

MATHS AND PHYSICS

Joint Honours

Courses

Mathematics and physics are a great combination to study at university, and provide the basis for a stimulating and enjoyable education.

Mathematics and physics are complementary subjects. Often, a way of thinking developed in one discipline leads to new insights into the other. The advances in the mathematical theory of dynamical systems and chaos are an example. Ideas from the as the atmosphere, lasers and other complex systems. In both subjects the emphasis is on learning how to recognise the surprising and how to reason. So, although the joint degree is the natural route into theoretical physics, the skills it teaches are universal and can lead to many different careers. Our forme students have gone on to work in industry and in professions

There are two variants of the degree course: the three-year BSC and the four-year MMathPhys. You need to decide by the end of your second year which degree to aim for. BSc courses should be seen as part of a general rounded education, which should leave you numerate, articulate and employable. The four-year course should appeal most to you if you intend to make direct use of your knowledge of mathematics and physics after you graduate.
James Lloyd-Hughes
Head of Undergraduate Admissions

THE WARWICK DEGREE

GF13 BSC
FG31 MMathPhys
The Warwick joint degree course is among the best established in the country and the course includes a number of modules from both contributing departments designed specifically for joint degree students. Each year around 85 students start on this course.

In the first year you take essential (core) modules in both mathematics and physics.
In the second and third years, there is considerable freedom to choose modules. By then you will have a good
idea of your main interests and be idea of your main interests and be
well placed to decide which areas of mathematics and physics to study in greater depth. In effect you design your own degree. Some modules may
also be taken from outside of both also be taken from outside of both mathematics and physics.
We encourage you not only to consider the 'obvious' outside modules, but also modules introducing secondary school teaching or a modern language.

The optional fourth year continues to cover the main areas of mathematics and physics. You can continue to study a broad spectrum of topics within both subjects. Alternatively, you may choose to concentrate on one or two areas. on some of the recent developments in these areas.

Our research is strong in a number of branches of mathematics and physics, and we are well placed to offer authoritative and coherent accounts of those recent developments likely
to be of most interest to you as a joint degree student. degree student.

The first year is currently:

Maths

Mathematical Analysis (60 Lectures), Sets and Numbers (30L), Linear Algebra (30L), Mathematical Methods and Modelling 1 and 2 $(30 \mathrm{~L}+30 \mathrm{~L})$.

Physics
Physics Foundations (30L), Electricity and Magnetism (30L), Classical Mechanics and Relativity (30L) Quantum Phenomena ($30 L$). There is also a Physics Programming
Workshop.

Mathematics at university emphasises the importance of proof. All sciences test the validity of ideas and conjectures, usually by comparing with reality as seen in experiment. In mathematics, there are no experiments, so it is importan arguments or proofs.

Mathematics is also concerned with the generality of results. The process of figuring out the most eneral form of some result from an rewarding part of the subject. It is rewarding part of the subject. It is can reveal connections with other areas within mathematics.

The modules Linear Algebra, and Sets and Numbers, treat concepts which you have met at school, but in a more abstract and general way. Analysis is another word for
calculus but carries the implication that all results must have satisfactory proofs. Some of the material in the Analysis module should be familiar from A level, but it will be presented with the emphasis on proof. The Mathematical Methods and Modelling 1 (MMI) module deals with methods for solving the differential equations of motion, various physical systems. The MM2 module looks at intuitive geometric and physical concepts such as curvature, mass and circulation The focus is on practical application to physics.
Physics sets out to identify the (relatively few) fundamental laws and (relatively few) fundamental laws and
show how they may be invoked to explain many natural phenomena. A good example is provided by Electricity and Magnetism, which were shown by Maxwell and others to be manifestations of the same phenomenon - now called electromagnetism.

Most of the 1 st year physics modules deal with familiar subjects, such as Newtonian mechanics and hermodynamics. The possible exceptions are the material on Phenomena. These deal with the Phenomena. These deal with the
breakdown of Newtonian physics velocities close to the speed of light and at atomic length scales.

Computers are increasingly important in all of mathematics and theoretical physics. The Python programming and how to solve numerically the mathematical models of physical systems.

Overleaf is a typical first year timetable. We plan to deliver timetable similar to this in 2024/25.

TIMETABLE

The timetable for the first five weeks of the first year should give an idea of the typical weekly workload of lectures and tutorials.

The tutorials involve smaller groups and a lecturer or postgraduate student. The idea is to work through examples sheets handed out in the lectures and to discuss any problems
with the material. Wednesday afternoons are kept free of classes, as Wednesday is the main day for university activities such as sport, drama and music.

First Year timetable (weeks 1-5) - mornings			
	10:05-10:55	11:05-11:55	12:05-12:55
Monday		Mathematical Analysis	Sets and Numbers
Tuesday	Sets and Numbers	Mathematical Analysis	Tutorial
Wednesday	Physics Foundations	Classical Mechanics and Relativity	
Thursday	Sets and Numbers	Mathematical Analysis I	
Friday	Programming Workshop		Physics Examples Class

First Year timetable (weeks 1-5)- afternoons				
	13:05-13:55	14:05-14:55	15:05-15:55	16:05-16:55
Monday	Mathematical Methods and Modelling I		Physics Foundations	Classical Mechanics and Relativity
Tuesday		Physics Foundations	Classical Mechanics and Relativity	
Wednesday				
Thursday	Mathematical Methods and Modelling			
Friday		Physics Examples Class		

SECOND Year

In the second year there are core modules taken by everybody

These core modules complete the reatment of basic material assumed by subsequent modules. There hen a broad range of modules mathematics and physics from which you choose a selection.

Currently the core modules are:
Maths
Mathematical Analysis III, Methods of Mathematical Physics, Metric Spaces, Partial Differential Equations.

Physics

Hamiltonian and Fluid Mechanics, Quantum Mechanics and its Applicaions, Stictical

Mathematical Analysis III extend ideas learnt in the first year and introduces the analysis of functions complex variables. The module Metric Spaces generalises concepts like continuity and convergence to more general spaces and provides a basis for many of the tools used in mathematical physics.
The field of fluids is one of the richest in applied mathematics and physics. Although motions of fluids day - are complicated, many flow patterns have simple and intuitively appealing explanations. You will learn, for example, why power lines whistle in the wind and why aeroplanes use their engines just before landing.

You choose at least four further modules with at least one from aths. The lists may change ove time. Currently they are

Maths
Mathematical Methods and Modelling III, Multilinear Algebra, Multivariable Analysis.

Physics

Computational Physics,
Environmental Physics.

Outside Options
interdisciplinary modules from WBS Warwick Business School), the
Language Centre (Arabic, Chinese, French, German, Italian, Japanese, Portuguese, Russian and Spanish) nd the Centre for Education to Secondary

THIRD Year

BSC
In the third year of the BSc you take a module on Communicating Science. You select at least seven modules from the lists of options, which currently are:

Maths
Functional Analysis, Complex Analysis, Fluid Dynamics, Measure Theory, Theory of PDEs, Topics in
Mathematical Biology

Physics
Physics Project, Condensed Matter Physics, The Earth and its Atmosphere, Electrodynamics, Galaxies and Cosmology, Kinetic Theory, Physics of Life and Medicine, Plasma Physics and Fusion, Quantum Physics of Atoms, Scientific Computing, The Standard Model, Statistical

Outside Options
Modules from WBS, the Language Centre and other Modules from
departments.

You can choose to carry out a research-style project worth roughly 30% of the year's credit. A project brings you into contact with a research group, where you work with and alongside postgraduate students and research ellows. It can give fresh insight into the way research scientists work and think.

THIRD Year MMathPhys

Opting for the MMathPhys allows you more time to explore the implications of what you have already learnt.

The third year, like the second year, consists of compulsory modules covering the material which will be assumed by lists of options. The core modules are: lists of options. The core modules are:

Physics
Quantum Physics of Atoms, Kinetic Theory, Electrodynamics

Mathematics

Fluid Dynamics
There is a Laboratory and Skills module. As a member of a group of three students, you complete an experiment and a computer-based simulation of a physical system
You present your results both orally and in an extended written report.

Typically, you take a further six modules from the options listed for the third year of the BSC.

FOURTH
 Year

During the fourth year you join one of the research groups and work with a partner on a research-style project.

The project work gives you experience of working more independently. This experience should be valuable to you in your subsequent career, whether you and can help you when you are making decisions about possible careers.

You choose at least five of the following modules choosing at least wo from the list of maths modules modules. The lists are currently:

Mathematics
Advanced Partial Differential Equations, Dynamical Systems, Fourier Analysis, Linear Analysis, Quantum Mechanics: Basic Principles and Probabilistic Methods,
Statistical Statistical Mechanics, Topics in Mathematical Biology

Modules from the third year lists can also be chosen.

Physics
Advanced Quantum Theory Condensed Matter Physics II, The Distant Universe, Frontiers of Particle Physics, General Relativity, High

Performance Computing, Planets Exoplanets and Life, Quantum Computation and Simulation, Solar and Space Physics, Structure and Dynamics of Solids, Theoretical Particle Phyics.

You may also take modules from the third year which you have not already taken.
Outside Options
There is no formal list of outside options. However, you can follow modules from outside the department provided that the timetable permits this.

INTERCALATED Year

You may also extend the BSc degree by inserting an extra year (usually) between your second and what would otherwise be your third year.

You would spend this 'intercalated' year studying at a foreign university or working in a research laboratory.

FIND OUT MORE

HOW TO APPLY

Applications are made through UCAS ucas.com

If you are made and accept an offer, and meet any outstanding conditions, we will confirm your place and look forward to warmly welcoming you at the start of your life here at Warwick. For more detailed information about how we process applications please visit:
warwick.ac.uk/study/undergraduate/ apply

OVERSEAS APPLICANTS

At Warwick, we welcome applications from across the globe, and have dedicated teams available to advise and support, as well as a global network of Agents and Representatives.
For more information on applying from your country see:
warwick.ac.uk/study/international

Undergraduate Admissions

Department of Physics
The University of Warwick
Coventry
CV4 7AL

STUDENT FEES AND FUNDING

We want to ensure that, wherever possible, financial circumstances do not become a barrier to studying at Warwick. We provide extra financial support for qualifying students from lower income families.
warwick.ac.uk/studentfunding

ACCOMMODATION

Warwick Accommodation manages over 7400 self-catering residences on campus. Living on campus in your first year gives you the opportunity to meet people and form new friendships whilst never being more than a short distance from your lectures or the amazing facilities campus has to offer. At Warwick, you'll enjoy the freedom of independent living alongside your fellow students but with the security of knowing you're surrounded by people who can support you.
For more information visit:
warwick.ac.uk/accommodation

DISCOVER MORE

To find out more about the University, including opportunities to visit and engage with your department of choice, visit: warwick.ac.uk/undergraduate/visits

This course information was accurate at the time of publication (June, 2023). While the University tries to ensure that the information is accurate, it does not guarantee that this is the case. The University may need to make changes including to the course content, syllabus, delivery, methods of assessment, or to comply with external accrediting or reviewing bodies. It is therefore important that you revisit the relevant course website before you apply and when you accept an offer to ensure you are viewing the most up to date information. This information should not be construed as an offer and nor does it create a contract or other legally binding relationship between the University and you or a third party. For full terms and conditions, please visit: warwick.ac.uk/ugtermsandconditions

