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0.1 Introduction and Notation

Invariably in chemical reaction systems do the dynamics of different species
vary on different time-scales. It is simple to deal with slow moving variables
since they can be assumed to be constant and hence equal to their initial
value. Dealing with fast variables is a little trickier. Usually a quasi-steady
state assumption is used in which the fast variables are assumed to have set-
tled down to a constant value after an initial transient period. However this
needs to be justified. Essentially what is being dealt with here is a singular
perturbation of a system of ODEs by a small parameter €. Tichonov’s theo-
rems (the first of which is presented here) states the conditions under which
the singular perturbation tends to the unperturbed system as ¢ — 0 and so
the dimension of the system of ODEs can be reduced.

Throughout this article Sy, . .., .S, will represent species involved in a cer-
tain chemical reaction network. The concentrations of these will be denoted
Z1,...,T,. It will be assumed that the reactions governing the dynamics of

these species can be summarised in a system of ODEs, namely

d
% == fl(xl,...,:rn)
dzx,,
P == fl(xl,...,:rn)
which may be abbreviated to % = f(z) where x = (z1,...,2,) and f : R" —

R" is a vector valued function.

The aim of this article is to show how to non-dimensionalise a system
of ODEs in order to be able to distinguish between variables changing at
different speeds and to present the first of Tichonov’s theorems. Finally,
an example is included at the end which demonstrates how Tichonov can
be applied to a simple chemical reaction network and should hopefully con-
vey the idea that when mass-action kinetics are assumed that some of the
assumptions of Tichonov are satisfied trivially.

0.2 Non-Dimensionalization

One way to distinguish between variables which are changing on different
time-scales is to non-dimensionalize in the following manner



Step 1 For each variable z....,z, choose constants X;,..., X, such that
Vi € {1,...,n}, 0 < ;—’; < 1 for all + > 0. Then substitute 1y, =
into the system of ODEs Vk € {1,...,n}.

Tk
Xy

Step 2 For each variable y; in the ODE find the largest coefficient of fi(yy, . . .

Then for each k € {1,...,n} define the relative time scale for this equa-
tion T), as the reciprocal of this coefficient. Then multiply the equation
for Y& by its relative time-scale.

Step 3 Decide on a time-scale of interest 7. Rescale time 7 = £

7
Step 4 The system of equations now has the form
dy,
my dr - fl(yla"'7yn)
dyi
my— - = filyis s un) (1)
T
d
mn% - fl(yla R 7yn)
T
where my, = Tka for k € {1,...,n}. Variable y; is classed as fast if
my < 1, slow if m; > 1 and varying on the time-scale of interest if

With a bit of thought it is clear what this form of non-dimensionalization
is trying to achieve. In the first instance the variables are all scaled so
that they vary between 0 and 1 which means that in the second step the
terms which have the most influence on the dynamics of the system are
identified and scaled to 1. So roughly speaking the terms on the right hand
side of the ODEs are approximately of the same order of magnitude and so
are comparable. The scaling of time in Step 3 allows one to determine the
variables that are varying on a time-scale in which we are interested in.
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0.3 Tichonov’s Theorem

Tichonov’s First Theorem is concerned with equations of the form:

d

d—j = f(z,y) for z € R"

d
ed—gt/ = g(z,y) fory € R™ (2)

with initial conditions z(0) = z° and y(0) = ¢° This is called the full
problem. It is clear from the previous section that many systems can be
written in this form upon being non-dimensionalized by collecting variables
which vary on the time-scale of interest in 2 and those which are fast in y.
Those which are considered to be varying slowly are considered constant and
hence equal to their initial value. It is necessary to define the adjoint of
system (2) as

Y — g,y )

.

where x is considered as a parameter. Tichonov’s theorem provides the con-
ditions under which the solution to the full problem (2) converge to the
solution of the problem when ¢ = (0 as ¢ — 0. If this should hold then the
dimension of the problem can be reduced by m for small e. In order to do
this we make the following assumptions:

1. For some open Q2 C R" xR™, f : 2 — R" and g : ) — R™ are
continuous.

2. 9 a continuous function ® : K — R™ on a compact set K C R" such
that (z, ®(z)) € Q and g(x, ®(x)) =0 for all x € K.

3. dn > 0 such that Vo € K and y € R™, y # ®(z) with ||y — ®(z)]| < n,
then g(x,y) # 0 i.e the root is isolated.

4. y = ®(x), the equilibrium of the adjoined system is asymptotically
stable Vx € K.

5. The full and reduced problem have unique solutions in 0 < ¢ < T for
some T > 0. (The reduced problem is defined as

y = O(x)
dz
) (1



with initial condition x(0) = z°).

6. (2°,9°) € Q and 2° € K and (2°,¢°) lies in the domain of influence of
the stable root y = ®(z). (i.e the solution of the adjoined system (3)
with parameter = 2% and initial condition y(0) = 3/° exists, remains
in QVt > 0 and tends to ®(z2°) for 7 — oo.

Tichonov’s First theorem states

Theorem 1. If assumptions 1 to 6 above hold for system (2) then the solution
to the full problem (x(t,€),y(t,€)) is related to the solution of the reduced

problem (4), xo(t), yo(t) = ®(zo(t)) by
ll_l}(l)fﬂ(t,ﬁ) :.’,U()(t) VO <t <1y

linéy(t, €) =yo(t) V0 <t<T,
e—

where Tqy is chosen such that y = ®(x¢(t)) is an isolated stable root of
g(xo(t),y) = 0 VO < t < Ty. Furthermore, the convergence is uniform
on [0, To] for x(t,€) and on [t1,To] Vit € (0,Ty] for y(t, e).

The proof to this theorem will not be stated here. A fairly simple proof
for the case when x,y € R can be found in [1] which is suitable to give an
incite into the intuition behind the theorem. For a complete proof in the
more general case see [2].

0.4 Example: Intracellular Calcium

Calcium is an important second messenger utilised by many cells including
cardiac, endothelial, fibroblasts, pancreatic, pituitary cells and neurons. It is
involved in a number of enzymatic processes in the cell such as smooth muscle
contraction, exocytosis and glycogen metabolism [5],[6]. The levels of Ca?*
are carefully regulated in the cell in a number of ways. One such mechanism
involves the pumping of Ca?" into intracellular stores (or pools) such as the
Endoplasmic Reticulum and the Mitochondria which is subsequently released
by a process known as Calcium Induced Calcium Release (CICR). There
have been many mathematical studies on intracellular calcium concentrations
especially since the discovery of oscillations in Ca?T in the cytosol in the mid
1980’s. Here a model proposed in a Master’s thesis by Sensse [4] as a minimal
model in which oscillations are observed is reduced using Tichonov’s First
Theorem.
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Figure 1: Schematic of the cell. S; is the cytosolic Ca%*, S, is the Ca?* in
the pool and S3 an enzyme which pumps it from the cytosol to the store.

0.4.1 Assumptions Underlying the Model

Figure 1 summarises the processes which govern the network which will later
be analysed. Calcium in the cytosol S; and in only one intracellular store
Sy are considered. Calcium is pumped from the cytosol to the pool by an
enzyme S3. We denote by S; the complex formed between the enzyme and the
calcium and assume that it obeys Michaelis-Menton type kinetics. Calcium is
released from the store by CICR, namely calcium in the cytosol influences the
release of calcium. The final assumption is that there is an in and outflux of
the calcium from the cytosol. The above assumptions give rise to the reaction
network:

O =32 S
S] —+ SQ —>k43 251 (5)

S+ S =5 Sy =10 Sy + S



Assuming mass-action kinetics and letting [S;] = x; for j = 1,...,4 the
reaction scheme (5) can be converted into a set of coupled ordinary differential
equations:

de’l

p — k21 — k121,'1 -+ k43]}1$2 — k65$1$3 + k56x4

dJSQ

—= = —ky3x129 + k762

dt 434142 7 4

d333

E — —k651‘1$3 —+ k561'4 + k76x4 (6)
df174

Using conservation laws the system can be reduced by noting that z3(t)+x4(t)
is a constant. Then if the initial conditions are z,(0) = X, 22(0) = Xy,
23(0) = E and 24(0) = 0, the equation for 2 can be omitted and z3 = E—14
substituted in to obtain

dx

(]—fl = kot — k1o + kazx129 — kesx1 (B — 24) + ks

d

2 = —k43.’171.’172 + k76l’4 (7)
dt

dx

d—: —ksexs + kesz1(E — x4) — kre24

0.4.2 Non-dimensionalization of the problem

The next step in the analysis is to determine which are the variables which
are varying on the time-scale of interest. We proceed as in section (.2.

Step 1: Scale concentrations From the conservation relation it is clear
that 4, < FE for all £ > 0. Bounds for x; and x5 are not so easy since
the network is not closed (i.e there is an in and outflux of calcium from the
cytosol). To determine them it is necessary to use a comparison lemma [7].
Using the bound for x4 and that all concentrations are non-negative yields

d

% < koy — kyoxy + kystix0 + ksgE

d

% S —k43£E1(L‘2 + kmE (8)



Hence by comparing (7) with the system

dz
d_fl e k?] - k]QZ‘I + k432122 + k56E
dz

with initial conditions z;(0) = X; and z2(0) = Xy it is trivial to prove that
bounds for z; and z; will also be bounds for x; and z,. From the phase
portrait of system (9) shown in figure 2 it seems clear that the trajectories
are bounded and in fact converge to the fixed point independent of the ini-
tial conditions. This is in fact the case as can be shown using continuity
arguments to define an invariant region. Although the bounds cannot be
found explicitely in this case it is clear that they will depend on the initial
conditions (and of course the parameters) and hence we will denote them by
F(X1, X3) and G(X1, X3) respectively for 2y and .

Substituting in y1 = 5155, V2 = Gy and ya = FF gives

d —k ksg B/

(Zl — ;1 — ko1 + kasGuyrys — IC65Ey1(1 — y4) 4 5}671 Y

dys ke

dt 43 y1y2 + G y4 ( 0)
dy,

p = —(kse + kr6)ys + kes Fy1 (1 — ya)

Step 2 and 3: Determining Relative Time-Scales and Time-Scale
of Interest In order to do this some assumptions have to be introduced on
the parameters. Here it is assumed (as in common when considering systems
involving enzymes) that F < X, X5. Noting that X; < F and X, < G the
relative time-scales of each equation are =z, == and & for yi, y, and
14 respectively. For this example the time-scale of interest will be that of
T,, since it is the calcium in the cytosol which exhibits oscillations. Hence
dividing each equation by its relative time-scale and rescaling time by the

time-scale of interest gives

! i ks
% = % — kioy1 + kasGyrys — kes Eyr (1 — ya) + 516; n
Gd k
f% = —ki3Gyiys + %yél (11)
k43G dy4 k43G
@4 _ P43y .
k65F dt k65F (k56 + k76)y4 + k65Gy1( y4)
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Figure 2: The phase portrait of system (9). The red line is the z; nullcline,
the yellow line the z; nullcline and the blue an example of a trajectory. The
green arrows show the vector field.



Step 4: Classify variables Assuming k;3 < kg5 and G = F' gives that y;
and yy are changing on the time-scale of interest and that y, is a fast variable.
Thus provided that the assumptions of Tichonov’s theorem are satisfied the
equation for y4 can be reduced to an algebraic one and the system reduced
to a two-dimensional ODE.

0.4.3 Applying Tichonov’s theorem

Letting % = 1 and defining € := ’;ﬁ the problem becomes

d k ksg B
% = % — kioy1 + ksGyrys — kes Eya (1 — ya) + 5; Y4
dys k6
o kysGyrys + 7 U4 (12)
d k4sG
6% = _k:iF(ksﬁ + k6)ys + kesGyr (1 — ya)
with initial conditions y;(0) = 3L, y2(0) = 22 and y4(0) = 0. The adjoint in
this case is
d k4G
% = _k:zF (k56 + k76)y4 + k65G’y1(1 — y4) (13)

Clearly the first hypothesis is satisfied trivially on 2 = R"™ x R™. In fact this
is generally true when the ODEs are derived from mass-action kinetics since
the right hand side of the equations will just be polynimials. To satisfy the
second assumption we need to find a root for ¢g that is defined on a compact
set. In this case it is simple as it can just be computed. It is easy to check
that

kes Fyn

. _ 14
(y1, y2) kse + krg + kes Fyn ( )

satisfies g(y1, %2, ®(y1,%2)) = 0 on all of R% In general if mass-action ki-
netics are assumed this can be shown using the Implicit Function Theorem
provided 86.794 # 0 on a compact set since g is a polynomial and hence contin-
uously differentiable. The isolation of the root also follows from the Implicit
Function Theorem again provided that % # (0. This we check:

89 ka3 G(kse+k7e)
3—3/4 T kisGy

<0 Vyi,y2 > 0

10



This also proves hypothesis 4 i.e that the equilibrium of the adjoint is stable.
Hypothesis 5 is ensured by the Basic Theorem of ODEs. This follows for
the full problem since the right hand side of the equations are polynomials
they are continuously differentiable and hence locally Lipshitz. It holds for
the reduced problem since the Implicit Function Theorem guarantees & is
continuously differentiable and so the existence and uniqueness of solutions
follows by the same argument. Finally it remains to check that (%, %, 0) €
Q and (3,22) € K and (3%, 22,0) lies in the domain of influence of the
stable root y4 = ®(y1,y2). The two former conditions are obvious. Defining

the parameter in the adjoint as (% %) gives

d kG X
% = —k::F(l%e + kz6)ys + kGSGFl(l — Ys)

which is just an ODE of the form

dy,
— = —Ay,+ B 1
dr i (15)

with A = k43G(k56,;;’:7}§+k65X1) and 236X - Equation (15) has solutions of the
form

B —-A
ya(r) = (1 — ) (16)
. B _ k65X1 . .
which te)I;dSXto T = 7;:56 ;—{km % a8 T — o0 Now all is left to show is
L Xo\ . N o
that ® (7, ?) = Im%iiﬁ but this is clear on substitution of the initial

values in (14).
We can now use Tichonov’s theorem for sufficiently small ¢ and reduce
the system of ODEs to

% - k_;‘l — kioy1 + ka3Gyrys — kes Ey (1 ks + Z:Zy]z%Fyl)
keskse By
k56 + k76 + k65Fy1
s keskr61n
= —ki3Gyryo + kse + ke + kes Fys "
B kes 'y
Yo =

ks + k7 + kes F'yn

11



Converting back to the original variables the problem becomes

% = ko1 — ko1 + kygmiwo — kes By (1 - Fmo + Z:ﬁ k65x1>
keskse Exy
kse + k76 + kg5
dzxy keskre By
ar ~haaa s kse + kr6 + ko5 (1)
kes Exq
Ty =

k56 —+ km =+ k65E$1

0.5 Conclusions and Final Remarks

Tichonov’s theorem is one way of reducing chemical reaction systems using
time-scale arguments. It is a specific form of the slow-manifold theorem. The
form presented here can be generalised to include a number of different small
parameters, namely when the system is of the form

dx
T)fl = fl(.’,Ul,...,.ﬁUn)
dx
617: = fQ(.ﬁUl,...,l’n) (].9)
dxy
en—l% - fn(x17" 71‘71)
(20)
with ¢, > e > ... > ¢,_1. Tichonov’s Second Theorem investigates the

behaviour of the solutions when €; — 0 in such a way that €;,1/¢; — 0 (see

[31)-

12



Bibliography

[5]

[6]

[7]

TIKHONOV A.N. 1985 Differential Equations Springer-Verlag

WASOV W. 2002 Asymptotic Expansions for Ordinary Differential
Equations John-Wiley and sons

KLONOWSKI W. 1983 Simplifying Principles for Chemical and Enzyme
Reaction Kinetics Biophysical Chemistry 18:73-87

SENSSE A. 2002 Algebraic Methods for the Analysis of Hopf Bifurca-
tions in Biochemical Networks (Masters Thesis)

GOLDBETER A. and DUPONT G. 1990 Allosteric Regulation, Coop-
erativity and Biochemical Oscillations Biophysical Chemistry 37:341-353

GOLDBETER A. 1996 Biochemical Oscillations and Cellular Rhythms
Cambridge University Press

DELILLO N.J. 1982 Advanced Calculus with Applications Macmillan
Publishing Co.

13



