obviously, the per-
centage error is small but the absolute error of several dozen
a.u.73 is large compared to the limited variation of the electron
density over the chemical range of Fe(VI) to Fe(I) compounds
that amount to only ~10a.u.—3.

(b) Secondly, the relativistic effects on the electron density at the
nucleus are already very large for iron. Proper account for rel-
ativistic effects shifts p(0) to around 15703.951 a.u.=3 [423].
Thus, if one pursues a non-relativistic treatment, the electron
densities one calculations are off by thousands of a.u.~3 while
one interprets changes on the order of a fraction of 1a.u.”3.
The situation is even worse, since with a point nucleus, the
relativistic orbitals (and also the quasi-relativistic one- or two-
component orbitals) diverge in the basis limit. Thus, in order
to obtain a systematically correct relativistic electron density
at the iron nucleus one needs to resort to a finite nucleus
model.

Based on these two comments one could conclude that the cal-
culation of Mdssbauer isomer shifts is a very involved subject where
accuracy is difficult to achieve. The reason why this is not the case
is revealed in Fig. 14 which analyzes the contributions of the iron
1s, 2s, 3s and 4s (valence shell) to the variation in the electron den-
sity at the nucleus from non-relativistic calculations. It is clear that
by far the largest contributions to the electron density of ~11,800
comes from the Fe 1s and Fe 2s orbitals. However, these contribu-
tions are to a brilliant approximation constant in molecules and
practically all variation occurs in the semi-core 3s and valence 4s
shells. These shells are mainly influenced by the effects of bonding
and these in turn are well described by DFT. Consequently, even
the non-relativistically calculated p(0) values accurately follow the
chemical variations and provide a reliable tool for Mdéssbauer prop-
erty predictions.

If one pursues such an approach, one has to stick to a given com-
bination of density functional and basis set since the calibration will
change for each such combination. The important points to realize
are:

Relative contribution to p(0) (au™)
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Fig. 14. Origin of the observed variation in the electron density at the iron nucleus
according to B3LYP DFT calculations on a series of iron complexes. It is evident that
practically all the variation that lead to the observed isomer shifts stems from the
valence (4s) and semi-core (3s) orbitals. Adapted from Ref. [384].
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The DFT potential provided by the standard functionals is not
only wrong in the long range but is also in error close to the nucleus.
Since the different functionals differ in this respect the absolute
values of the electron density differ strongly.

Different basis sets approach the basis set limit to a different
extent and consequently, the calibration only holds for the spe-
cial basis set with which the calibration was performed. While
it was originally thought, that it might be important to provide
additional flexibility in the s-part of the basis set in order to
allow the core-orbitals to properly distort in the molecular envi-
ronment [384], subsequent studies showed that this is not the
case and one obtains almost equally good results with the stan-
dard basis sets that offer only limited flexibility in the core region
[383].

The slope one obtains from the linear regression varies with
functional and basis set. However, in reality there is a definitive and
known slope with an absolute value —0.1573 mm s~ a.u.=3 [424].
This underlines the semi-empirical character of this simple minded
approach to the theory of the isomer shift.

7.8.3. Magnetic hyperfine structure

Since Mdssbauer spectroscopy is sensitive to all SH parameters,
they can also be obtained from an analysis of the spectra and the
same comments as in Section 7.7 apply A detailed study of the
magnetic hyperfine structure in Méssbauer spectra and the perfor-
mance of DFT methods is available [385]. As pointed out above, the
accuracy is moderate but can be improved by scaling procedures.
A scaling factor of 1.8 is suggested for the isotropic >’ Fe hyperfine
coupling calculated with the B3LYP functional and the CP(PPP) basis
set [384].

7.8.4. Nuclear resonance vibrational spectroscopy (NRVS)

A modern development in Md&ssbauer spectroscopy that has
been fuelled by the progress in synchrotron techniques is the mea-
surement of vibrational spectra via Mdossbauer transitions. The
inelastically scattered radiation (resembling the resonance Raman
effect), contains vibrational side bands the intensity of which cor-
relates with the involvement of iron motion into the normal modes
that are probed. The details of the theory are slightly more involved
and will not be discussed here [412,425-432]. However, the major
contributor to the NRVS intensity are the normal mode composi-
tion factors e4. In terms of these factors, the kth normal mode can
be written as:

M
Q=) enRaviz (138)

A=1

Which implies that ey, is simply the Cartesian part of the kth eigen-
vector L, of the mass weighted Hessian matrix that refers to atom
A with mass my. Thus, the ey, referred to the iron nuclei in the
molecule are readily obtained from the second-derivatives of the
total energy. The construction of the theoretical spectrum at a given
temperature from these quantities is discussed for example in Refs.
[412,432].

Since the force fields delivered by DFT calculations are usually
quite good, excellent agreement with experiment can be obtain in
such calculations [412]. Recently, a general program package has
been developed and attached to the ORCA electronic structure pro-
gram that not only allows the direct calculation of NRVS spectra
from DFT calculations but also allows for least square fitting of the
experimental data starting from the vibrational modes and NRVS
intensities predicted by quantum chemistry [432].

As an example, consider the NRVS spectrum of the low-spin
Fe(Il) complex [Fe!'(cyclam-acetate)(N3)]|* from Ref. [412] (Fig. 15).
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Fig. 15. Comparison of calculated and measured NRVS spectra for [Fe'(cyclam-
acetate)(Ns3)]*. The upper panel shows the experimental spectra together with the
best fit and the individual transitions corresponding ot it. The lower panel shows
the spectrum that has been predicted by BP86 DFT calculations together with the
TZVP basis set. Adapted from Ref. [412].

7.9. Spin state energetics

A characteristic feature of open-shell transition metal ions is
that several electronic configurations are accessible that may give
rise to a number of different spin-states. These spin states are often
close enough in energy such that their correct prediction becomes
challenging for theory. However, since it has been found that the
reactivity of different spin states of the same compound may be
very different and that a reaction might as well proceed on two
(or more) potential surfaces (the important ‘two-state’ reactivity
concept [10]), the accurate description of such states is of obvious
importance. Furthermore, the field of ‘spin-crossover’ complexes
where two spin states are in thermal equilibrium or there may be a
thermally or optically induced transition from one spin-state to the
other has found considerable attention in the inorganic chemistry
community [433].

The case is perhaps best illustrated with Fe(Il) complexes that
have also been extensively studied theoretically [434-447] In these
complexes, the low-spin state (1A;¢) corresponds to the electronic
configuration (tzg)ﬁ(eg)0 in an idealized octahedral notation while
the high spin state (°Tog) corresponds to ((tag)*(eg)?). Note that
the HS state is orbitally degenerate and hence Jahn-Teller active
which is a nontrivial complication that will, however, be ignored
for the purpose of the present discussion. Already ligand-field the-
ory is able to indicate the nature of the challenge: The electronic
energy difference Eys—Ers is given by 20Dg — 5B — 8C where 10Dq
is the ligand field splitting parameter and B and C are the Racah
parameters. Thus, a large ligand-field splitting favors the LS state
while strong interelectronic repulsion and a weak ligand field favors
the high-spin state. The considerable increase in interelectronic
repulsion in the LS state arises from the fact that the electrons
are ‘more crowded’ in the t,¢ subshell and more importantly that
there are more antiparallel spin pairs than in the HS state. Owing
to the existence of the Fermi correlation, electrons of like spin
repel each other less strongly than electrons of opposite spin. Obvi-
ously, a theoretical method that aims at a quantitative prediction
of the HS/LS energy gap must be very well balanced in order to
correctly predict the interplay between 10Dq (being dominated by
metal-ligand bonding) and interelectronic repulsion (being domi-
nated by dynamic correlation effects within the d-subshell).
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From this discussion it becomes evident that wavefunction
based ab initio methods face a severe problem: a lack of balance. In
the HF method only exchange is covered but no correlation. There-
fore, the HF method itself is strongly biased in favor of high-spin
states. For example, HF theory even predicts [Co(NH3)s]3* to have a
high-spin ground state [448]. The enormous bias for this state must
be corrected for by the inclusion of dynamic correlation. However,
it is known that the correlation energy calculated with standard
wavefunction methods converges only very slowly with increasing
size of the basis set for the correlation of antiparallel spin pairs (and
only slightly better for parallel spin pairs). Thus, humungous basis
sets must be used in wavefunction based calculations of spin state
energetics in order to obtain quantitative results. For example, a
recent study of Pierloot and co-workers on [Fe(NH3)g]2* [449] fol-
lowing up on earlier ab initio work [450], has used up to h-functions
(L=5)inthe basis set. Clearly, such calculations on larger complexes
will not become routine in the near future.

Unfortunately, experience has shown that standard DFT meth-
ods have an opposite bias in favor of the LS states [436]. This
behavior may to some extent be related to the characteristic
overbinding that still frequently occurs also for GGA functionals and
also to the self-interaction error. It is not at all surprising that hybrid
functionals greatly profit from error compensation and yield better
predictions than either HF or ‘pure’ DFT methods.2> However, also
the B3LYP functional fails in certain instances to predict the correct
ground state. Reiher and co-workers have proposed to decrease the
amount of HF exchange in B3LYP to 0.15 in order to arrive at better
predictions for Fe(Il) systems. Later it was shown that this B3LYP'
functional yields other properties with similar quality as the origi-
nal B3LYP. However, the optimum amount of HF exchange appears
to depend on the metal-, oxidation-state and property one is inter-
ested in and countless examples of similar reparameterizations of
hybrid functionals can be found in the literature (e.g. [451]). It is
therefore probably fair to state that a ‘universal’ solution to the
spin-state problems with DFT has not yet been found and that a pro-
liferation of purpose specific functionals does not aid in increasing
the comparability of results among different studies.

7.10. Exchange coupling constants and the ‘broken-symmetry’
approach

A subject that has caused extended and ongoing controversies
is how to best calculate the electronic structure and properties of
two (or more) interacting open-shell magnetic ions. This presents
no problem if the spins on the two sites (fictitious ‘site spins’ S, and
Sg)** are ferromagnetically aligned to produce the maximum total
spin Smax =Sa +Sg since in this case a single Kohn-Sham determi-
nant is readily constructed that describes the system as good (or as
bad) as a corresponding open-shell monomeric species.

The problems start in the much more frequently met case,
when the local spins are antiferromagnetically aligned to produce
the minimum total spin Sy,j, =1S4 — Sgl- Even in the case that one

23 The dependence of the spin-state energies on the amount of HF exchange is
to a very good approximation linear [442], as expected from the Ansatz for the
hybrid functionals if the orbital relaxation effects with increasing HF exchange are
not overly large.

24 1t is evident that these site spins are poorly defined in terms of rigorous quan-
tum mechanics since only the total spin-angular momentum can be measured in
experiments. The assumption that such site spins are meaningful entities is of course
strongly implicated by chemical evidence and it would perhaps not be wise to refute
the usefulness of the concept that the interacting system can be composed of mag-
netically interacting ions that in the majority of cases can be assigned a meaningful
site spin S, or Sg. Problems arise in the case of hetero-metallic clusters and in par-
ticular in the highly interesting mixed-valence systems. A thorough discussion of
such systems is outside the scope of this chapter.

whishes to describe such a system with a single electronic config-
uration, several determinants are necessary in wavefunction theory
to construct a configuration state function (CSF) that is an eigen-
function of the total spin squared S2=(S, +Sg)? operator with an
eigenvalue of S;in(Smin + 1). Examples of such CSFs for one and two
unpaired electrons on sites ‘A’ and ‘B’ are:

N
Vi = (bl —1aibr) (139)
v = 5 (2la1a2b1ba| — 181021 ba| — |@1a2b1b2| — |a1G2b1 by |

+2|a1Gzb1 by |) (140)

where (the here unspecified) orbitals a; and b; are essentially
localized on fragments ‘A’ and ‘B’, respectively. Note that these
wavefunctions are proper eigenfunctions of S? with total spin S=0
and parallel coupling of the spins on the ‘A’ and ‘B’ sites, respec-
tively. The expressions above emphasize the multi-determinantal
nature of such wavefunctions and that one should not confuse the
total spin S with its projection Ms for which a single determinant
layay...agbqby...bg| (for K-unpaired electrons on each site) would
describe “the antiferromagnetic state“. However, this latter deter-
minant is not an eigenfunction of S? and hence it is not a proper
starting point for a proper treatment of spin-coupling.

7.10.1. Spin Hamiltonian

In many cases, the energy differences between the states that are
dominated by ferromagnetic alignment and by antiferromagnetic
alignment of local spins are close in energy (less than a few hun-
dred wavenumbers). For the dimer case of this section, the possible
total spins form the sequence: Sy +Sg,Sa+Sg—1,...,—|Sa —Sgl. Toa
good approximation they can be represented by a phenomenolog-
ical spin-Hamiltonian type operator:

Hspin = —2/5458 (141)

That works on a basis of direct product spin-functions |SyM,) ®

~ N ~ 2 - - A A
ISgMp). Using the relationship $2 = (54 + Sp)” = 5% + 52 + 25,5 the
more useful form of the SH operator is:

Hpin = —J(§% - 52 - §2) (142)

where the effective exchange coupling constant /| measures the
strength of the “interaction” and is positive for ferromagnetic spin
alignment and negative for antiferromagnetic alignment. However,
it is important to note that there is no genuine ‘exchange inter-
action’ in nature but that the spin-state energy differences arise
purely from electrostatic interactions covered by the BO Hamil-
tonian. It is furthermore very important to clearly distinguish the
exchange-coupling type of spin-state energy differences from the
spin-crossover type spin-state energy differences. The latter arise
from different orbital configurations for the two spin states and, as
discussed above, are heavily influenced by differences in dynamic
correlation energy of the two spin states. However, for the prob-
lem of the exchange coupling type the different spin states arise
from the same orbital configuration—a problem of an entirely dif-
ferent quality that is influenced by many factors as will be discussed
below.

Unfortunately, such multideterminantal wavefunctions such
as Eqgs. (139) and (140) are unsuitable in combination with the
Kohn-Sham construction.?> An obvious alternative to DFT meth-

25 Restricted open-shell Kohn-Sham treatments have been proposed that would
cover such situations but they suffer from a lack of unitary noninvariance for rota-
tions between the partially occupied orbitals [452].
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Fig. 16. Interpretation of the origin of antiferromagnetic coupling in wavefunction theory through configuration interaction of neutral and ionic singlet wavefucntions.

ods are correlated multireference ab initio approaches. However,
these face serious challenges in trying to simultaneously treat static
and dynamic correlation in such systems. While excellent calcula-
tions can be done for not too many unpaired electrons (e.g. Cu(Il)
or Ni(II) dimers) [453-464], it is probably fair to state the situation
is not fully under control and an accurate ab initio calculation on an
Fe(IIT)-Fe(Ill) dimer has yet to be accomplished (however, see the
recent investigation by Marx et al. [465]). Thus, for at least some
time to come one is practically obliged to resort to DFT methods
in order to treat antiferromagnetically coupled systems. In fact, it
is possible to do fairly reasonable calculations on the basis of the
so-called ‘broken-symmetry’ (BS) approach [466-469], the physical
contents of which will be discussed below.

7.10.2. Nature and origin of antiferromagnetic coupling

In order toillustrate the principle it is sufficient to study a model
dimer with only one unpaired electron on each site (Fig. 16). Assum-
ing for simplicity that the system features a center of inversion
and one uses an open-shell spin-restricted formalism to com-
pute the high-spin (triplet) state, the Kohn-Sham determinant will
be of the form ¥g=|(core)y+_| where (core) denotes all the
doubly occupied orbitals. The symmetric and antisymmetric MOs
are formed from the singly occupied MOs (SOMOs) on each site
Y, =(a+b)[(2 £ 25)12 where ‘S’ is the overlap integral of the frag-
ment orbitals ‘a’ and ‘b’. One can pass from the delocalized MOs
to essentially localized MOs 1,4, by forming 745 =(¥+ + ¥ )[21/2.
These ‘essentially localized’ MOs are not perfectly local since due
to the orthogonalization constraint 71, has a tail extending to site
b and vice versa (an example will be provided below). Obviously,
the antiferromagnetic state could initially by represented by the CSF
Wyr = (|(core)naiip| — |(core)iian,|)/21/2 where the overbar denotes
occupation with a spin-down electron. Two points are to be noted:
(a) as pointed out above, already this two-determinant Kohn-Sham
determinant can not be properly represented in the Kohn-Sham
framework; (b) if this was the entire story, the solution would
always be ferromagnetic behavior since it is an elementary exer-
cise to show that the energy of Wuf is always above that of Y.
In fact, in Hartree-Fock theory, the energy difference is simply
2K,p = 2(nanpInpna)- Since Ky, is always positive [470], the ‘direct’
contribution to the exchange coupling constant J is always posi-

tive (and referred to as ‘potential’ exchange). In order to see how
antiferromagnetism comes about we will once more rely on wave-
function theory and ask for the appropriate translation into the DFT
framework later. In fact, in wavefunction theory one can form in
addition to the ‘neutral’ singlet state ¥ 4r also the two ‘ionic’ singlet
states W, = |(core)nqial, |(core)n,ip|. The symmetric combina-
tion of these two CSFs can interact with ¥ 4¢ through ‘configuration
interaction’ and leads to an energy lowering that is, necessarily, a
negative contribution to the exchange coupling constant J (and is
called ‘kinetic exchange’). From second-order perturbation theory,
the energy lowering is —4F§b /Uaa — Jap) Where Fgy, is the suitable
Fock-matrix element between 7n, and 1, and Jsq and Jg;, are the
Coulomb integrals J,, = (0ap|Nanp) and Jaa = (NaNalNana) (Fig. 16).

In order to illustrate this principle consider a model calcula-
tion on a simple, hypothetical Cu(ll) dimer ([Cuy(pu-F)(H20)5]3%)
(Figs. 17 and 18).

It is now an elementary task for a quantum chemical program
to rigorously evaluate the integrals that contribute to the exchange
coupling constant. One finds that the ‘direct’ ferromagnetic term is
small and accounts for only +17 cm~! while the ‘kinetic’ antiferro-
magnetic contribution yields —57 cm~1. Thus, the total predicted
J is only —40 cm~1. This value is much too small compared to rea-
sonable values for compounds of this kind that typically amount
to more than —100 cm~". The reason for this underestimation has
been deeply discussed by Malrieu and co-workers [457-459] and
Staemmler and co-workers [471-476]. At the heart of the prob-
lem is that the ionic configurations are much too high in energy
in such a simple picture. Their energies are greatly lowered if
they are allowed to ‘relax’ in an extensive dynamic correlation
treatment. Consequently, in such calculations they will mix much
more strongly with the neutral singlet configurations and hence
increase the antiferromagnetic coupling. Inclusion of these effects
via the so-called difference dedicated configuration interaction
(DDCI) [477,478] approach yields a J of —206 cm~! and the fraction
of ionic character in the singlet ground state has increased from
0.06% to 3.3%—more than a factor of five.

7.10.3. The broken symmetry Ansatz
The very clever idea to simulate the effects of this configu-
ration interaction without resorting to actual CI calculations is
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Fig. 17. The ‘magnetic orbitals’ of the model complex [Cu,(-F)(H20)s]3*.

to start from a single determinant wavefunction that reflects the
antiferromagnetic state but is of the ‘wrong’ spin symmetry. This
wavefunction is written:

WELSSS _ [(core)nap| (143)

Contrary to common belief, this determinant is not the broken sym-
metry determinant. It has the following three properties: (a) its
energy is always higher than that of Wg, (b) it is a 50:50 mixture
of W and Y r and (c) it has the same charge density as ¥ sr (and
Yg) but a qualitatively wrong spin-density. In fact, one observes
for a wavefunction of this type, that there are regions of positive-
(around site ‘A’) and regions of negative (around site ‘B’) spin-
density with the integral over all space being zero. It is crucial to
understand that this is qualitatively wrong since a proper singlet
wavefunction has zero spin density at each point in space.

From this discussion, it is clear, that a wavefunction of the type
W could never describe antiferromagnetic coupling properly.
The crucial point, that appears to be widely underappreciated in
discussions of the broken-symmetry method, is that after decid-
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ing on the form of WE'***, one applies the variational principle to
re-optimize the orbitals [479]. Thus, after having found a stationary
point, the true broken-symmetry wavefunction is of the form:

Wps = |(core’ )T Tp| (144)

Where 7, and 7}, have relaxed to their final form under the action
of the variational principle. They are typically less localized than 1,
and 7. Importantly, while 1, and 7, are orthogonal in their space
part, the same is not true for 7, and 7. Since these two spin-orbitals
are always orthogonal by their spin-parts there is no further orthog-
onality restriction on their space parts. Thus, there is additional
variational flexibility that the system uses to lower its energy and it
isonly this additional flexibility that brings about the antiferromag-
netism. In fact, it is perfectly permissible and also occurs frequently
in practice that - in the limit of very strong subsystem interaction —
both, 7, and 1}, relax back to ¥+. In this case, the BS determinant is
a standard closed-shell determinant and one has to conclude that
a standard two-electron bond has been formed between fragments
‘A’ and ‘B'.

Energy Gain Through Partial Delocalization
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(5~0.16 here)
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Fig. 18. Relaxation of the initial orthogonal magnetic orbitals 1, and 1, to the final broken-symmetry magnetic orbitals 7, and 7. The bottom shows the erroneous spin-density

obtained from a broken-symmetry calculation.
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This situation for the model system described above is shown
in Fig. 18 where it is obvious that after relaxation of the electronic
structure, the tails on the bridging fluoride increase and the final
BS orbitals are non-orthogonal by the space parts with an overlap
of ~0.16.

Owing to the strong nonlinearity of the SCF equations, it is dif-
ficult to foresee when this situation will occur. In fact, different
density functionals have very different propensity for symmetry
breaking. In general, the more HF exchange is in the functional the
more likely is one to remain in a broken-symmetry type solution
with 7, and 1}, being localized fragment MOs. This simply reflects
the typical intrinsic bias of HF and DFT—overly delocalized elec-
tronic structure for DFT and overly local electronic structure for
HF.

7.10.4. Physical interpretation of the BS wavefunction

Since any situation between no relaxation at all and full relax-
ation to the closed-shell determinant is possible, it is clear that the
broken symmetry determinant is not an equal mixture of ¥4 and
Y any longer. The situation has been analyzed in some detail in
Ref. [479] where it is shown that Wgs is a weighted linear combina-
tion of ¥ (describing a neutral configuration) and ¥, j, (describing
ionic configurations). Thus, what is achieved by the broken symme-
try formalism is something that is essentially physically correct: the
adjustment of ionic and neutral components to the wavefunction
through the variational principle. The physically correct configu-
ration interaction description described above does essentially the
same thing: mixing of neutral ¥ 4r and ionic ¥, ;, in order to mini-
mize the total energy of the system. However, the BS formalism does
not have enough flexibility in its Ansatz in order to allow the neutral
Y 4r to enter in the final result. Rather, it is — and incorrectly so - Wg
that is mixed into Wps. Qualitatively this is reasonable since both
wavefunction describe the neutral situation. Thus, there is every
reason to believe that the BS method yields a correct charge density
(as good as that obtained from standard DFT calculations), but an
incorrect spin density (Fig. 18). The occurrence of net spin density
in certain regions of space is clearly an artefact of the method. It is
however, also not entirely unphysical since these plots indicate the
distribution of ‘effectively unpaired’ electrons [480-482] - merely
they have an erroneous spin coupling in these broken-symmetry
calculations.

Thus, molecular properties that only depend on the charge den-
sity of the ground state are expected to be well represented by
BS-DFT calculations while properties that depend on the spin den-
sity require projection techniques. Note however, that the common
practice to discard a calculation on the basis of a spin-expectation
value (S2) >S(S+1) as ‘badly spin contaminated’ is inappropriate in
the context of BS-DFT: Rather it is desired and required that this spin
expectation value is substantially higher than the correct value and
this simply reflects the variational adjustment of neutral and ionic
components that is necessary in order to obtain the correct result.

7.10.5. Energy of the broken-symmetry solution

In order to establish the contact between the SH operator and
the broken-symmetry energy several routes have been proposed.
Perhaps the most straightforward way is to assume that ¥ and
Wps are both eigenfunctions of S, and Sz and then to equate the
expectation values of the effective Hamiltonian with the expecta-
tion values of the Born-Oppenheimer Hamiltonian.26 Thus, from

26 The assumption that the two states are eigenfunctions of (however defined) local
spin-operators is certainly difficult to defend at any level of rigor. For the argument
made below it is sufficient if the expectation values of the local operators over ¥
and Wpgs are sufficiently similar. This is, however, not fully realistic. If anything the

the two relations:

(Wes|Hspin |WBs)

—J[(82)ps — Sa(Sa + 1) — Sp(Sg + 1)]

(145)
= Eps = (WpsIHpo|¥ss)
(WrlHspinlPr) = —J [(S%)1s — Sa(Sa +1) = Sa(Sp + 1)] (146)
= Ens = (WrlHpo W)
One obtains:
j B (47)

(8%)ns — (5?)ps

Which has been advocated by Yamaguchi and co-workers
[483,484]. This equation has some appealing aspects. Let us start
with the plausible assumption that ¥y is an eigenfunction of
the total spin.2’” We then have (52)ps = Smax(Smax + 1). In the
cases where, in addition the BS calculation converged back to
the closed shell solution we would have (52)gs = 0 and obviously
J=—(Eus — Egs)/{Smax(Smax + 1)}. This extreme case corresponds to
very strong subsystem interaction (i.e. bond formation). The other
extreme case is met for no subsystem interaction. In this case,
the BS wavefunction remains at ¥§:°** and the expectation value
(82)ps = Smax thus implying J = —(Ens — Egs)/S2.x. Obviously, the
predictions differ by a factor of two in the two extreme cases. Both
extreme cases have been suggested in the literature. The original
treatment of Noodleman [255,466-469,485-487] implies the small
interaction limit while Alvarez et al. advocate the use of the strong
interaction limit ([488] and references therein as well as the asso-
ciated dispute in [489,490]). While for genuine antiferromagnetic
coupling the weak interaction case is certainly more realistic, it may
be appreciated that Eq. (147) nicely interpolates between the two
limits and includes both of them as special cases.

The calculation of the spin-expectation values that enter Eq.
(147) is a somewhat difficult subject since 52 is a two-electron
operator. Standard practice is to evaluate it like in wavefunction
theory as an expectation value over the Kohn-Sham determinant.
This is, however, not correct since the expectation values should
be taken over the (unknown) many-electron wavefunction of the
real system. Since (52) must be a functional of the density as well,
expressions have been suggested that allow the calculation the
expectation value from the density alone [491,492]. Practically
speaking, the differences between the Kohn-Sham expectation
value and the real (52) values should be of limited importance for
the calculation of exchange coupling constants given all the approx-
imations that are already involved.

7.10.6. Display of broken-symmetry solutions and the
corresponding orbital transformation

Given an arbitrary N-electron system and its high-spin and
broken symmetry wavefunctions, the question arises of how
to properly identify the SOMOs that are involved in the mag-
netic interaction. Frequently, these are not the highest occupied
orbitals due to spin-polarization effects of the type reviewed
by Noodleman and co-workers [493]. However, as apparently
first discussed in Refs. [479,494] one can put the invariance of
the Kohn-Sham determinant with respect to unitary transfor-
mations between the spin-up and spin-down orbitals amongst
each other to good use. In fact, as shown by Amos et al. long

expectation values of Sy and Sg over ¥gs must be smaller than those of ¥ and hence
this equation might be expected to somewhat overestimate the exchange coupling
constant.

27 In practice this is not the case in spin-polarized calculations. However, the devi-
ations from a spin-eigenfunction are usually small.
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Fig. 19. Determination of the magnetic orbital pairs through the corresponding orbital transformation for the simple model system [Cua(p-F)(H20)s]3*.

ago [495,496], one can define the transformation such that for
the transformed spin-unrestricted orbitals each occupied spin-
up orbital has a spatial overlap unequal zero with at most one
spin-down orbital. This is known as the corresponding orbital trans-
formation (COT). Thus, the corresponding orbital transformation
leads to an ordering of orbitals into three subsets: (a) essentially
doubly occupied spin-up/spin-down pairs with a spatial overlap
of essentially unity (typically 0.98-0.999); the slight deviations are
a consequence of spin-polarization, (b) 2|S4 — Sg| non-orthogonal
‘singlet coupled’ magnetic pairs and (c¢) unmatched spin-up
orbitals.

For the model system discussed above, the situation is shown in
Fig. 19.

The non-orthogonal singlet coupled pairs are of course not prop-
erly singlet coupled but represent a 74Tg broken symmetry pair.
Thus, the COT leads to an illuminating display of the contents of the
broken-symmetry solution. In particular, the spatial overlap of the
two orbitals being involved in the magnetic pair is an indicator of
the strength of the subsystem interaction. If it approaches zero, the
interaction is in the weak limit while values close to unity indicate
the strong interaction limit. In fact, using the spatial overlaps of the
magnetic pairs, the spin-expectation value of the BS determinant
can be conveniently calculated as:

N* - NP\ (N _NP
(S%)ps = ( 5 > < 5—+ l) + NP2 Zn?n?\sgﬁ\z

l (148)

N¢ and N? are the total number of spin-up and spin down electrons
and n{ is the occupation number of the corresponding orbital i with
spin 0.

We refer to this way of looking at the BS determinant as
a ‘valence bond reading’ of the electronic structure in a sim-
ilar sense like Malrieu and co-workers have advocated it for
looking at the results of CASSCF calculations [497]. The form
of the BS determinant revealed by the COT is strongly reminis-
cent of that used in Goddard’s generalized valence bond (GVB)
ab initio method [498]. In this method and Ansatz of the same
type is made but the singlet pairs are properly coupled and
configuration interaction between the components of the sin-
glet pairs is allowed [498]. However, while the GVB method
is only very moderately correlated and contains essentially no
dynamic correlation, the BS energy contains dynamic correlation
in the effective way provided by DFT. In his early pioneer-
ing applications Noodleman even referred to his BS calculations
as being obtained with the ‘valence-bond Xo’ method [466].
These considerations may help to rationalize the considerable

success of the BS approach for ‘magnetically interacting’ sys-
tems.

7.10.7. Performance of DFT

The numbers obtained from BS-DFT calculations are often sur-
prisingly good when compared to experimental measurements.
For example, for the model system described above, a B3LYP BS-
DFT calculation yields a J of —215cm~! based on the Yamaguchi
Eq. (147) which is in (fortuitously) close agreement with the more
elaborate ab initio result. GGA functionals typically suffer from the
characteristic overdelocalization and hence tend to overestimate
the exchange coupling.28 For example, a BP86 calculation together
with the Yamaguchi equation yields aJ of —517 cm~! which is about
afactor of two too large. This result is typical and explains why some
workers prefer to invoke the strong interaction limit in their BS-DFT
calculations. The physical justification of this error compensation
appears to be open to debate.

7.10.8. Comparison with experiment

In closing this section it should be pointed out the comparison
of measured and calculated numbers if often not unambiguous.
One point of concern is, that the measurement of exchange cou-
plings usually proceeds via thermal depopulation experiments.
This means that the system is always in thermal equilibrium and
consequently, the measurement is an adiabatic one. Thus, each spin
state has relaxed to its own equilibrium geometry during the mea-
surement. This does, however, destroy the regularity of the spin
ladder assumed by the Heisenberg Hamiltonian. Most calculations,
on the other hand, are performed only at a single geometry which
most often is the high spin geometry. In many if not most cases, the
energy lowering due to structure relaxation is only on the order of
a few or a few dozen wavenumbers. However, the exchange cou-
plings that one tries to predict are also on this order of magnitude
and hence some ambiguity arises as to what the best approach is.
If the structure is taken from the high-spin calculation, an artifi-
cial bias for this state is created and the antiferromagnetism will be
overestimated by the calculations. If the structure is relaxed tight
convergence criteria have to be used and if the relaxation effects
are large the underlying picture of a Heisenberg type situation is
lost.

28 Some workers have reported that the PW91 functional provides better predic-
tions for exchange coupling constants than BP86 [6,393] but the reasons for this
behavior are not clear.
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7.10.9. Alternative approaches to antiferromagnetic coupling

There has been a multitude of alternative DFT approaches to the
evaluation of exchange couplings. Here we only note the promis-
ing application of the “spin-flip TD-DFT” concept [253,499-501] as
well as a ‘constrained DFT’ approach [502] both of which appear to
provide predictions of similar quality as the BS approach.

7.10.10. More complicated situations

A lucid analysis of more complicated magnetic coupling situ-
ations like mixed valence systems with more than one-unpaired
electron on each site has recently been provided by Guihery and
co-workers. In particular, the crucial role of ‘non-Hund’ states (local
low-spin states) for inducing non-Heisenberg behavior has been
analyzed in detail [503-506].

8. Concluding remarks

In this chapter, a relatively comprehensive account has been
given of the calculation of molecular spectra on the basis of DFT
at the present state of the art. Starting from a brief exposition of
the foundations of DFT, the main density functionals in present
use have been described. The subject of time-dependent and time-
independent linear response theory has been treated in some
detail followed by a brief discussion of the computational real-
ization of DFT. These foundations have then been used in order
to formulate the linear response theory for a wide variety of
spectroscopic techniques that can now all be tackled with DFT
methods. The exposition of each individual technique was nec-
essarily brief but it is hoped that the connection to the general
theory has become evident. Furthermore, a — certainly partially
subjective - discussion of the strengths and weaknesses of DFT for
each of the techniques covered in this chapter has also been pro-
vided together with selected examples that illustrate the type of
agreement or problem that one is likely to encounter in practical
applications.

It may be considered pleasing that a common framework -
namely DFT in conjunction with analytic derivative/linear response
theory - accounts for so many molecular properties. The success of
DFT in predicting these properties is also significant. Property cal-
culations of the type indicated here already prove to be enormously
useful in many application studies and in conjunction with experi-
mental investigations. In favorable cases, the calculated properties
are accurate enough to reliably distinguish structural alternatives
for reaction intermediates or other species that are not amenable
to experimental structure elucidation. However, in many cases,
remaining problems have also been evident and it would be highly
desirable to arrive at predictions that are significantly more accu-
rate than the ones that are presently within reach. How to modify
DFT in order to achieve this goal is presently not clear since progress
towards systematically more accurate functionals than the now
well established standard GGA or hybrid functionals has been slow
in the past 10-15 years.

Thus, there is renewed interest in wavefunction based methods
which are believed to converge systematically towards the correct
answer. However, in particular when it comes to open-shell tran-
sition metals, these methods have a long way to come before they
can be reliably applied to ‘real life’ problems. First of all, their com-
putational cost is intrinsically still very high. Secondly, they need
to be applied in conjunction with very large and flexible basis sets
and third, the HF wavefunction is very often a very poor starting
point such that very extensive correlation treatments will be nec-
essary. It will be interesting to see whether the development of such
methods can be pushed far enough such that they become standard
research tools in (bio)inorganic chemistry.

In the context of DFT there are many subjects that warrant much
further development. Such challenges include the role, implica-
tions and removal of the self-interaction error, functionals that
are consistent with exact exchange, that cover medium range
electron-electron correlation, weak interactions and that show the
correct long range behavior, the treatment of multiplet effects,
electronic relaxation and excited states, the treatment of system
dynamics, very large systems and the proper treatment of magnetic
and relativistic effects as well as their interplay—to name only a few
areas where currently much effort is concentrated.

Taken together, the tremendous international efforts in the
development and application of new theoretical methods are
expected to greatly enhance the impact of theoretical chemistry
on the further development of chemistry. Thus, there appears to be
every reason to look forward to the future marriage of theory and
experiment in (bio)inorganic- and coordination chemistry.
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