
Description of Envisage

Sam Robson

June 27, 2008

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Envisage . 3

1.3 The Envisage Modelling Procedure . 3

2 Getting Started 5

2.1 Getting Envisage Up and Running . 5

2.1.1 Installing R and Bioconductor . 5

2.1.2 Installing Additional Required Packages in R 7

2.1.3 Installing Envisage in R . 8

2.1.4 Installing Tcl/Tk . 8

2.1.5 (OPTIONAL) Installing GeneSpring-R Integration External Pro-

gram Interface . 9

2.2 Requirements . 10

2.3 Data Pre-Processing . 11

3 Running Envisage 13

3.1 Initialisation of Envisage . 13

3.1.1 Initialising Envisage from Bioconductor 13

3.1.2 Initialising Envisage from Genespring 13

3.2 Envisage Graphical User Interface . 14

3.2.1 Selection of Variables Classes . 15

3.2.2 Envisage GUI Arguments . 16

3.3 Envisage Output . 17

1

4 Program Specifications 20

4.1 User Methods . 20

4.2 envisage() Argument Definition . 20

4.3 envisage() Argument Information . 21

4.4 Non-User Methods . 22

4.5 S3 Classes . 24

5 An Example Envisage Session 25

5.1 Using the GUI . 26

5.2 Using the command line . 28

5.3 Envisage output . 28

1 Introduction

1.1 Motivation

The development of high-density microarrays for gene expression analysis has been a

breakthrough in functional genomic studies, allowing parallel analyses of the expression

of many thousands of genes simultaneously at the transcriptome level.

Such high-throughput data require suitably advanced methods of statistical hypothesis

testing, such as analysis of variance, to ensure that measured changes in gene expression

represent true biological events. Noise, due to a combination of technical, environmental,

biological and random variation, can become a major problem in any microarray analysis

and, whilst this can be reduced somewhat with careful experiment planning and imple-

mentation, statistical methods must be used to isolate real changes in gene expression

from those occurring by random chance. To increase the power of statistical hypothesis

testing techniques, replicate data must be collected (7).

It is all but impossible to design an experiment such that the variable(s) under the

direct control of the experimenter (‘parameter(s)’) are the sole sources of variation within

the experiment. Unavoidable environmental effects, nuisance variables such as batching

effects, and phenotypic differences in in vivo experimental samples will effect the response

of the gene expression to the parameters of interest. These ‘covariates’ must be considered

when testing for significant changes in gene expression for the experiment parameters to

ensure the biological relevence of the results.

2

1.2 Envisage

Envisage (Enable Numerous Variables In Significance Analysis of Gene Expression) is a

package developed for the Bioconductor project in R (4) that utilises an automated linear

model (LM) selection process to extend ANOVA to a wide range of predictor variables,

including experimental parameters (drug treatment, disease state, time point, etc.), phe-

notypic covariates (gender, age, height, weight, etc.) and nuisance covariates (such as

batch effects). This allows the inclusion of a wider range of variables, be they interesting

experiment parameters or unavoidable covariates, when testing for significance.

The inclusion of such confounding variables in the significance tests provides a more

accurate representation of the true biology of the system under study. This process would

be particularly useful for clinical studies, where the between-sample variation can be very

high within each condition due to the difficulties in complete patient matching in a clinical

setting.

The Envisage package has been designed to be user friendly, with a simple to use

graphical user interface (GUI), described in section 3.2, for those that don’t want to

use the command line interface of R. Also, Envisage can be run on an object of class

ExpressionSet within the R environment, or alternatively can be run directly from the

gene expression analysis suite GeneSpring GX1. Use of Envisage within Bioconductor

is described in 3.1.1, and through the GeneSpring GX plug-in external program interface

in section 3.1.2.

1.3 The Envisage Modelling Procedure

This section gives a brief overview of the steps involved in the Envisage model selection

procedure. The input file for Envisage is an object of class ExpressionSet, created within

Bioconductor (section 3.1.1) or created automatically using the GeneSpring EPI plugin

(section 3.1.2). This object contains information about probe level signals for the array,

details on experimental variables for each sample, and annotation lists that can be used

to link probes to their respective gene targets.

The model fitting procedure is a two step operation. First, a model is fit containing

only main effect variables. Next, a more complex model is fit based on the first order

interactions of variables found to be significant in the first step. This model is selected

by first fitting a saturated model containing all available terms, and then removing terms

based on the Akaike information criterion. This is essentially a penalised log-likelihood

1Agilent Technologies, Santa Clara, CA

3

function that determines the benefit of keeping terms in the model with respect to its

explanatory power; if the addition of the term has no clear benefit to the fit of the model,

it is deemed unnecessary and removed. This two-step method was chosen to reduce

run-time at the risk of missing important interaction information.

A type II ANOVA test is used to test the significance of each of the model terms for

each gene. The model for each gene is compared with and without each of the terms, and

a p-value is calculated using an F-test statistic. A table of unadjusted p-values is created

with genes as rows and all model terms as columns.

It is recommended that a multiple testing correction procedure such as the Benjamini

& Hochberg false discovery rate (1) adjustment be applied to the p-values to correct the

matrix of p-values to take the large number of individual statistical test performed into

account. Available multiple testing corrections can be found in section 4.3). Corrected

p-values are compared to the specified p-value cutoff to test for significant differential

expression. Genes showing a significant ANOVA F-test p-value for a particular term

are considered to be changing significantly based on that variable. A list of genes with

significant p-values is output to the user for each term as a tab-delimited text files.

For more details on the model selection procedure, please see Robson et al.(manuscript

in preparation).

4

2 Getting Started

The following description of the Envisage package is focused on the analysis of single-

channel microarray data such as Affymetrix GeneChips, but the process can easily be ex-

tended to two-colour microarray and even other high-throughput data such as mass spec-

trometry data. The primary input file for the package is an object of class ExpressionSet,

a class of objects in R for representing microarray data. The object must contain all nec-

essary gene expression information and phenodata (experiment variable information) for

each sample, and also annotation information for the genome of interest. Relevant infor-

mation for MIAME (Minimum Information About a Microarray Experiment) compliance

can also be entered (3).

Envisage can be run within the R environment using an ExpressionSet object created

using the appropriate package in Bioconductor (affy for 1-colour data), or the package

can be run directly through the Genespring GX analysis suite, which will automatically

create the required object from the current Genespring GX experiment interpretation.

This chapter gives information on setting up the R environment, installing the Bio-

conductor packages, installing the Envisage package, and creating the required Biocon-

ductor object (both in Bioconductor itself and Genespring GX). Information for running

the program itself can be found in section 3.

2.1 Getting Envisage Up and Running

2.1.1 Installing R and Bioconductor

Envisage is a package available from Bioconductor, a publicly available collection of

packages for the statistical programming language R, allowing statistical and graphical

methods for analysis of gene expression data.

The R programming environment can be downloaded from the comprehensive R net-

work archive (CRAN) at www.cran.r-project.org. The current release, R-2.6-0, was

released on 2007-10-03. The latest release of Bioconductor (Bioconductor 2.1 – 2007-10-

08) can be found at www.bioconductor.org.

The simplest way to set up Bioconductor is to run it from the R environment, us-

ing the biocLite.R installation script. This will install the basic packages required for

gene expression analysis; affy, affydata, affyPLM, annaffy, annotate, Biobase,

Biostrings, DynDoc, gcrma, genefilter, geneplotter, hgu95av2, limma, mar-

ray, matchprobes, multtest, reposTools, ROC, vsn and xtable.

To do this, open the R environment, and type the following in the command line:

5

www.cran.r-project.org
www.bioconductor.org

> source("http://bioconductor.org/biocLite.R")

> biocLite()

This will establish a connection to the Bioconductor website and initialise installation.

To install additional packages, use the package name as an argument in the biocLite.R

method. e.g. To install packages affy and marray, type the following in the command

line:

> biocLite(c("affy", "marray"))

The getBioC.R installation script can also be used, which contains a larger number

of default packages than the biocLite.R script. To install this, follow the above steps,

replacing ‘biocLite’ with ‘getBioC’ :

> source("http://bioconductor.org/getBioC.R")

> getBioC()

Once packages have been installed, they must be loaded into the R environment to

allow use of the methods contained within the package. This must be done at the start

of every session. To do this, use the library() method. e.g. To load package affy, type

the following into the command line:

> library("affy")

Packages can also be downloaded, installed and loaded from the ‘Packages ’ tab at the

top of the R shell. Selecting ‘Install package(s)’ brings up a list of available mirrors for

the CRAN depository. Select the most suitable mirror, and a list of available packages

is displayed. Simply select the package of interest and choose ’OK ’. The package will be

downloaded and installed automatically. Selecting ‘Load package. . . ’ brings up a list of

packages available to be loaded. Selecting the required package and selecting ‘OK ’ has

the same effect as using the library() function.

Bioconductor packages are well documented, with help files available for all user-

level functions. Every package contains at least one vignette, an executable document

consisting of a collection of code and documentation text, providing information regarding

usage of the package. These vignettes can be found in the doc subdirectory of an installed

package, or can be called from the R command line using the openVignette() method

from the Biobase package. To view documentation for package affy, type the following

into the command line:

6

> library("Biobase", "affy")

> openVignette(package = "affy")

Help files for particular methods can be called internally within R by using the fol-

lowing methods, replacing ‘affy’ with the name of the required method:

> help.start()

> help.search("affy")

> help(affy)

> `?`(affy)

> apropos(affy)

> example(affy)

> demo()

> demo(affy)

2.1.2 Installing Additional Required Packages in R

Envisage requires the following additional packages which can be obtained from Biocon-

ductor as previously described:

multtest Multiple testing procedures for controlling the family-wise error rate (FWER)

and false discovery rate (FDR)

GeneSpring (OPTIONAL) Package for creating ExpressionSet object from Gene-

Spring GX experiment interpretations

tcltk Package for integration of Tcl/Tk libraries and widgets within the R environment

tkWidgets Package containing R based widgets from the Tcl/Tk libraries

Envisage also requires the following additional packages which can be obtained

from the comprehensive R archive network (CRAN) by going to the CRAN website at

http://www.r-project.org/, selecting “CRAN” under ‘downloads’, and selecting a CRAN

mirror site from the ones available. Available packages can be obtained by clicking on

“Contributed extension packages”:

car Package accompanying J. Fox, An R and S-PLUS Companion to Applied Regression

(2002) and contains functions for applied regression, linear models, and generalized

linear models, including the method Anova() which allows Type II ANOVA testing.

7

http://www.r-project.org/

2.1.3 Installing Envisage in R

Envisage is available as a package within Bioconductor and can be installed directly

through the R shell from the ‘Packages ’ tab as described previously in section 2.1.1.

Alternatively, the package source files can be obtained from the author’s website at

www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam robson/linear models/downloads/.

To install the package in R, please do one of the following:

UNIX/LINUX To install the Envisage source file (.tar.gz), first ensure that your

.../R/bin/ path is included in your PATH environment variable, and type the

following into the terminal: “R CMD INSTALL [full path to source tar.gz file]”.

WINDOWS To install the Envisage binary file on a machine running windows (.zip)go

to the ‘Packages ’ tab and select ‘Install package(s) from local zip files...’. Navigate

to the destination folder to which the Envisage .zip file has been saved and select

it. R will install the package automatically.

To load the package in R, simply use the library() method:

> library(Envisage)

2.1.4 Installing Tcl/Tk

The graphical interface for Envisage has been developed using the R based integration of

Tcl/Tk developed by Peter Dalgaard in the tcltk package. This package can be installed

directly through the R shell from the ‘Packages ’ tab as described previously in section

2.1.1. The Envisage GUI also uses widgets that are currently only implemented through

the BWidgets and Iwidgets Tcl/Tk packages that are currently not supported by

tcltk. To allow integration of R with these packages, users must install a current version

of Tcl/Tk, such as the ActiveTcl distribution from ActiveState2. The following is a step-

by-step guide to installing ActiveTcl and loading the BWidgets and Iwidgetspackage

for use in R:

1. Download the current distribution of ActiveTcl (release 8.4.16) free from the devel-

oper’s website at www.activestate.com/Products/activetcl/.

2. Install ActiveTcl as instructed.

2www.activestate.com

8

http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam_robson/linear_models/downloads/
http://www.activestate.com/Products/activetcl/
http://www.activestate.com

3. For Windows

Go to your computers advanced system settings and select ‘Environmental Vari-

ables ’. Under System Variables, select ‘New...’ to create a new environment

variable called MY_TCLTK with value ‘yes’.

For LINUX

Create a new global environment variable called MY_TCLTK with value ‘yes’ by

updating your profile file (eg .bash profile) by typing the following into the shell:

export MY TCLTK = “yes”

4. Repeat the above to create a new environment variable called TCL_LIBRARY and set

the value to the library path of your installation of ActiveTcl (e.g. “C:/Tcl/lib”

if you keep the default settings).

5. In R, use the addTclPath(path) method to tell R where to find the ActiveTcl

library files, where path is the library path of your installation of ActiveTcl (e.g.

“addTclPath(‘C:/Tcl/lib’)” if you keep the default settings).

You will now be able to use widgets from all packages contained in the full version of

Tcl/Tk.

2.1.5 (OPTIONAL) Installing GeneSpring-R Integration External Program

Interface

A script is available for those using Genespring GX for analysis of their microarray data,

which allows use of the Envisage package from within the Genespring GX environment.

This script will export the selected experiment interpretation and gene list into an R

environment, and use these to create a Bioconductor ExpressionSet object.

Genespring GX uses an External Program Interface (EPI) to allow interaction between

the Genespring GX environment and the R environment. A file, GS_R_in.txt, is created

in the Genespring GX ‘Data’ folder, and the batch file GS_exec_R_GUI.bat opens the R

environment directly. The function GSload.int in package GeneSpring can be called

on the input file GS_R_in.txt to load the Genespring GX experiment interpretation as an

object of class GSint. This can be converted directly to an object of class ExpressionSet

using the GeneSpring function GSint2BC().

Note: The current GSint2BC() is defunct since it still uses the old exprSet class for

Bioconductor objects. The Envisage package contains a modified function, GS2BC, which

has been updated to create a Bioconductor object of class ExpressionSet.

9

The R script Envisage.R runs the function Envisage() on the GeneSpring ExpressionSet

object. Output genelists are returned in a tab-delimited text format as described in sec-

tion 3.3 that can be read into the GeneSpring environment using the ‘Load Gene List

From File’ and ‘Load Gene List With Numbers From File’ JAVA class external plugins.

These are included in the Genespring-R integration package, and can be found in the

‘External Programs’ folder to the left of the main Genespring GX window).

The following is a step-by-step guide to installing the GeneSpring-R Integration EPI

to allow analysis of microarray data using Envisage directly through GeneSpring GX:

1. Download the Genespring-R integration package .zip file from the Agilent website

using one of the following links:

� For WINDOWS including R program (2.1.0) and BioConductor & GeneSpring

library – www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs r winall.zip

� For WINDOWS NOT including R program or any library – www.chem.-

agilent.com/cag/bsp/SiG/Downloads/zip/gs r win.zip

� For UNIX NOT including R program or any library – www.chem.agilent.com-

/cag/bsp/SiG/Downloads/zip/gs r unix.zip

2. Unzip the Genespring-R integration package directly in Genespring GX by drag-

ging the .zip file into any active Genespring GX window. Follow the setup procedure

as instructed.

3. Download and install the GeneSpring Bioconductor package from the Bioconduc-

tor website as described in section 2.1.1.

4. Download the files Envisage.programdef and Envisage.R from the author’s web-

site at www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam robson/linear-

models/downloads/. The Envisage.programdef file should be added to the“. . . /Agilent/-

Genespring GX/data/Programs” folder, and the Envisage.R file should be added to

the “. . . /Agilent/Genespring GX/data” folder. Upon loading Genespring GX, the

external program Envisage will be available from the “External Programs” folder

(see figure 1).

2.2 Requirements

The following are required for package Envisage:

10

http://www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs_r_winall.zip
http://www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs_r_win.zip
http://www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs_r_win.zip
http:///www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs_r_unix.zip
http:///www.chem.agilent.com/cag/bsp/SiG/Downloads/zip/gs_r_unix.zip
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam_robson/linear_models/downloads/
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam_robson/linear_models/downloads/

Figure 1: Selecting Envisage from Genespring GX.

� R version 2.6.1 or higher

� Bioconductor version 1.9 or higher

� tkWidgets version 1.16.0 or higher

� R packages tcltk, car

� Bioconductor packages affy, multtest

� Bioconductor package GeneSpring (if pre-processing data using Genespring GX)

� tcl packages BWidgets and Iwidgets (available as part of ActiveTcl.)

2.3 Data Pre-Processing

Pre-processing and sample quality control must be carried out before using Envisage

to avoid biasing the modelling procedures. This can be performed in Bioconductor, or

within the gene expression analysis suite GeneSpring GX. The modelling procedure uses

log-transformed gene expression data. In this way, the additive linear model corresponds

to a multiplicative model on the original non-logged expression values. Envisage will

automatically adjust the gene expression data if it is not log-transformed, but users are

encouraged to perform this step before beginning the procedure.

It is also recommended that in the quality control step, appropriate normalisation

steps are used to limit the effects of outlying samples. It is left to the user to decide

the level to which this quality control is performed. Quality control of genes should

also be carried out across the samples, firstly to limit the number of genes used in the

calculation (thus saving on run-time), and secondly to ensure that erroneous genes do

11

http://www.activestate.com/products/activetcl/

not elicit a significant effect. For instance, non-changing genes should be removed from

the experiment interpretation to avoid biasing in the multiple testing correction stage.

The ExpressionSet class is the basic container of microarray data within Bioconductor

and contains the following slots:

phenoData Variable information describing the phenotype for a microarray sample (such

as age, weight, treatment, etc.). This is stored as an object of class Annotated-

DataFrame, which itself contains two slots; the phenoData slot containing the phe-

notype data, and the varMetaData slot containing information about the phenotype

variables. See help(class:AnnotatedDataFrame) for more details.

experimentData Experimental information required for MIAME compliance (see 3). See

help(class:MIAME) for more details.

annotation Label associated with experiment annotation.

exprs A matrix of gene expression values for each sample.

These slots can be filled either directly in Bioconductor, using the affy package for

1-colour data, or the marray package for 2-colour data (for further assistance on data

pre-processing in Bioconductor, please see the appropriate package vignette), or by using

the GeneSpring-R integration EPI as described previously in section 2.1.5.

12

3 Running Envisage

3.1 Initialisation of Envisage

3.1.1 Initialising Envisage from Bioconductor

To run Envisage from Bioconductor, follow these steps:

1. Load the R environment as normal. Create an object of class ExpressionSet con-

taining all of your experiment data (for instance, for Affymetrix data use the

ReadAffy() function from package affy to load in information from the experi-

ment .CEL files).

2. Ensure that package Envisage has been correctly installed and load it as described

in section 2.1.1.

3. Either load the Envisage GUI by using the function call envisage() with argument

widget set to TRUE:

> envisage(expData, widget = TRUE)

Or run envisage() through the command line by setting the argument widget to

FALSE and providing further arguments as described in section 4.3. ‘expData’ is

the name of the experiment ExpressionSet object for analysis. Use of the Envisage

GUI is described in section 3.2.

If the GUI is used, the results will be assigned to a global variable ‘results’ so please

be sure that this will not overwrite any other objects within the R environment.

If using envisage() through the command line, users can assign the results to an

object of their choice.

3.1.2 Initialising Envisage from Genespring

To run Envisage from GeneSpring GX, follow these steps:

1. Ensure that the GeneSpring Bioconductor package has been downloaded and

installed as described in section 2.1.1.

2. Ensure that the Envisage.programdef and Envisage.R files have been downloaded

and installed as described in section 2.1.5.

13

Figure 2: The Envisage GUI.

3. Ensure that the Genespring-R integration package has been downloaded and in-

stalled as described in section 2.1.5.

4. Load the Genespring GX environment as normal. Ensure that ‘Envisage’ is avail-

able from the ‘External Programs’ folder (figure 1).

5. Select your normalised experiment interpretation and curated gene list and ensure

that the ‘All Samples’ experiment interpretation is selected. Selecting the ‘All

Samples’ interpretation ensures that samples are not grouped.

6. Finally, select the Envisage icon in the ‘External Programs’ drop-down menu to

the left of the interpretation view window. This will load the Envisage GUI, as

described in section 3.2.

3.2 Envisage Graphical User Interface

Envisage utilises a graphical user interface (GUI) for input of arguments to the envisage()

method. This prevents errors in argument input.

14

3.2.1 Selection of Variables Classes

The main GUI window (figure 2) lists the experiment interpretation variables, and allows

the user to specify which of these to use in the model calculations, and what class of

variable they are. The experiment interpretation may contain several variables that

contain identical information (for instance, one variable may contain a range of values,

and another may contain the averages of those ranges). Any such correlated variables

are flagged with star symbols (‘*’, ‘**’, ‘***’, etc) which should not be confused with

similar flags used for significance in ANOVA tables. Only one of these highly correlated

variables should be used in the modelling procedure to avoid overfitting of the data, so

users should be sure to select ‘None’ for all but at most one variable flagged with the

same number of stars. Selecting more than one may result in overfitting of the data and

errors in the hypothesis tests.

Users must specify the class of each of the variables to be used in the model by using the

variable class radio buttons. By default, None is selected for all variables. Selecting None

prevents a variable from being included in the modelling procedure. The two available

classes are numeric, for variables where each value has a numerical relevance (e.g. weight,

height, etc.), and categoric, for variables that have a small number of specific factor

levels (e.g. gender, disease state, etc.). Choosing the correct class for each of the variables

is essential for the modelling procedure. Selecting an incorrect class can result in the

modelling procedure failing.

The automated model selection process occurs in two steps. The first step optimises

a model with only main effect terms to find those variables that have the greatest effect

on the data. The second step calculates a model including first order interactions for the

variables from the main effect model. However, the user can choose to consider only main

effect terms if necessary. This may be done as a preliminary observation to see which

variables are of interest, or possibly because the number of samples is low compared to

the number of variables of interest, providing few degrees of freedom for the model.

If the user chooses to look at interaction terms, but there are too many variable

terms compared to the number of samples, the user will be prompted to remove some

variables from the first order interaction calculations (figure 3). The number of degrees

of freedom for the fitted model is dependent on the number of samples, so the size of the

experiment will determine the variables that can be included. If some categoric variables

have a particularly large number of levels, it is recommended to remove these from the

interaction calculations to avoid over-fitting of the data.

To ensure that variable names do not cause an internal error within R, they may be

15

Figure 3: Selection of variables for which to calculate interactions.

renamed by the program to ensure compatability. For instance, R does not like objects to

have names beginning with a numeric character (e.g. ‘2-Cycle batch’). If such a name

is discovered, it will be prefixed with the letter ‘X’ to prevent errors. Also, any hyphens,

slash characters or spaces will be removed and replaced with the character ’_’ for the

same reason.

3.2.2 Envisage GUI Arguments

Multiple Testing Correction A number of multiple testing correction algorithms are

available for use with the Envisage package. They are called through the Bio-

conductor package multtest. More information can be obtained by reading the

multtest package vignette. It is suggested that a multiple testing correction pro-

cedure is used due to the large number of genes being analysed. A list of available

multiple testing corrections can be found in section 4.3). A false discovery rate

correction is recommended, and the method of Benjamini and Hochberg is selected

by default (1).

Model Terms The user can choose to model only main effect terms with no interactions.

If there are a large number of variables to model compared to the number of samples,

this may be a useful preliminary analysis to find the most significant variables which

may then be used with interactions.

Starting Model If users have some idea of the variables that they would like to see in

the per-gene model, they can specify the minimum model to force these terms to

16

be present for all genes. In this way, the effect of variables of interest to the user

can be studied whilst allowing for leeway in the selection of further terms for each

gene. Variables are identified by a number with the prefix ‘p’. These identifiers are

used to specify the model. For instance, if you want to force variables ‘p1’ and ‘p2’

into the per-gene model, type ‘p1 + p2’ into the appropriate field. The syntax for

this field follow the usual standards for model entry, with ‘+’ indicating inclusion

of a variable, ‘:’ indicating an interation between two or more variables, and ‘*’

indicating the inclusion of two or more variables and all possible interactions (e.g.

“A*B” = “A + B + A:B”).

P-Value Cutoff The p-Value Cutoff defines the significance cutoff for the type II ANOVA

tests. A default of 0.05 is used by convention.

Results folder Finally, the folder in which to save the output files (described in section

3.3) can be specified. A new folder named EnvisageResults is created within the

specified directory, containing all of the Envisage output files.

3.3 Envisage Output

Once the modelling procedure is completed, results are output for significantly changing

genes for each term within the analysis. If the GUI is used, a new window is created

(figure 4) allowing the user to specify for which of the variables (and subsequent first-order

interactions) to output the results. If the output directory EnvisageResults contains files

from a previous analysis, these will be suffixed with the letters _OLD to avoid overwriting

data.

For each model term, the column ‘All Changing Genes’ gives the percentage of the

genes that show the term as significant in the model. The column ‘Significantly Changing

Genes’ gives the percentage of all genes that change significantly and also have a corrected

p-value less than the specified cutoff range. These values give the user a brief idea as to

which of the model terms have a significant effect on the gene expression.

Tick the boxes for all model terms that you require results for and press OK (select-

ing ‘Check All ’ will output all significant results). This will save the gene names and

corresponding p-values into a tab-delimited text format in the folder EnvisageResults in

the specified folder. These files are named based on the variable names. Any spaces in

the variable names are replaced by ‘ ’ to ensure file name compatability. Due to the con-

vention of specifying the interaction of two variables using a colon (e.g. param1:param2),

which is not a valid character for specifying filenames, it is replaced by the characters

17

Figure 4: The Envisage output selection GUI.

‘ INT ’.

The EnvisageResults folder also contains information regarding genes that show prob-

lems in the ANOVA tests. We can see aliasing errors in the ANOVA calculation for

interactions due to one of two reasons:

1. Extrinsic aliasing is due to the structure of the data – There is no relevant data for

a particular interaction group (e.g. there are no diseased patients in a particular

age group, so the effects for the interaction diseased:age cannot be estimated).

2. Intrinsic aliasing is due to the structure of the data – Particular effects cannot

be separated adequately (e.g. all diseased individuals in a particular age group

also have the same blood group. In this case we cannot separate the effects in

diseased:age and diseased:blood group).

Extrinsic aliasing will generally occur due to the use of an unbalanced data set, but

will not cause a problem with the significance calculations. Intrinsic aliasing is indicative

of correlation between explanatory variables. So the model will fit one variable and then

try to fit the same information again with the second variable. This may then pose a

problem since the significance results will depend on the order in which the terms are

fitted.

The two files produced, AliasGenes and AliasReport, give information on the genes

showing intrinsic aliasing. AliasGenes is a list of the aliased genes in a tab-delimited text

file. AliasReport gives more detailed information showing exactly which of the variable

levels are aliased. This may be useful for users to spot correlation between their variables

18

that may be unexpected. Users may wish to run the program a second time with one of

the two aliased variables removed.

If for some reason a gene gives a model for which the ANOVA calculation fails, the

name of the gene is output to a file called FailedAnova. This file should generally be

absent.

19

4 Program Specifications

4.1 User Methods

The following methods are available for users:

envisage This is the main function for the Envisage package. It takes in microarray

gene expression data and variable phenodata in the form of a Bioconductor object

of class ExpressionSet, and returns a list of genes that vary significantly based on

the experiment variables and their first-order interactions.

GS2BC Updated version of the GSint2BC() function from package GeneSpring which

converts GeneSpring experiment interpretation data into an object of class Express-

ionSet for use with Envisage.

4.2 envisage() Argument Definition

The following arguments are required for the user-level function envisage():

expData The data construct, of class ExpressionSet, containing all gene expression and

phenotypic data for the experiment.

widget A logical value specifying whether or not to use the widget based GUI for argu-

ment specification. This is set to TRUE by default.

MTC Multiple testing correction to use for correcting calculated p-values (see section

4.3).

pCutoff A number defining the p-value cutoff to be used in significance analysis. Must

be between 0 and 1.

useParams A character vector that defines which of the experiment variables to use in

the model calculation.

param4INT A character vector that defines the model variables for which interactions

should be calculated.

paramType A character vector specifying the classes (“numeric” or “categoric”) of the

variables in the model.

fileResults A character string defining the folder in which to save the results of the

modelling procedure.

20

MEorINT A character string defining whether to consider only main effect terms in the

model(“ME”), or to look at first order interactions(“INT”).

startModel A character string representing the starting model for analysis. Must be of

the form“x ∼ term1+ term2+ term1 : term2+ . . . ”. Care must be taken to ensure

that the model terms match the names of variables specified in useParams.

The following are the default argument terms:

> envisage(expData, widget = TRUE, MTC = NULL, pCutoff = NULL,

+ useParams = NULL, param4INT = NULL, paramType = NULL, fileResults = getwd(),

+ MEorINT = "INT", startModel = NULL)

The following function call is sufficient if you want to run Envisage using the GUI:

> envisage(expData)

4.3 envisage() Argument Information

The following information is necessary when defining the arguments for envisage():

expData Try to ensure that explanatory variables are labelled sensibly. Avoid beginning

variable names with a numeric character and using special characters in variable

names. Envisage contains several basic internal functions for renaming variables

to avoid these problems, but this should be considered by the user. Spaces are

acceptable in variable names, but will be replaced by an underscore in output files.

widget Default is ‘TRUE’. If set to FALSE, great care must be taken to ensure that other

variables are correctly implemented.

MTC Multiple testing corresction procedures are implemented through the package

multtest. Available multiple testing procedures are as follows:

1. “NA” – No MTC selected

2. “BH”– (Default) Benjamini & Hochberg step-up false discovery rate (1995) (1)

3. “BY” – Benjamini & Yekutieli step-up false discovery rate (2001) (2)

4. “Bonferroni” – Bonferroni single-step family wise error rate

5. “Holm” – Holm step-down family wise error rate (1979) (6)

6. “Hochberg” – Hochberg step-up family wise error rate (1988) (5)

21

7. “SidakSS” – Sidak single-step family wise error rate

8. “SidakSD” – Sidak step-down family wise error rate

pCutoff Must be between 0 and 1. Default is p = 0.05.

useParams Users must ensure that no labelling variables are included in the list of

variables to use. Users must also ensure that only one of any group of highly

correlated variables is used, so be careful to select variables for modelling that

represent different aspects of the data. Also be careful to ensure constant naming

for all variables. This problem can be avoided by using the Envisage GUI.

param4INT Be careful to ensure constant naming with variables specified in the useP-

arams argument. This problem can be avoided by using the Envisage GUI.

paramType Variable class must be one of “numeric” or “categoric”. Users must be sure

that the order of the variable classes is correct to ensure that variables are assigned

the correct class. Assigning the wrong class to a variable can have a dramatic impact

on the modelling procedure. This problem can be avoided by using the Envisage

GUI.

fileResults Default is the working directory for R. Be sure to choose a directory that

can be accessed.

MEorINT Default is “INT”.

startModel This argument allows the user to specify a minimum model for use in the

modelling procedure to force terms into the selected model. This model must be

specified as a character string of the form “x ∼ term1 + term2 + term1 : term2+

. . . ”, which will be converted internally to an object of class formula. Care must

be taken to ensure that the model terms match the names of variables specified in

useParams.

4.4 Non-User Methods

The following methods are called by the user-level function envisage(), and should not

be directly called by the user:

envisage.data This function takes the experiment data and extracts all relevant infor-

mation (gene names, variable names, gene expression levels, etc) and assigns them

to individual objects in R for future use. This function also ensures that the gene

22

expression data is logged, so envisage() can take both logged and non-logged data

as its argument.

alias.glmNA This function directly extends the function alias() to objects of class

glmNA. Class glmNA directly extend the classes lm and glm to objects that show

aliasing in the modeling procedure. This allows the use of the type II ANOVA

function.

coef.glmNA This function directly extends the function coef() to objects of class

glmNA. Class glmNA directly extend the classes lm and glm to objects that show

aliasing in the modeling procedure. This allows the use of the type II ANOVA

function.

corParams This function flags highly correlated variables that may model the same

information in the model. Parameters showing a correlation greater than 0.98 are

flagged.

labelParams This function removes any labelling variables (variables whereby each sam-

ple has a unique value) from the experiment interpretation.

modelCalcME This function uses a stepwise method to fit a linear model for each gene

based on main effect variables.

modelCalcINT This function takes the main effect model of modelCalcME and uses only

the significant terms to fit a linear model including first-order interaction terms in

a stepwise process for each gene. A type II ANOVA calculation is used to calculate

significance p-values for each model term based on an F-statistic.

mulTestCor This function corrects the p-values for the type II ANOVA based on the

specified multiple testing correction.

result.output This function compares the significance p-values for each gene and vari-

able with the specified p-value cutoff. If a gene has a p-value within the limit for

a particular variable or interaction, then that gene is added to a gene list for the

variable. These gene lists are output to a folder specified by the user.

INTlevels This function calculates the number of levels for each main effect and first-

order interaction term in the linear model. This is used to check model degrees of

freedom against available degrees of freedom.

23

modelEntry This function allows users to specify a minimum model for the model

selection process.

4.5 S3 Classes

The following classes are defined in the package Envisage:

class-glmNA Class glmNA directly extend the classes lm and glm to objects that show

aliasing in the linear model.

24

5 An Example Envisage Session

We now demonstrate an example session using an example data set, SkinvsPancreas,

available as part of the Envisage package. The example data set is an object of

class ExpressionSet made up of gene expression levels for 50 probes over 48 individ-

ual Affymetrix MOE430 Plus 2 mouse GeneChips. This is a subset of a larger data set

for which a large number of experiment variables were recorded (Robson et al., In Prepa-

ration). The experiment design is multi-factorial, with 3 main explanatory variables;

tissue type (2 levels - skin and pancreas), time point after activation of the Myc protein

(4 levels - 4, 8, 16 and 32 hours) and status of the Myc transgene (2 levels - Myc ON

or Myc OFF). Three batching variables correspond to batching of samples at the tissue

extraction stage, RNA extraction stage and the microarray hybridisation stage. Further

experiment information, such as RNA quality and yield, was collected providing a total

of 12 variables. This data set is thus well suited for use with Envisage.

The first step is to load the package into R, then load the example data set:

> library("Envisage")

> data(SkinvsPancreas)

This will load the example ExpressionSet object SkinvsPancreas into the R environ-

ment:

> SkinvsPancreas

ExpressionSet (storageMode: lockedEnvironment)

assayData: 50 features, 48 samples

element names: exprs

phenoData

rowNames: 1, 2, ..., 48 (48 total)

varLabels and varMetadata description:

Sample name: Sample name

Treatment: Treatment

...: ...

Myc ON/OFF: Myc ON/OFF

(12 total)

featureData

featureNames: 1416783_at, 1416780_at, ..., 1416685_s_at (50 total)

fvarLabels and fvarMetadata description: none

25

experimentData: use 'experimentData(object)'

Annotation:

Parameter names can be seen by looking at the phenoData slot of SkinvsPancreas:

> names(pData(SkinvsPancreas))

[1] "Sample name" "Treatment" "RIN" "Nanodrop Conc."

[5] "Tissue batch" "RNA batch" "2-Cycle batch" "Starting cRNA"

[9] "Tissue" "Time point" "Replicate Number" "Myc ON/OFF"

5.1 Using the GUI

First, we will look at an example of how to run envisage() using the GUI:

> envisage(SkinvsPancreas)

The GUI should appear as in figure 2. It is worth noting that several of the variable

names have been renamed from their original names:

1. 2-Cycle batch -> X2 Cycle batch

2. Myc ON/OFF -> Myc ON OFF

The variable Sample name has unique values for each sample as shown below, so is

classed as a labelling variable. Any such variables should be removed from the modelling

process to avoid overfitting of the data, or alternatively users must be sure that the

variables are selected as numeric, and not categoric. Selecting any of these variables for

use in the model as a categorical variable results in an error message to limit accidental

assignment by the user.

> nlevels(pData(SkinvsPancreas)$"Sample name")

[1] 48

> length(sampleNames(SkinvsPancreas))

[1] 48

We make the following class selections for each variable:

26

Sample name None

Treatment None

RIN numeric

Nanodrop Conc. None

Tissue batch categoric

RNA batch categoric

2-Cycle batch categoric

Starting cRNA numeric

Tissue categoric

Time point categoric

Replicate Number None

Myc ON/OFF categoric

The default arguments are kept, which uses a Benjamini & Hochberg false discovery

rate multiple testing correction with a P-value cutoff of 0.05. Results will be saved

to a folder in the working directory unless otherwise stated. Pressing ‘OK’ brings up

another window confirming the variable classes selected. Click ‘Yes’ to continue. The

next window that appears allows users to specify which variables to calculate interaction

terms for (figure 3). For now we leave all variables selected, meaning that all of these

will be used to calculate interaction terms. Pressing ‘Ok’ brings up an error message

that informs us that we have too many variable terms in our maximum model. We can

choose to continue, and risk seeing errors in the analysis due to aliasing, or alternatively

we can choose to exclude some variables from the interaction term calculations. The 3

batching variables each have a large number of levels which will have a large effect on

the number of residual degrees of freedom. We can safely ignore the interaction terms

for these variables, since randomisation of batches should remove significant effects. So

press ‘Cancel’, deselect the batch variables and press ‘Ok’. This will start the modelling

process.

Once the program has finished running, the output window shown in figure 4 will

appear. By default, all terms are selected which will output results for all variables and

interactions to the file selected (the R working directory by default). Alternatively, users

can select which terms are of interest to them and output only these gene lists.

27

5.2 Using the command line

The same output can be seen by running the envisage() method through the command

line:

> useParams <- c("RIN", "Tissue batch", "RNA batch", "2-Cycle batch",

+ "Starting cRNA", "Tissue", "Time point", "Myc ON/OFF")

> paramType <- c("numeric", rep("categoric", 3), "numeric", rep("categoric",

+ 3))

> param4INT <- c("RIN", "Starting cRNA", "Tissue", "Time point",

+ "Myc ON/OFF")

> results1 <- envisage(SkinvsPancreas, widget = FALSE, MTC = "BH",

+ pCutoff = 0.05, useParams, param4INT, paramType, fileResults = getwd(),

+ MEorINT = "INT")

5.3 Envisage output

The results folder EnvisageResults contains the resulting gene lists for the analysis, as

well as the 2 alias outputs AliasGenes.txt and AliasReport.txt. These files contain

information on genes that show aliasing in the modeling procedure. As we can see,

the majority of the 50 genes (34 genes) have shown some problem due to aliasing of

the variables used in the analysis, and this may mean that the results of the modeling

procedure are affected. By looking at the alias report, we can see that aliasing is seen

between the same two variables, Tissue and Tissue batch, for all genes:

> names(results1$errorGenes)[1]

[1] "1416780_at"

> results1$errorGenes[[1]]

[1] "TissueSkin & (Intercept)" "TissueSkin & Tissue_batch2"

[3] "TissueSkin & Tissue_batch3"

Batching for tissue extraction was not randomised, and skin samples were all identified

with the tissue batch identifier 1. Thus the variable Tissue is in fact a subset of the

variable Tissue_batch which explains the intrinsic aliasing seen. We can therefore repeat

the process with the Tissue batch variable removed. After repeating analysis with the

Tissue batch variable removed, you will find that the result output file contains only

28

significantly changing lists of genes for several variables in the analysis with no problems

due to aliasing.

The resulting gene lists can be used for further analysis.

29

References

[1] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society, Ser.

B 57:289–300, 1995.

[2] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple

testing under dependency. Ann. Stat., 29(4):1165âĂŞ1188, 2001.

[3] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert,

J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson,

F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robin-

son, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron.

Minimum information about a microarray experiment (miame)-toward standards for

microarray data. Nat Genet, 29(4):365–71, 2001. 1061-4036 (Print) Journal Article

Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.

[4] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,

B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,

R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,

G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open software devel-

opment for computational biology and bioinformatics. Genome Biol, 5(10):R80, 2004.

1465-6914 Journal Article.

[5] Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance.

Biometrika, 75:800–802, 1988.

[6] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics, 6:65âĂŞ70, 1979.

[7] M. L. Lee, F. C. Kuo, G. A. Whitmore, and J. Sklar. Importance of replication in

microarray gene expression studies: statistical methods and evidence from repetitive

cdna hybridizations. Proc Natl Acad Sci U S A, 97(18):9834–9, 2000. 0027-8424

(Print) Journal Article Research Support, Non-U.S. Gov’t Research Support, U.S.

Gov’t, P.H.S.

30

	Introduction
	Motivation
	Envisage
	The Envisage Modelling Procedure

	Getting Started
	Getting Envisage Up and Running
	Installing R and Bioconductor
	Installing Additional Required Packages in R
	Installing Envisage in R
	Installing Tcl/Tk
	(OPTIONAL) Installing GeneSpring-R Integration External Program Interface

	Requirements
	Data Pre-Processing

	Running Envisage
	Initialisation of Envisage
	Initialising Envisage from Bioconductor
	Initialising Envisage from Genespring

	Envisage Graphical User Interface
	Selection of Variables Classes
	Envisage GUI Arguments

	Envisage Output

	Program Specifications
	User Methods
	envisage() Argument Definition
	envisage() Argument Information
	Non-User Methods
	S3 Classes

	An Example Envisage Session
	Using the GUI
	Using the command line
	Envisage output

