Scanning Electrochemical Cell Microscopy as a Probe for Crystal Dissolution

Rachel Sheldon

Summary

- * Scanning Electrochemical Cell Microscopy (SECCM)
- * Crystal dissolution
- * Experimental setup
- * Crystal etching rates
- * Further work

Scanning Electrochemical Cell Microscopy

* Tapered glass theta capillary is used as a probe

- * The glass is silanized to be made hydrophobic
- * Each barrel is filled with an electrolyte solution

Scanning Electrochemical Cell Microscopy

- * Silver-Silver Chloride wire electrode placed in each barrel
- * A potential is applied between the two electrodes
- * The probe is held perpendicular to the substrate
- * The pipet is oscillated normal to the substrate

Scanning Electrochemical Cell Microscopy

* Meniscus is deformed when it touches the substrate

* Oscillation in the z position periodically changes the resistance in the meniscus causing an alternating current

* Simple ionic solution:

$$A_{(aq)}^+ + B_{(aq)}^- \rightleftharpoons AB_{(s)}$$

* Solubility product:

$$\{A\}\{B\} = K_{sp}$$

* Saturation:

$$S = \frac{\{A\}\{B\}}{K_{sp}}$$

* For crystal dissolution, the activity of the solutes must be less than the solubility product, i.e. an UNDERSATURATED solution is required

Crystal dissolution occurs in 4 stages:

- * Ions are detached from a dissolution site
- * Surface diffusion of the detached molecule

mass

- * Desorption
- Mass transfer of the ion away from the crystal

- * Ions move across the crystal surface to the most energetically favourable position
- * Atoms gain a degree of freedom and are lost from the crystal

Results – Glass Approach

- * The SECCM method worked reliably on glass
- * The probe could be suspended for many minutes

Results – Crystal Approach

- * The method was less reliable on crystal surfaces
- * Unsuccessful approaches may have been caused by the meniscus not properly wetting the surface
- * Successful approaches saw an increase in z position extension while the probe was hovering over the surface

Results – Crystal Approach with KCl

- * A 5mM KCl support was added to the HCl electrolyte
- * Having more ions in the solution gives a higher migration current, providing a greater signal to noise ratio

Crystal Approach 2mM HCI + 5mM KCI z Position Against Time

Results – Crystal Approach with KCl (1mM HCl)

- * The concentration of HCl was halved
- * A decrease in the etching rate was observed
- * More measurements of a variety of concentrations are needed to confirm the results

Calcite Approach 1mM HCI + 5mM KCI z position against time

Further Work

* Experiments need to be done on a range of acid concentrations to examine the etching rate trend

* Nanoscale tips – smaller tips would further reduce the noise and allow the electrolyte to be delivered to the surface slower and over a smaller area

* Crystal growth would next be examined

Thanks!

- * Pat Unwin
- * Michael Snowden
- * University of Warwick Electrochemistry and Interfaces group
- * MOAC
- * EPSRC

References

- * Ebejer, N., Schnippering, M., Colburn, A.W., Edwards, M.A., Unwin, P.R. Localized High Resolution Electrochemistry and Multifunctional Imaging. *Anal. Chem.* **2010**, 82, 9141-9145.
- * Peruffo, M. Functionalisation of Surfaces and Interfaces: Molecules, Particles and Crystals. Ph.D. Thesis, The University of Warwick, February 2010.
- * Unwin, P.R., Macpherson, J.V. New Strategies for Proving Crystal Dissolution Kinetics at the Microscopic Level. Chem. Soc. Rev. 1995, 24, 109-119.
- * Levi, A.C., Kotrla, M. Theory and Simulation of Crystal Growth. *J. Phys. Condens. Matter.* **1997**, 9, 299-344.
- * Lund, K., Fogler, H.S. Acidization-II. The Dissolution of Calcite in Hydrochloric Acid. Chemical Engineering Science. 1975, 30, 825-835.
- * Sutter Instrument Company P-2000 Micropipette Puller Operation Manual. http://www.sutter.com/manuals/P-2000\$_\$OpMan.pdf (accessed Sept 2, 2011).