Mass Spectrometry I: Fundamentals and Electron Impact

Prof. Peter B. O'Connor October 14th, 2009

The basics of mass spectrometry

American Society for Mass Spectrometry: http://www.asms.org/whatisms/p1.html

Wikipedia

http://en.wikipedia.org/wiki/Mass spectrometry

Also, special thanks to:

Prof. Roman Zubarev (Karolinska Institute, Stockholm, Sweden)

and

Dr. Ann Dixon (Warwick!)

for slides.

Mass <u>Spectrometry</u>

• Mass spec. is *not* a method based on absorption of electromagnetic radiation

- ... but it complements these methods (UV, IR, NMR)

- In Mass spectrometry, molecules are ionized, and then their mass is measured by sorting them out in magnetic and electric fields.
- Thus, the function of mass spectrometers is all about how ions move in electric and magnetic fields, and this all starts with the Maxwell equations.

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof...
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Linkages (carbohydrates, hydrogen bonding, etc.
- 7. Fragment stabilities
 - Breakdown curves yield relative (Net) transition state energies
- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation

Mass Spectrometry and Isotopic Distributions

Why so many peaks?

What is Molecular Mass?

Mass: $M = \Sigma m_e \cdot n_{e,}$ $m_e - mass of an element$ $n_e - number of atoms of this element in the molecule$

Isotope	Mass	Abundance	Chemical mass	<i>Deviation from the whole number</i>
¹H	1.00782510	99.9852%	1.00794	+0.0079
² H (D)	2.01410222	0.0148%		
¹² C	12.0(0)	98.892%	12.011	+0.011
¹³ C	13.0033544	1.108%		
¹⁴ N	14.00307439	99.635%	14.00674	+0.007
¹⁵ N	15.0001077	0.365%		
¹⁶ O	15.99491502	99.759%	15.9994	-0.0006
¹⁷ O	16.9991329	0.037%		
¹⁸ O	17.99916002	0.204%		
³¹ P	30.9737647	100%	30.9737647	-0.0262
³² S	31.9720737	95.0%	32.066	+0.066
³³ S	32.9714619	0.76%		
³⁴ S	33.9678646	4.22%		
³⁶ S	35.967090	0.014%		

The mass spectrum of benzene (C_6H_6)

Mass spectrum:

1. Monoisotopic "A" elements (fluorine, phosphorus, cesium, sodium, iodine)

2. "A+1" elements
(carbon, nitrogen, hydrogen)

3. "A+2" elements (oxygen, chlorine, bromine, silicon, sulfur)

Figure 2.1. Linear superposition of bromine and chlorine peak patterns.

Elemental Compositions of Metals

Magnocium						
Inagriesium		Titanium	Iron			
23 98504	78 7				Selenium	
24.08584	10	45.95263	8 53 9396	5.8		
24.90304	11.2	46.9518	7 55.0240	0.0	75.9192	ę
20.98209	11.3	47.94795	74 55.9349	92	76.9199	7.6
		48.94787	5.5		77.9173	23.5
Aluminur	n	49.9448	5		79.9165	49.8
			Mercurv		81.9167	ç
26.9815	53 100				I	
		Cald	197.9668	10		
		Gold	198.9683	17		
nc		106.0666 100	199.9683	23		
		190.9000 100	200.9703	13		
63.9291	49		201.9706	30	Palladium	
65.926	28		203,9735	7		
66.9271	4	Lead			101.9049	1
67.9249	18.6				103.9036	11
		203 973 1 5			104.9046	22
		205.375 1.5	Uranium		105.9032	27
		203.9745 23			107.903	28
<u>ə</u> r		200.9759 22.6	235.0439	0.7	109.9045	12
		207.9766 52.3	238.0508	99.3		

silver	
106.9041	52
108.9047	48

CRC Handbook of Chemistry and Physics, 48th Edition, 1967

How do isotopic distributions change with mass?

Theoretical isotope distributions of peptides of 1000, 2000, 3000 and 4000 Da.

Yergey J, Heller D, Hansen G, Cotter RJ, Fenselau C. Anal. Chem. 1983, *55*, 353-356.

- monoisotopic mass dominates up to MW ~1100
- above MW ~7000, the monoisotopic peak is vanishingly small
- becomes more symmetric
- the width grows sublinearly.
 For <3 kDa, MW/FWHM ~1100, for 10 kDa, MW/FWHM ~2000
- the most abundant mass is 0..1 Da below the average mass
- *fine structure* for all peaks but monoisotopic.

Molecular mass *is* the isotopic distribution!

Mass quantities:

Nominal mass: m_e is the **integer** mass value for the most abundant isotope (H=1, etc.).

Monoisotopic mass: m_e is the **exact** mass value for the **most abundant** isotope (H=1.00782510, etc.).

Average mass: m_e is the **chemical** (average) atomic mass value (H=1.00794, etc.).

Isotopic cluster (distribution): a group of isotopic peaks representing the same molecule.

Most abundant mass: such in the isotopic cluster.

Yergey J, Heller D, Hansen G, Cotter RJ, Fenselau C. Anal. Chem. 1983, *55*, 353-356.

How to calculate the isotopic distribution?

Use the binomial distribution.

$$P(i) = \frac{N!}{i!(N-i!)} p^{i} (1-p)^{N-i}$$

N= number of atoms I = ith isotope p = probability of being heavy isotope (e.g. ¹³C)

Note: the total isotopic distribution is the sum (actually the mathematical convolution) of the individual isotopic distributions for each possible isotope.

Inherent uncertainty of average mass is ca. 10 ppm.

Is average mass reliable?

Underestimation by 0.45±0.10 Da.

Minimal

0.1 Da!

What is Molecular Mass?

Example #1

What would the electrospray mass spectrum of poly-ethylene glycol (PEG : $HO-[CH_2CH_2O]_nH$) look like? Assume n = 100-120.

HO for the

http://en.wikipedia.org/wiki/Polyethylene_glycol

#1. What would the electrospray mass spectrum of poly-ethylene glycol (PEG : $HO-[CH_2CH_2O]_nH$) look like? Assume n = 100-120.

masses

n	M+Na+	(M+2Na)2+	(M+3Na)3+	(M+4Na)4+	(M+5Na)5+	(M+6Na)6+		abundance
100	4440.9898	2231.9898	1495.6565	1127.4898	906.5898	759.32313		0.082084999
101	4484.9898	2253.9898	1510.3231	1138.4898	915.3898	766.65647		0.131993843
102	4528.9898	2275.9898	1524.9898	1149.4898	924.1898	773.9898		0.201896518
103	4572.9898	2297.9898	1539.6565	1160.4898	932.9898	781.32313		0.2937577
104	4616.9898	2319.9898	1554.3231	1171.4898	941.7898	788.65647		0.40656966
105	4660.9898	2341.9898	1568.9898	1182.4898	950.5898	795.9898		0.535261429
106	4704.9898	2363.9898	1583.6565	1193.4898	959.3898	803.32313		0.670320046
107	4748.9898	2385.9898	1598.3231	1204.4898	968.1898	810.65647		0.798516219
108	4792.9898	2407.9898	1612.9898	1215.4898	976.9898	817.9898		0.904837418
109	4836.9898	2429.9898	1627.6565	1226.4898	985.7898	825.32313		0.975309912
110	4880.9898	2451.9898	1642.3231	1237.4898	994.5898	832.65647		1
111	4924.9898	2473.9898	1656.9898	1248.4898	1003.3898	839.9898		0.975309912
112	4968.9898	2495.9898	1671.6565	1259.4898	1012.1898	847.32313		0.904837418
113	5012.9898	2517.9898	1686.3231	1270.4898	1020.9898	854.65647		0.798516219
114	5056.9898	2539.9898	1700.9898	1281.4898	1029.7898	861.9898		0.670320046
115	5100.9898	2561.9898	1715.6565	1292.4898	1038.5898	869.32313		0.535261429
116	5144.9898	2583.9898	1730.3231	1303.4898	1047.3898	876.65647		0.40656966
117	5188.9898	2605.9898	1744.9898	1314.4898	1056.1898	883.9898		0.2937577
118	5232.9898	2627.9898	1759.6565	1325.4898	1064.9898	891.32313		0.201896518
119	5276.9898	2649.9898	1774.3231	1336.4898	1073.7898	898.65647		0.131993843
120	5320.9898	2671.9898	1788.9898	1347.4898	1082.5898	905.9898		0.082084999
	1.2							
	1 +	₩ 👬	<u> </u>	-			*	
		₩ *		#†			* *	
	0.8	— 🗰 🗰 🚾	<mark>.</mark>	_ 				
	0.6			+		[
				4		4	↓ · · ·	
	0.2	• • • • • • • •		<u> </u>		<u></u>		
	0	• * * *				•	•	
		4000	0000			000	5000	
	0	1000	2000	300	JU 4	000	5000	6000

1. O'Connor, P. B.; McLafferty, F. W. Oligomer characterization of 4-22 kda polymers by electrospray fouriertransform mass spectrometry *J. Am. Chem. Soc.* **1996**, *117*, 12826-12831.

Mass Spectrometry Instruments

So many choices, so little time....

Mass <u>Spectrometry</u>

• Mass spec. is *not* a method based on absorption of electromagnetic radiation

- ... but it complements these methods (UV, IR, NMR)

- In Mass spectrometry, molecules are ionized, and then their mass is measured by sorting them out in magnetic and electric fields.
- Thus, the function of mass spectrometers is all about how ions move in electric and magnetic fields, and this all starts with the Maxwell equations.

MS Block Diagram

- One of the most important differences between mass spectrometers is the source
- In the source, create gas phase ions:
 - degree of ionization can vary, as can the degree of fragmentation
 - Some methods induce no fragmentation (M⁺ only),
 - Others can lead to fragmentation (provides vital structural information).
- Commonly used ionization methods are EI, CI, MALDI and ESI.
- EI, CI, and MALDI generate 1+ or 1- ions (almost always)
- ESI produces multiply charged ions (5+ 13+ for example)

Electron impact

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/MassSpec/masspec1.htm

Taylor cone

Spray ~1 microliter/min

In "nanospray", flow rates of ~1 nl/min are used. The taylor cone and plume become invisible because the droplets are in the 100 nm diameter range, and sensitivity goes up due to greatly reduced space charge and improved capture efficiency.

MALDI mass spectrometry

Most commonly, Laser is a <10 nsec pulse at 337 nm (N_2 laser) or 355 (frequency tripled Nd:YAG). 50 nsec pulse at 2.94 (Er:YAG) is also used.

Sensitivity plot 1.E+00 Saturation region 1.E-01 1.E-02 1.E-03 1 µM 1.E-04 Linear region 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 LOD region 1.E-10 1.E-11

1.E-14 1.E-13 1.E-12 1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Figure 5. (a) High-pressure MALDI FTMS analysis of a serial dilution series of the phosphopeptide RRREEE(pS)EEEAA by multishot accumulation of the ions from 15 laser shots and one scan per spectrum. (b) Decrease in ion signal for this peptide does not follow a linear regression.

DOI:10.1021/ac034938x

Sensitivity plot

Mass Analyser

- Ion formed in source are sent to mass analyzer for sorting according to m/z and focussing onto detector
- Various types of mass analyser available:
 - <u>time-of-flight mass analyzers</u>
 - magnetic sector
 - quadrupole mass filters
 - quadrupole ion traps
 - Fourier transform ion cyclotron resonance spectrometers

Since we measure m/z, not mass, we need to know z. How do we do that?

Mass Spectrometers

Mass Spectrometers DO NOT measure mass. They measure mass/charge ratio.

Understanding how mass spectrometers work is understanding how ions move in electric and magnetic fields.

- Time of Flight
- Magnetic Sector
- Quadrupole
- Triple Quad
- Ion Trap
- FTICRMS

Ions in a DC Electric Field

Electrostatic analyzer

Einzel lens

Time of Flight Mass Spectrometry

The most simple of all mass spectrometers, at least conceptually.

- Linear versus reflectron
- Delayed extraction (time lag focusing)
- **Detection electronics**
- PSD scan
- Orthogonal injection

- MALDI-TOF
- EI-TOF
- ESI-TOF

Basic TOF mass spectrometer

Typical "Proteomics" experiment using a MALDI-TOF

Figure 3. The principle of MALDI time-of-flight mass spectrometry.

- 1. TOF requires a pulsed ion source
- 2. TOF requires a small kinetic energy distribution in the ions
- 3. Radial dispersion causes signal loss
- 4. TOF requires a detector/oscilloscope/digitizer that's MUCH faster than the ion flight time.

Magnetic Sector Mass Spectrometry

Jeol and Thermo-Finnigan MAT

Sector Calibration Equation $m = AB_0^2 r^2 / V$

lons in a magnetic field

lons in a magnetic field

Typical Sector mass

Figure 3-14. Nier-Johnson double-focusing mass spectrometer; direction focusing of the second order (27).

Isotope Ratio Mass Spectrometer

Quadrupoles

Small, cheap, ubiquitous.	• MALDI
Swept beam instrument	• El
Resolution typically 1000, mass accuracy typically 0.1%	• ESI
Sensitivity depends on the source. Typically in the 100 fmol range.	

Wolfgang Paul (quadrupole ion traps) Hans Dehmelt (Penning ion traps)

1989 Nobel Prize in Physics for development of ion trapping techniques

Wiring of a quadrupole

The potential energy diagram of a quadrupole showing the saddlepoint in the electric field (generated using Simion 7.0)

Quadrupole Analyser

- Cheaper, but lower performance and resolution
- Advantage: easy to interface with GC and LC (on-line)
 - don't use high potentials in the ion source; faster scanning
- DC and 180° out of phase RF AC potentials applied across opposite pairs of cylindrical rods

- Ions injected along z;
 follow a spiral path through the analyser due to the oscillating field.
- Under given set of conditions, ions of only a single m/z focussed to detector (others collide with rods)
- Vary DC and RF to successively bring all ions to detector
 - range m/z = 1000 4000 Da

Ions in an Oscillating Electric Field

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + (a_u - 2q_u \cos 2\xi)u = 0$$

$$A_{\pm} = U \pm Vsin(\omega t)$$

- "Matthieu eqn" a_z = 8eU/mω²r²
 - $q_z = 4eV/m\omega^2 r^2$
 - $q_z \alpha V/m$
 - $\mathbf{q}_{z} \alpha f_{\text{ion}}$
 - $a_z \alpha U/m$

Figure 12. Mathieu stability diagram with four stability points marked. Typical corresponding ion trajectories are shown on the right.

Octopole/hexapole linear ion trap

Octopole ion guide/trap

Figure 29. Perspective view of the sum of the effective potential and a dc potential distortion caused by a cylindrical ring electrode in an octopole. The penetrating field creates a local barrier of a few millivolts per volt applied to the ring.

Octopole ion guide/trap

Figure 30. System of two octopoles (1, 2) with electrodes for ion injection (3) and for field correction (4-6). Correction electrode (4) consists of eight rods, staggered as indicated, (5) and (6) are cylinders. The lower panel shows a schematic representation of the dc potential along the axis of the system. In this example, the electrode (4) was used to lower the potential slightly, while (5) and (6) were used to create barriers.

Octopole ion guide/trap

Figure 31. Model calculations of ion trajectories in an octopole with two equally high potential barriers. Several sequences of reflections at the barriers are obtained depending on the kinetic energy and the angle of the incoming ion.

Hexapole ion trap

A couple of examples

Figure 14. Quadrupole Time-of-Flight Hybrid

Figure 13. MALDI ion trap mass spectrometry.

Home built instrument from Brian Chait's group

Figure 17. MALDI Ion-Trap time-of-flight mass spectrometer.

Kratos/Shimadzu instrument. Mediocre TOF performance, why?

Quadrupole Ion Traps

Fourier Transform Mass Spectrometer

Big, expensive, but superior performance.

Ion trap instrument

Resolution typically >50000 broadband, >1,000,000 narrowband

Mass accuracy typically 1 ppm internally calibrated 5-10 ppm externally calibrated

Sensitivity depends on the source. Typically in the 100 fmol range.

MSⁿ compatible

Ion Molecule Reactions (e.g. gas phase H/D Exchange)

- MALDI
- El
- ESI

How Does FTMS Work?

How Does FTMS Work?

The Penning Trap

The ions' view of the cell

The Trapping Field of an Elongated Cubic ICR Cell.

How Does FTMS Work?

lons are trapped and oscillate with low, incoherent, th ermal amplitude

G

 $\overline{\mathbf{v}}$

Preamplifier and digitizer pick up the induced potentials on the cell.

a large, coherent cyclotron orbit

How Does FTMS Work?

Protein Digest of TV60

Figure 3. A tryptic digest MS spectrum of oxidized human p21Ras. The two insets show MS/MS spectra, confirming the identity of two peptides which were then used for internal calibration, allowing ~1 ppm mass accuracy on all peaks.

A new instrument – the orbitrap

Anal. Chem. 2000, 72, 1156-1162

Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis

Alexander Makarov*

HD Technologies Ltd., Atlas House, Simonsway, Manchester, M22 5PP, U.K.

Figure 1. Equipotentials of the quadro-logarithmic field and an example of a stable ion trajectory

Figure 8. Panoramic mass spectrum of laser-ablated solder alloy (40%:60% lead/tin) in the frequency domain. Accurate masses of most abundant isotopes are shown along with their natural abundance.

Break Time (10 Minutes)

Back to the Fundamentals!

What information is in a mass spectrum?

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof... Nitrogen Rule
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Linkages (carbohydrates, lipids, hydrogen bonding, etc.
- 7. Fragment stabilities

Breakdown curves yield relative (Net) transition state energies

- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation
 - Rings plus Double Bonds

What is Molecular Mass?

Mass: $M = \Sigma m_e \cdot n_{e,}$ $m_e - mass of an element$ $n_e - number of atoms of this element in the molecule$

Isotope	Mass	Abundance	Chemical mass	<i>Deviation from the whole number</i>
¹ H	1.00782510	99.9852%	1.00794	+0.0079
² H (D)	2.01410222	0.0148%		
¹² C	12.0(0)	98.892%	12.011	+0.011
¹³ C	13.0033544	1.108%		
¹⁴ N	14.00307439	99.635%	14.00674	+0.007
¹⁵ N	15.0001077	0.365%		
¹⁶ O	15.99491502	99.759%	15.9994	-0.0006
¹⁷ O	16.9991329	0.037%		
¹⁸ 0	17.99916002	0.204%		
³¹ P	30.9737647	100%	30.9737647	-0.0262
³² S	31.9720737	95.0%	32.066	+0.066
³³ S	32.9714619	0.76%		
³⁴ S	33.9678646	4.22%		
³⁶ S	35.967090	0.014%		

Some Typical EI spectra of lipids

Rings plus Double Bonds

What elemental compositions are realistic chemically?

Because of basic valence orbital arrangments, a simple equation can be used to calculate the number of double bonds (or rings) in a molecule.

X - Y/2 + Z/2 + 1 = R+DB

X = carbon, silicon

Y = hydrogen, chlorine, fluorine, etc.

Z = nitrogen, phosphorus

Values ending in $\frac{1}{2}$ correspond to even electron ions. Values lower than $-\frac{1}{2}$ are not possible chemically.

The nitrogen rule

Odd electron ions: a molecule containing the elements C, H, O, N, S or halogen has an odd <u>nominal mass</u> if it contains an odd number of nitrogen atoms.

Even electron ions: a molecule containing the elements C, H, O, N, S or halogen has an odd <u>nominal mass</u> if it contains an Even number of nitrogen atoms.

Caveats:

- 1. no metals please!
- 2. mass "defects" eventually accumulate to > 1 Da, inverting the rule

Switching gears entirely....

Tandem Mass Spectrometry

"Tandem in Time" – FTMS, QITMS

"Tandem in Space" – Triple quad, TOF/TOF, sector

Fragmentation Methods

Breaking up a molecule requires putting energy into it's vibrational modes or causing a reaction that breaks a bond.

- Collisional Activation
- Photodissociation
- Surface Induced Dissociation
- •Electron capture dissociation and Electron transfer dissociation

Collisionally Activated Dissociation

also called Collision Induced Dissociation (CID)

- Ion's smack into neutral gas molecules and break up
- Energy of the collision is controlled by changing the kinetic energy of the ion.
- Fragments scatter radially

• By far the most common MS/MS technique

 slow fragmentation method, deposits vibrational energy throughout the molecule prior to fragmentation.

•SORI-CAD, ITMSⁿ, Triple quad, TOF/TOF, etcetera

Electron Capture Dissociation

- Multiply charged ions capture a slow electron
- Energy of the fragmentation is determined by coulombic recombination.
- no scattering, but if both fragments are charged, coulombic repulsion will occur

•Fast fragmentation method involving a radical rearrangement in the region of the backbone carbonyl (for proteins)

•Generates very predicable and very even sequence ladder

•Nobody knows how it works on things other than proteins

- Ion absorbs photon(s) and break
- Energy of the fragmentation is controlled by changing the photon's wavelength.
- No scattering, except for multiply charged ions

 slow fragmentation method, deposits vibrational energy throughout the molecule prior to fragmentation (depends on wavelength).

•IRMPD, UVPD, BIRD

Surface induced fragmentation

 Ion smack into a surface, break, and rebound

- Energy of the fragmentation is controlled by changing the ion kinetic energy.
- Fragments scatter radially

 slow fragmentation method, deposits vibrational energy throughout the molecule prior to fragmentation.

• lons are lost by neutralization at the surface (much better with perfluorinated surfaces)

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof... Nitrogen Rule
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Linkages (carbohydrates, lipids, hydrogen bonding, etc.
- 7. Fragment stabilities

Breakdown curves yield relative (Net) transition state energies

- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation
 - Rings plus Double Bonds

Part 1: "Top-Down" vs. "Bottom-Up" Protein Characterization

"Bottom-up" is also called peptide mass fingerprinting or peptide digest mapping of proteins.

Typical "Proteomics" experiment using a MALDI-TOF

2) What would the MALDI-TOF mass spectrum of the tryptic digest of human cytochrome c look like (don't forget the heme)? What about a mutation?

ProteinProspector

v4.0.8

Proteomics tools for mining sequence databases in conjunction with Mass Spectrometry experiments.

http://prospector.ucsf.edu/

A mutation just shifts the mass, for example, G30A = +14.015 Da on the fourth peptide, so that 1168.62 becomes 1182.63

							MS-Digest Search Resu
							Parameters
Database	: User Prot	ein					
Consider	ed modificat	ions: Pepti	de N-termir	al Gln to	руг	oGlu Oxid	lation of ${f M}$ Protein N-terminus Acetylated
Digest Us	ed: Trypsù	L					
Max. # N	fissed Clear	rages: 0	~ *				
User AA	Formula 1:	C2 H3 N1	01				
Cysteine . Testrumer	t Nome: M	1. acrylamic	le				
Minimum	Digest Frag	ment Mass	800				
Maximum	Digest Fra	ment Mass	4000				
Minimum	Digest Frag	ment Length	1.5				
Amino A 1 MGDV 81 MIFV Number	cid Compos E <u>KGKK</u> I FI GI <u>KKKF FE</u> m/z (mi)	mon: A6 C2 M <u>R</u> CSQCHT V adl.tavl. <u>k F</u> m/z (av)	D3 E8 F3 (E <u>KGGKHK</u> TG ATNE Modificatio	DIS H3 I	8 K.I G <u>RK</u> End	8 L6 M4 F TGQAPGYSY Missed Cleavages	NS P4 Q2 R2 S2 17 V3 W1 Y5 T AAN <u>KNK</u> GIIW GEDTLMEYLE NP <u>KK</u> YIPGT <u>K</u> Sequence
1	807.4797	808.0802		81	87	0	(K) <u>MIFVGIK</u> (K)
1	823.4746	824.0796	1Met-ox	81	87	0	(K)MIFVGIK(K)
1	906.5295	907.1043		93	100	0	(R)ADLIAYLK (K)
1	1168.6222	1169.3366		29	39	0	(K)TGPNLHGLFGR (K)
1	1176.5136	1177.3515		15	23	0	(K)CSOCHTVEK (G)
1	1428 6754	1429 5383		41	54	0	(K)TGOAPGYSYTAANK (N)
4	0007 0720	2000 2005		57	77		

57 73

0

(K)GIIWGEDTLMEYLENPK(K)

MS-Digest in ProteinProspector 4.0.8 © Copyright (1995-2007) The Regents of the University of California

2023.9681 2025.2989 1Met-ox

Note: I did neglect the heme, but you need to look up it's structure, and add that mass to the peptide that binds it at positions 15 and 18.

http://www.matrixscience.com/help/fragmentation_help.html

{MATRIX { SCIENCE}

HOME WHAT'S NEW MASCOT HELP PRODUCTS SUPPORT TRAINING CONTACT

Go

Help > Peptide Fragmentatio

Peptide Fragmentation

Sequence Ions

The types of fragment ions observed in an MS/MS spectrum depend on many factors including primary sequence, the amount of internal energy, how the energy was introduced, charge state, etc. The accepted nomenclature for fragment ions was first proposed by Roepstorff and Fohlman [Roepstorff, 1984], and subsequently modified by Johnson et. al. [Johnson, 1987].

Fragments will only be detected if they carry at least one charge. If this charge is retained on the N terminal fragment, the ion is classed as either a, b or c. If the charge is retained on the C terminal, the ion type is either x, y or z. A subscript indicates the number of residues in the fragment.

In addition to the proton(s) carrying the charge, c ions and y ions abstract an additional proton from the precursor peptide. Thus, the structures of the six singly charged sequence ion are:

Note that these structures include a single charge carrying proton. In electrospray ionisation, tryptic peptides generally carry two or more charges, so that fragment ions may carry more than one proton.

Internal Cleavage Ions

Double backbone cleavage gives rise to internal fragments. Usually, these are formed by a combination of b type and y type cleavage to produce the illustrated structure, an amino-acylium ion. Sometimes, internal cleavage ions can be formed by a combination of a type and y type cleavage, an amino-immonium ion. Internal fragments are labelled with their 1 letter amino acid code.

Immonium Ions

Interpretation

MS/MS of m/z 1376.63

http://www.enghild-lab.dk/downloads/proteomics_course2004/CAF.pdf

http://www.enghild-lab.dk/downloads/proteomics_course2004/CAF.pdf

Example #2

Calculate the b, c, y, and z ion series for Substance P.

Arg Pro Lys Pro Gln Gln Phe Phe Gly Leu Met = RPKPQQFFGLM

"Top-Down" MS of Proteins

Determine molecular weight of a whole protein with >1 Da accuracy. Fragment a whole protein in MSⁿ experiments to localize modifications

Jebanathirajah, J. A.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Kaur, P.; Rape, M.; Kirschner, M.; Costello, C. E.; O'Connor, P. B. Characterization of a new qQq-FTICR mass spectrometer for post-translational modification analysis and top-down tandem mass Spectrometry of whole proteins *J. Am. Soc. Mass Spectrom.* **2005**, *16*, 1985-1999.

*: electronic noise •: Water Loss

What's the advantage of Top-Down?

- Mutants are immediately obvious as a mass error in the protein molecular ion.
- Post-Translational modifications are obvious because of a mass shift in the molecular ion
- 100% sequence coverage (although not necessarily all inter-residue bonds are cleaved)

What's the advantage of Bottom-Up?

- It's easy
- You don't need 100% sequence coverage to id a protein (typically 3-5 peaks with <5 ppm mass accuracy will do)
- You work in a mass region where the mass spectrometers work best
- Don't need as much sample cleanup

What's needed for Top-Down?

- Charge state determination
 - Sufficiently High resolving power to determine charge state of the fragments
- lot's of time (or good computer programs) for going through spectra
- relatively homogeneous samples

Pitfalls for top-down

- Sample must be clean-clean-clean
- Protein must be pure
- Excessive heterogeneity in modifications will distribute the signal over many peaks
- Generally need picomoles of sample at least

Pitfalls for Bottom-Up

- If the protein isn't clean, you can't determine which peptide comes from which protein
- You usually lose many of the peptides (30-60% sequence coverage is typical in good cases) so if there's a modification, you might miss it.
- You are making a simple spectrum (1 protein) into a complicated one (many peptides), which can make assignment of the peaks difficult.
- You often cannot assign many of the peaks, thus wasting information.

The Thiaminase Story

•42 kDa protein

•n-terminal heterogeneity

•c-terminal fragments were all wrong because of a frame shift in the DNA

Figure 2. Nozzle skimmer (130 V) dissociation spectrum of thiaminase I, 30 scans; preceding subscripts A, B, or C denote origin from the smallest, middle, or largest molecule species, respectively.

Kelleher, N. L.; Costello, C. A.; Begley, T. P.; McLafferty, F. W. Thiaminase I (42 Kda) Heterogeneity, Sequence Refinement, and Active Site Location From High-Resolution Tandem Mass Spectrometry *J. Am. Soc. Mass Spectrom.* **1995**, *6*, 981-984.

Figure 3. Thiaminase I fragmentation data; y ions on right; b ions on left. Upper left arrows, post-translational cleavage sites. \bullet , fragment shifts + 108 Da upon inactivation; \checkmark fragment does not shift.

Kelleher, N. L.; Costello, C. A.; Begley, T. P.; McLafferty, F. W. Thiaminase I (42 Kda) Heterogeneity, Sequence Refinement, and Active Site Location From High-Resolution Tandem Mass Spectrometry *J. Am. Soc. Mass Spectrom.* **1995**, *6*, 981-984.

"Golden" Complementary Pairs

Automated *de novo* sequencing of proteins by tandem high-resolution mass spectrometry

David M. Horn, Roman A. Zubarev, and Fred W. McLafferty*

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301

Contributed by Fred W. McLafferty, June 16, 2000

A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrospraved protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K¹³-V²⁰ that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of \approx 10-kDa size, such as products of limited proteolysis.

Fourier transform MS | electrospray ionization | electron capture dissociation

M ass spectrometry (MS) has proven to be a valuable method for characterizing linear biomolecules, especially peptides and proteins (1–4). "Soft" ionization tech-

http://www.pnas.org/content/97/19/10313.full.pdf

(27), or MS "ladder sequencing" using mixtures from N-terminal Edman (15) and C-terminal carboxypeptidase (28) cleavages. However, chemical or enzymatic treatment of the sample greatly increases sample requirements; without this, MS sequence information has been obtained from $\approx 10^{-17}$ moles of peptides (29) and proteins (30).

A new MS/MS method, electron capture dissociation (ECD) (31–35), induces far more general backbone cleavage through nonergodic dissociation, deriving extensive sequence information from proteins as large as 42 kDa (36). In contrast to fragment ions from CAD, ECD fragments always contain either the N or C terminus, and these can be distinguished if dissociations between the same residue pair yield both a y and a c or z ion (Eq. 1). For ubiquitin

$$b - c = -17.03 \text{ Da } b - c$$

$$a' - c + R -$$

weather and an

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof... Nitrogen Rule
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Modifications to the sequence.....
 - Linkages (carbohydrates, lipids, hydrogen bonding, etc.
- 7. Fragment stabilities

Breakdown curves yield relative (Net) transition state energies

- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation
 - Rings plus Double Bonds

Histone modifications

Figure 6. (a–d) HeLa H4 FTMS profiles after treatment with sodium butyrate. (a) The initial profile of H4 shows that a majority of molecules are unacetylated with dimethylated K20. (b–d) After 2 h, all possible acetylation states are observed: mono-, di-, tri-, and tetraacetylation. As butyrate treatment continues, H4 becomes progressively acetylated resulting in the higher abundance of tri- and tetraacetylated forms.

Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Quantitative Analysis of Modified Proteins and their Positional Isomers by Tandem Mass Spectrometry: Human Histone H4 Anal. Chem. 2006. 78, 4271-4280.

Oxidative stress modifications of p21Ras

• p21Ras = product of oncogene

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry *Anal. Chem.* **2006**, *78*, 5134-5142.

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry Anal. Chem. 2006, 78, 5134-5142.

Full tryptic digest of p21Ras

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry *Anal. Chem.* **2006**, *78*, 5134-5142.

c-terminal peptide of p21Ras

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry Anal. Chem. 2006, 78, 5134-5142.

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry Anal. Chem. 2006, 78, 5134-5142.

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry *Anal. Chem.* **2006**, *78*, 5134-5142.

Table 1

Position	Exp. Peak (In.)	Charge State	M+H(In.)	Theo. Mass	Error(ppm)
1-16(1Met-Ox)	541.9650	3	1623.8794	1623.8780	-0.83
1-16(1Met-Ox)	812.4440	2	1623.8802	1623.8780	-1.34
1-16(1Met-Ox,1Nit)	834.9350	2	1668.8622	1668.8631	0.55
6-16	478.3010	2	955.5942	955.5940	-0.18
6-16	955.5930	1	955.5930	955.5940	1.05
17-41	990.1520	3	2968.4404	2968.4406	0.07
17-42	774.6400	4	3095.5365	3095.5326	-1.27
17-42	1032.5170	3	3095.5354	3095.5326	-0.89
17-42(1Nit)	1047.5090	3	3140.5114	3140.5176	1.99
43-73(2Met-Ux)	899.4150	4	3594.6365	3594.6402	1.02
74-88	538.6060	3	1613.8024	1613.7998	-1.58
74-88	807.4040	2	1613.8002	1613.7998	-0.23
74-102 90.07	507 7920	3	3443.7121	3443.7170	1.44
09-97	564 0510	2	1602 9274	1602 9346	-1.49
80 102	462 0000	3	1942.0374	1949 0357	-1.02
89-102	616 9830	3	1848 0334	1848 0357	1 27
89-102	924 9720	2	1848 9362	1848 9357	-0.26
89-102(1Nit)	631 9800	3	1893 9244	1893 9207	-1.93
102-123(1Met-Ox)	806.4150	3	2417 2294	2417.2281	-0.52
102-123(1Met-Ox 1CvsO3)	822 4110	3	2465 2174	2465 2128	-1.85
103-117(1Met-Ox)	544.6170	3	1631.8354	1631.8314	-2.42
103-123	749 0510	3	2245 1374	2245 1321	-2.34
103-123	1123.0700	2	2245,1322	2245.1321	-0.03
103-123(1Met-Ox)	566.0380	4	2261 1285	2261.1270	-0.67
103-123(1Met-Ox)	754.3790	3	2261.1214	2261.1270	2.50
103-123(1Met-Ox)	1131.0670	2	2261.1262	2261.1270	0.36
103-123(1Met-Ox,1CysO)	759.7140	3	2277.1264	2277.1219	-1.95
103-123(1Met-Ox, 1Cys(NO))	764.3770	3	2291.1154	2291.1200	2.02
103-123(1Met-Ox,1CysO2)	765.0450	3	2293.1194	2293.1168	-1.11
103-123(1Met-Ox,1CysO3)	578.0340	4	2309.1125	2309.1117	-0.36
103-123(1Met-Ox,1CysO3)	770.3745	3	2309.1079	2309.1117	1.67
103-123(1Met-Ox,1CysO3)	1155.0620	2	2309.1162	2309.1117	-1.94
103-117(1Met-Ox)	816.4200	2	1631.8322	1631.8314	-0.47
103-128(1Met-Ox)	709.1110	4	2833.4205	2833.4188	-0.61
103-128(1Met-Ox)	945.1450	3	2833.4194	2833.4188	-0.19
105-123	673.3270	3	2017.9654	2017.9687	1.66
105-123(1Met-Ox)	678.6610	3	2033.9674	2033.9636	-1.84
105-123(1Met-Ox)	1017.4840	2	2033.9602	2033.9636	1.68
129-135	401.2150	2	801.4222	801.4219	-0.34
129-135	801.4230	1	801.4230	801.4219	-1.37
136-147	664.8410	2	1328.6742	1328.6738	-0.28
136-147(1Nit)	687.3350	2	13/3.6622	1373.6589	-2.38
148-161	552.2905	3	1654.8559	1054.8553	-0.33
140-101	827.9320	ž	1004.0002	1004.0003	-0.53
140-101(1NIL)	466 5740	2	1099.0402	1099.0404	0.13
150-161	400.0740	3	1397.7004	1397.7065	1.66
150 161	1307 7030	2	1397.7042	1397.7005	2.50
150-161(1Nit)	721 8510	2	1442 6942	1442 6916	1.78
162-169	540 3260	2	1079 6442	1079 6438	-0.35
170-185(1Met-Ox)	560 2475	3	1678 7269	1678 7239	-1 76
170-185(1Met-Ox)	839.8670	2	1678,7262	1678,7239	-1.36
170-189	688,9800	3	2064 9244	2064.9227	-0.80
170-189(1Met-Ox)	694.3110	3	2080.9174	2080.9176	0.12
170-189(1Met-Ox)	1040,9630	2	2080,9182	2080,9176	-0.28
170-189(1Met-Ox.1CvsO3)	710.3070	3	2128.9054	2128.9023	-1.43
170-189(1Met-Ox.1CvsO3)	1064.9570	2	2128.9062	2128.9023	-1.82
170-189(1Met-Ox.2CvsO3)	1088.9490	2	2176.8902	2176.8870	-1.46
170-189(1Met-Ox,3CysO3)	1112.9400	2	2224.8722	2224.8717	-0.21
171-185(1Met-Ox)	775.8190	2	1550.6302	1550.6289	-0.82
171-189(1Met-Ox)	976.9160	2	1952.8242	1952.8226	-0.81
171-189(1Met-Ox,1CysO3)	1000.9070	2	2000.8062	2000.8073	0.56

Error Average =1.09 σ = 0.74

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry *Anal. Chem.* **2006**, *78*, 5134-5142.

Summary of oxididative PTM's of p21Ras

Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O'Connor, P. B. A Detailed Map of Oxidative Post-translational Modifications of Human p21ras using Fourier Transform Mass Spectrometry *Anal. Chem.* **2006**, *78*, 5134-5142.

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof... Nitrogen Rule
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Modifications to the sequence.....
 - Linkages (carbohydrates, lipids, hydrogen bonding, etc.
- 7. Fragment stabilities

Breakdown curves yield relative (Net) transition state energies

- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation
 - Rings plus Double Bonds

H/D exchange

- Solution phase
 - measurement of unfolding rates (D. Smith)
 - AA positional measurement of unfolding rates using NS-CAD-FTMS (I. Kaltashov)
- Gas phase
 - Cyt. C has different conformations in the gas phase (F. Mclafferty)

H/D Exchange of CRABP

Figure 2. ESI time-of-flight mass spectrum of CRABP I-*d* acquired after 10 min of H–D isotope exchange in water–ethanol (9:1, v/v) solution. Insets: peak shapes of (a) high charge-state ions which have undergone complete exchange by this time point and (b) low charge density ions which exhibit a bimodal exchange pattern.

1.Eyles, S. J.; Dresch, T.; Gierasch, L. M.; Kaltashov, I. A. Unfolding dynamics of a beta-sheet protein studied by mass spectrometry *J. Mass Spectrom.* **1999**, *34*, 1289-1295.

MS/MS of CRABP during H/D back-exchange

Figure 5. Time evolution of fragment ions peak from a CAD spectrum of multiply charged ions of CRABPI (in-source collisional activation). Charge state envelope of intact protein ions ranges from +11 to +14. The dashed line on the left of each isotopic cluster indicates the position of the fully exchanged fragment ion peak (monoisotopic mass).

1.Eyles, S. J.; Dresch, T.; Gierasch, L. M.; Kaltashov, I. A. Unfolding dynamics of a beta-sheet protein studied by mass spectrometry *J. Mass Spectrom.* **1999**, *34*, 1289-1295.

Melting Curves

(expressed as % of peptide amide positions deuterated) as a function of incubation time (pD 6.8; 25 °C, time = 1, 3, 8, 24, min/1, 3.6, 26.5, 47.1 h) before (O) and after (D) adjustment for deuterium gain/loss during digestion and analysis.

Fig. 4. Deuterium exchange into the 95-104 segment of cytochrome c Fig. 5. Plot of deuterium incorporation into specific segments of cycochrome c as a function of the incubation temperature. The incubation time was adjusted to minimize the effect of temperature on the intrinsic rate of hydrogen exchange.

(1) Zhang, Z. Q.; Smith, D. L. Determination of amide hydrogen-exchange by mass-spectrometry - a new tool for proteinstructure elucidation Protein Science 1993, 2, 522-531.

Detecting structural changes in viral capsids by hydrogen exchange and mass spectrometry

LINTAO WANG,¹ LESLIE C. LANE,² AND DAVID L. SMITH¹

¹Department of Chemistry, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA ²Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA

(RECEIVED January 2, 2001; FINAL REVISION March 14, 2001; ACCEPTED March 28, 2001)

 Wang, L. T.; Lane, L. C.; Smith, D. L. Detecting structural changes in viral capsids by hydrogen exchange and mass spectrometry *Protein Science* 2001, *10*, 1234-1243.

Fig. 2. General procedure used to label the BMV capsid protein in the intact viral particles and to determine deuterium levels at peptide amide linkages by HPLC ESI MS.

PLIMSTEX: Simple titration using deuterium incorporation as the readout

Gas phase HD exchange

FIG. 1. Isotopic peak clusters of electrosprayed equine cytochrome c. (A) Typical precursor $(M + nH)^{n+}$ ions (most abundant isotopic peak contains seven ¹³C atoms and ⁵⁶Fe). (B) After gaseous D₂O exchange. (C) After IR irradiation or charge-stripping (CS). (D) After quadrupolar axialization collisions.

1.Wood, T. D.; Chorush, R. A.; Wampler, F. M. I.; Little, D. P.; O'Connor, P. B.; McLafferty, F. W. Gas Phase Folding and Unfolding of Cytochrome c Cations *Proc. Nat. Acad. Sci. USA* **1995**, *92*, 2451.

FIG. 2. H/D exchange levels (no. of H/D exchanges) vs. charge value. Solid symbols, states from electrosprayed ions; open symbols, states altered by irradiation, charge-stripping, or collisions.

1.Wood, T. D.; Chorush, R. A.; Wampler, F. M. I.; Little, D. P.; O'Connor, P. B.; McLafferty, F. W. Gas Phase Folding and Unfolding of Cytochrome c Cations *Proc. Nat. Acad. Sci. USA* **1995**, *92*, 2451.

Pitfalls to H/D exchange experiments

- Nothing is more hygroscopic than water (the backexchange problem)
- How much is water involved in protein folding?
- When performing MS/MS experiments on H/D exchanged proteins, is there proton scrambling?

What information is in Mass Spectra?

1. Masses

Useful for testing your theory of your chemical structure

- 2. Elemental compositions Or at least estimates thereof... Nitrogen Rule
- 3. Mixture Compositions
- 4. Abundances (quantitation)
- 5. Charge states
- 6. Mass differences (MS/MS)
 - Sequences (Proteins, peptides, polymers, DNA, etc)
 - Modifications to the sequence.....
 - Linkages (carbohydrates, lipids, hydrogen bonding, etc.

7. Fragment stabilities

Breakdown curves yield relative (Net) transition state energies

- 8. Higher order structure
 - Hydrogen/Deuterium Exchange (HDX) experiments
 - Electron Capture/Transfer Dissociation
 - Rings plus Double Bonds

Double Resonance

Substance P ECD RPKPQQFFGLM-NH₂

Substance P

Supplemental: ESI FT-MS/MS (CAD) of a Permethylated Maltoheptaose

Fig.1 ESI FT-MS/MS of Reduced and Permethylated Maltoheptaose

Fig. 2 ESI FT-MS/MS of Permethylated Man5 Glycan

Summary

Mass spectrometry is far more sensitive than other major analytical instruments (such as NMR, IR, etc).

- so don't ever run spectra more concentrated than 10 µM !!!

- If you do, your spectra will be no better, and you'll just make the source dirty for everyone else.

- Almost always, if you can't see it, it is because the source is dirty, or the sample is heterogeneous or contaminated. MS detects what's there, not what you want to see.

Mass Spectrometry can determine sequence, branching linkages, posttranslational modifications and sometimes higher-order structure of biomolecules (with femtomole sensitivity)

With enough resolution/accuracy, MS can determine the exact elemental composition.

Quantitation in MS is very difficult due to signal suppression effects, but can be done in a pinch.

Fini... for now...

What is Molecular Mass?

Practice Example 3

Peaks:

- m/z = 134 (molecular ion)
- m/z = 119 (m-15): labile
 CH₃
- m/z = 91 (m-43): base peak
 - indicative of benzyl cation
 - suggests loss of CH₂CH₂CH₃
- m/z = 65; loss of neutral acetylene from tropylium ion
- m/z = 43; intense

• Suggests methyl ketone, which fragments to form acylium ion.

Calculating isotopic distributions using Microsoft Excel

- 1. For each heavy isotope calculate:
- 2. Number s = current isotope index
- 3. Trials = total number of atoms of that element
- 4. P = naturalabundance of that heavy isotope
- 5. Add the distributions of each element.

BINOMDIST

See Also

Returns the individual term binomial distribution probability. Use BINOMDIST in problems with a fixed number of tests or trials, when the outcomes of any trial are only success or failure, when trials are independent, and when the probability of success is constant throughout the experiment. For example, BINOMDIST can calculate the probability that two of the next three babies born are male.

Syntax

BINOMDIST(number_s,trials,probability_s,cumulative)

Number s is the number of successes in trials.

Trials is the number of independent trials.

Probability s is the probability of success on each trial.

Cumulative is a logical value that determines the form of the function. If cumulative is TRUE, then BINOMDIST returns the cumulative distribution function, which is the probability that there are at most number_s successes; if FALSE, it returns the probability mass function, which is the probability that there are number_s successes.

Remarks

- Number_s and trials are truncated to integers.
- If number_s, trials, or probability_s is nonnumeric, BINOMDIST returns the #VALUE! error value.
- If number is < 0 or number is > trials, BINOMDIST returns the #NUM! error value.
- If probability_s < 0 or probability_s > 1, BINOMDIST returns the #NUM! error value.
- The binomial probability mass function is:

 $b(x;n,p) = \binom{n}{x} p^{n} (1-p)^{n-n}$

where:

'n ι_x,

is COMBIN(n,x). The cumulative binomial distribution is:

$$B(x;n,p) = \sum_{n=0}^{N} b(y;n,p)$$

Example

The example may be easier to understand if you copy it to a blank worksheet.

How?

	A	В
1	Data	Description
2	6	Number of successes in trials
3	10	Number of independent trials
4	0.5	Probability of success on each trial
	Formula	Description (Result)
	=BINOMDIST(A2,A3,A4,FALSE)	Probability of exactly 6 of 10 trials being successful (0.205078)

COMBIN

See Also

Returns the number of combinations for a given number of items. Use COMBIN to determine the total possible number of groups for a given number of items.

Syntax

COMBIN(number,number_chosen)

Number is the number of items.

Number chosen is the number of items in each combination.

Remarks

- Numeric arguments are truncated to integers.
- If either argument is nonnumeric, COMBIN returns the #VALUE! error value.
- If number < 0, number_chosen < 0, or number < number_chosen, COMBIN returns the #NUM! error value.
- A combination is any set or subset of items, regardless of their internal order. Combinations are distinct from permutations, for which the internal order is significant.
- The number of combinations is as follows, where number = n and number_chosen = k:

$$\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$

where:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

Example

The example may be easier to understand if you copy it to a blank worksheet.

How?

	A	В
1	Formula	Description (Result)
2	=COMBIN(8,2)	Possible two-person teams that can be formed from 8 candidates (28)

Odd vs. Even Electron Fragmentation

- Even electron = proton rearrangements
- Odd electron = radical rearrangements
- Non-ergodic fragmentation = FAST!!

J. Am. Chem. Soc. 1998, 120, 3265-3266

3265

Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process

Roman A. Zubarev, Neil L. Kelleher, and Fred W. McLafferty*

> Department of Chemistry, Baker Laboratory Cornell University, Ithaca, New York 14853-1301

> > Received October 6, 1997

Neutralization-reionization mass spectrometry (MS)¹ is of unique value for preparing and characterizing highly reactive and unstable neutral species, such as the intermediate in the dissociative-recombination reaction $H_3O^+ + e^- \rightarrow H_2O + H + 6.4 \text{ eV}$.² Following an earlier suggestion,³ using neutralization accompanying surface-induced dissociation (SID)⁴ to form an unstable site did not yield new cleavage reactions⁵ in multiply charged protein

Figure 1. Isotopic distributions of (a, b) melittin 3+ and (c, d) ubiquitin 10+ ions obtained by (a, c) ESI and (b, d) ECD. Closed and open circles, theoretically predicted isotopic abundance distributions for $(M + nH)^{n+}$ and $(M + nH)^{n+0+n+}$, respectively;⁶ those of 1b should sum to the measured abundances.

these are mainly (M + 11H)10+ ions (Figure 1d) 1 Da heatrier

Some Typical EI spectra of lipids

Mass Defect plot for Hydrocarbons

Structural information from El

- El can cause fragmentation
- Fragmentation follows regular chemical rules

- Molecular ion has unpaired e
 - radical cation, •
 - can lose radical (A+)
 - can form another rad. cation
 (C*+)
 - don't see neutral fragments

 $M \rightarrow M^{\bullet+}$ $C^{\bullet+} + neutral$ $D^{\bullet+} + neutral E^{+} + neutral^{\bullet}$
El fragmentation rules

- 1. Many molecules are too fragile under EI for a molecular ion to be observed.
- 2. The radical is formed on the heteroatom (if it exists) and undergoes radical chemistry from there.
- The intense peaks are usually due to the radical being stuck at a particularly stable site
 For example: for branched alkanes, 1° < 2° < 3°

Commonly seen masses

www.chem.uic.edu

Common fragment patterns

- Alkanes: tend to undergo fragmentation by initial loss of a methyl group to form a (m-15) species.
 - Weakening of C-C bonds by loss of electrons (C-H doesn't fragment)
 - Stepwise cleavage of carbocation down alkyl chain, expelling neutral two-carbon units (ethylene).
 - Branched hydrocarbons form more
 stable secondary and tertiary carbocations
 - May not see molecular ion at all

Common fragment patterns

- **Heteroatom cleavage:** (O, S, N, X) have lone pair; radical cation localized on heteroatom, get cleavage of b bonds
- Aldehydes/ketones (carbonyls): predominate cleavage is loss of one of the side-chains to generate the substituted oxonium ion.

$$\begin{array}{c} \bullet + \\ & \bullet \\ & \bullet \\ & & \bullet \\ & & \bullet \\ & & & \\ R_1 \longrightarrow R_2 \end{array} \begin{array}{c} \bullet \\ & R_1 \longrightarrow R_1 \longrightarrow R_1 \\ & R_2 \longrightarrow R_1 \longrightarrow R_2 \end{array}$$

- Very favorable cleavage (ion is often base peak)
- methyl derivative (CH₃CO⁺) is called "acylium ion" (m/z = 43).
- *McLafferty rearrangement:* expulsion of neutral alkene

Common fragment patterns

• Esters, Acids and Amides: As with ketones etc, major cleavage involves expulsion of the "X" group to form substituted oxonium ion.

$$R_{1} \xrightarrow{\phi} R_{1} \xrightarrow{\phi} R_{1} \xrightarrow{\phi} R_{1} \xrightarrow{\phi} X = OH, OR, NH_{2}, NHR_{2}$$

$$HO - C \stackrel{\oplus}{=} O H_{2}N \xrightarrow{\phi} R_{1} \xrightarrow{\phi} R_{1}$$

- For carboxylic acids and unsubstituted amides, peaks at m/z = 45 and 44 are also often observed.
- Alcohols: Usually lose a proton (m-1) and hydroxy radical (m-17), H₂O (m-18) & an alkyl group to form oxonium ions (base peak). 3° alcohols almost never show molec. ion

• If we are given the molecular formula, first step is to calculate the degree unsaturation (i.e. double bond equivalents)

- General form: for formula $C_aH_bN_cO_d$; **DBE = [(2a+2)-(b-c)]/2**

- In example: DBE = [(12)-(12)]/2 = 0
 - No aldehyde, carbonyl, aromatic
- Peaks:
 - m/z = 88 (molecular ion)
 - m/z = 87 (m-1): loss of H
 - Small; suggests alcohol
 - m/z = 73 (m-15): loss of CH₃
 - m/z = 70 (m-18): loss of H₂O
 - m/z = 45 (m-43): base peak, oxonium ion
 (secondary alcohol, R=CH₃)

www.chem.uic.edu

- DBE = [(16)-(7)]/2 = 4.5
 - Contains double bonds, aromatic rings
- Peaks:
 - m/z = 170 and 172 (peaks of equal intensity, near M⁺)
 - contains bromine (⁷⁹Br and ⁸¹Br).
 - m/z = 91 (m-79): base peak, loss of Br
 - peak at m/z = 91 also indicative of tropylium.

- m/z = 65; loss of neutral acetylene from tropylium ion

- DBE = [(20)-(10)]/2 = 5
 - Contains double bonds, aromatic rings
- Peaks:
 - m/z = 134 (molecular ion)
 - m/z = 119 (m-15): labile
 CH₃
 - m/z = 91 (m-43): tropylium
 - suggests loss of CH₂CH₂CH₃
 - m/z = 65; loss of neutral acetylene from tropylium ion
 - m/z = 43; intense
 - Suggests methyl ketone, which fragments to form acylium ion.

Peaks:

- m/z = 134 (molecular ion)
- m/z = 119 (m-15): labile
 CH₃
- m/z = 91 (m-43): base peak
 - indicative of benzyl cation
 - suggests loss of CH₂CH₂CH₃
- m/z = 65; loss of neutral acetylene from tropylium ion
- m/z = 43; intense

• Suggests methyl ketone, which fragments to form acylium ion.

Common Neutral Losses

Δ^a		Mas	S			Formula	Example ^{b, c}	
-4					79	Br	R-}-Br	
					121	C ₇ H ₅ O ₂	Benzoates	
			51	65		C ₃ HN, C ₄ H ₃ N	Some nitrogen heterocyclic compounds	
-3		38				H ₆ O ₂	Some polycarboxylic acids	
-2		39	53	67		$C_n H_{2n-3}$	Allyl esters and some cyclic carbonates—specific rearrangement loss of $(C_nH_{2n-1} - 2H)$; some propargyl and allenic derivatives	
-1	26	40	54			C _n H _{2n-2}	Aromatics; alkenyl aryl ethers	
			54	68	82	C _n H _{2n-2}	4-Y-cycloalkenyls; $M^{+} - 69 - (68)_n$ in polyisoprenes ^c	
			54			C ₃ H ₂ O	Cyclic—CO—CH=CH—	
	26	40				C _n H _{2n} CN	R ⁵ CN, R [{] CH₂CN (stable R ⁺ only)	
0	27	41	55	69,	etc.	C _n H _{2n-1}	RCOOR'-specific rearrangement loss of $(R - 2H)$ or $(R' - 2H) + (R - H)$, also from carbonates, amides, larger ketones, etc.; loss of activated	
	27					HCN	Nitrogen beterocyclic compounds cyanides aryl-NH, enamines imines	
+1 (+14	· Hom	olog	2110	impu	rity)	HON		
	28	42	56	mpu		C _n H _{2n}	RCH ₂ COCH ₂ R-specific rearrangement loss of (R - H) or (R - H) ₂ , also from many unsaturated functional groups; retro-Diels-Alder ^c	
14	1					N	Aryl—NO	
	28					N ₂	$AryI_N=N=AryI_>C=N_2$, cyclic $N=N$	
	28					со	Aromatic oxygen compounds (carbonyls, phenols), cyclic ketones, $R \rightarrow C = O^{+c}$	
		42	56	70		C _n H _{2n} CO	Unsaturated acetamides, alkanoates; di-, cyclic, and complex ketones; specific H rearrangement loss ofCR2CO	
+2	29					CH ₃ N	Some unsaturated-, aryI-N(CH ₃) ₂	
		43	57	71		HNCO, C _n H _{2n-1} NO	Loss of—NR—CO—from carbamates, cyclic amides, uracils	
1						Н	Labile H; aryI—CH ₂ —H, RC≡CH, alkyl cyanides, lower fluorides and aldehydes (stable RCO ⁺), cyclopropyl compounds	
1	5 29	43	57	71	, etc.	C _n H _{2n+1}	Alkyl loss: α-cleavage or branched site favored (loss of largest R); elimination from cycloalkyl group with H rearrangement ^b	
	2	9 4	3 5	7		C _n H _{2n+1} CO	$C_nH_{2n+1}CO \leftarrow R$ (stable R ⁺ only)	

Table A.5. Common neutral fragments.

Common Neutral Losses

+2						127	1	R
+3	2 16	30	44	58	72,	etc.	$C_n H_{2n+2}$	Loss of RH from alkane branched site; loss of H ₂ or CH ₄ mainly from EE ⁺ ic
	16						NH ₂	Aromatic and other amides and amines; often not abundant
		30					NO	Nitroaromatics, nitroesters, N- or metal nitroso compounds
			44				CONH ₂	$R \leftarrow CONH_2$ (stable R^+ only)
	16						0	N-oxides, some sulfoxides; smaller for epoxides, nitro compounds, quinones, alicyclic ketoximes, diketoenamines
		30					CH ₂ O	ROCH ₂ OR, cyclic ethers, methoxy aromatics ^c
			44	58	72,	etc.	C _n H _{2n+2} CO	$\text{RCOCH}_2\text{R}'$ -specific hydrogen rearrangement $\longrightarrow (\text{R}' - \text{H})^+$ (stable ion only) ^c
			44				CO ₂	Carbonates, cyclic anhydrides, ^c lactones, CH ₃ —N— and aryl— <i>N</i> —phthalimides
			44				CS	Thiophenols, aryI—S—aryI
	2,3,4						H _n	Boranes, silanes, phosphines.
-4	17						NH ₃	Amines: uncommon unless other group to stabilize charge
	17						ОН	Acids, oximes; rearrangement (e.g., o-NO ₂ C ₆ H ₄ CH ₃)
		31	45	59			C _n H _{2n+1} O	R + OR'; RCO + OR'
				59	73		$C_n H_{2n+1} CO_2$	R { OCOR', R { COOR' (stable R ⁺ , small R' only) ^c
			45				CHS	Thiophenes, thiophenois
					73		C ₃ H ₉ Si	(CH ₃) ₃ Si—
-5	18						H ₂ O	Alcohols (primary favored); higher mol. wt. aldehydes, ketones, ethers ^c
		32	46	60	74		$C_n H_{2n+1}OH$ (n = 0, 1, 2),	Loss of ROH from R'CH ₂ OR; from R'COOR with labile hydrogen; these with further loss of C_nH_{2n} ($n > 1$)
			46	60			$O_n H_{2n+1} O H + O_n H_{2n}$	
			40	00			$00 + 0_n H_{2n+1} 0H$	Loss of CO + HOR from R'COOR with labile H; cyclic—OCHRO—

Common Neutral Losses

Δ^a			Mas	s			Formula	Example ^{b, c}
+5		28	46	-			NO ₂	Nitroaromatics, R + NO ₂ , R + ONO
10				60	74		C _n H _{2n+1} COOH	R'COO—R—H (stable R ⁺⁻ , small R')
				60			COS	Thiocarbonates
		32					S	Sulfides, polysulfides, c aryl thiols
			46				CH ₂ S	Methyl aryl sulfides, some cyclothioalkanes
+6		33					$CH_3 + H_2O$	Some alcohols
10	19	33	47				C _a H _{2a} F	Fluoroalkanes
		33	47	61			C_H20+1S	$R SR'$, R^+ more stable than R'^+ ; $(M - 33)^+$ in aryl thiols, isothiocyanates
+7	20						HF	R+HF (primary favored)
		34	48	62	76		$H_2S, H_2S + C_nH_{2n}$	Thiols (primary favored); methyl sulfides; these with further loss of $C_n H_{2n}$ $(n > 1)$
			48	62	76	90	C ₂ H ₂₂₊₃ SiOH	Silyl ethers with a labile H, e.g., mass 90 from (CH ₃) ₃ SiOR
+8					77	91	C.H.20-7	$R' - C_6 H_4 - R$ (stable R^+)
10		35	49				$HF + C_nH_{2n+1}$	$C_nH_{2n+1} \leftarrow R \leftarrow HF$
		35	49	63			C_H2CI	Chlorides (labile bond cleaved)
+9		36	50	64			(C,H _{2n+1} OH) ₂	Dialcohols, methoxyalcohols, etc.
10		36					HCI	R → HCI (distinctive ³⁷ CI, primary favored)
			50				CF ₂	Aryl—CF ₃
			50	64			SO2	RSO ₂ R, Aryl—SO ₂ OR ^c

Table 4.5. Common neutral	fraaments	(continued)	ł
---------------------------	-----------	-------------	---

 ${}^{s}\Delta = mass - 14n + 1$ (Dromey 1976).

^bSpecific cleavages giving a major peak are usually indicative of a particular structural moiety (Chapter 4). Lower mass even-electron ions which are formed through secondary decompositions involving randomizing rearrangements ("ion series") are often of significant abundance, so that such ions are generally useful to indicate compound types, not specific structural moieties.

^cAlso see elimination rearrangement in Table 8.4.

Components of a MS

- Vacuum pump
 - Ions may have to travel over a metre (or many kilometers) to detector
 - Without vacuum, ions would collide with gas molecules in instrument (lose ions)
- Inlet
 - Sample introduced in various ways depending on the nature of the sample.
 - Solid or liquid samples: introduced via a direct insertion probe (DIP); sample then heated to vaporise
 - GC-MS/LC-MS: samples introduced directly from a gas or liquid chromatograph
 - Gas sample: introduced by a "gaseous leak"

http://www.matrixscience.com/help/fragmentation_help.html

{MATRIX { {SCIENCE}

HOME WHAT'S NEW MASCOT HELP PRODUCTS SUPPORT TRAINING CONTACT

Go

Help > Peptide Fragmentatio

Peptide Fragmentation

Sequence Ions

The types of fragment ions observed in an MS/MS spectrum depend on many factors including primary sequence, the amount of internal energy, how the energy was introduced, charge state, etc. The accepted nomenclature for fragment ions was first proposed by Roepstorff and Fohlman [Roepstorff, 1984], and subsequently modified by Johnson et. al. [Johnson, 1987].

Fragments will only be detected if they carry at least one charge. If this charge is retained on the N terminal fragment, the ion is classed as either a, b or c. If the charge is retained on the C terminal, the ion type is either x, y or z. A subscript indicates the number of residues in the fragment.

In addition to the proton(s) carrying the charge, c ions and y ions abstract an additional proton from the precursor peptide. Thus, the structures of the six singly charged sequence ion are:

Note that these structures include a single charge carrying proton. In electrospray ionisation, tryptic peptides generally carry two or more charges, so that fragment ions may carry more than one proton.

Internal Cleavage Ions

Double backbone cleavage gives rise to internal fragments. Usually, these are formed by a combination of b type and y type cleavage to produce the illustrated structure, an amino-acylium ion. Sometimes, internal cleavage ions can be formed by a combination of a type and y type cleavage, an amino-immonium ion. Internal fragments are labelled with their 1 letter amino acid code.

Immonium Ions

FIGURE 3. Low-energy tandem CID mass spectra of two related peptides differing by one amino acid. Both precursor ions, generated by electrospray ionization, were singly protonated. The spectra look very similar, but ions indicative of the amino-acid substitution have shifted by 14 u between (A) and (B).