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1 Introduction

In 1851, French physicist Jean Leon Foucault designed a revolutionary exper-
iment which demonstrates that the Earth is a rotating body. His apparatus
was rather simple; a 28 kg mass on a 67 m long wire which was attached to
the ceiling of the dome of the Panthon in Paris in such a way that allowed
the pendulum to swing freely in any direction. Foucault found that the plane
of oscillation rotated in a clockwise direction, as viewed from above, at a
rate of approximately 11 degrees per hour, and one full 360 degree rotation
of this plane took 32.7 hours.

2 How Does It Work?

This experiment tells us that the Earth’s surface is not an inertial frame of
reference, that is a frame which is either at rest or moving with a constant
velocity in a particular direction, with no external forces applied. In rotating
frames of reference, such as on the surface of the Earth, the velocity of the
frame is constantly changing direction. It is this that, in the case of the
pendulum, causes it to appear as though angular momentum is not conserved
and Newton’s laws are not obeyed. As observed from a position at rest in



space (an inertial frame) however, one would see that angular momentum is
in fact conserved and Newton’s laws are obeyed.

One may expect that the best way to treat this problem would be to
analyse the mechanics from an inertial frame of reference. In actual fact it
is somewhat less complicated to instead use a non-inertial rotating frame
fixed to the Earth’s surface. In order to do this, we must find a way of
translating from the inertial to the non-inertial frames and care must be
taken when considering vectors, in particular their time derivatives, as will
become apparent.

When considering mechanics in non-inertial frames, additional forces
must be considered which vanish in inertial frames. For this reason these
forces are termed fictitious forces and those which we concern ourselves with
here are the centrifugal and Coriolis forces. The details of the centrifugal
force are not essential in understanding why the plane of oscillation rotates,
however its effects are interesting and the description emerges naturally from
the mathematics which follows this introduction.

3 Rotating Frames

In a body rotating with angular velocity w, a
particular point with position vector r has a
velocity v given by

V=wATr. (1)

In fact for any vector x (not necessarily a posi-
tion vector) fixed in a rotating body,

— =wAX. 2
dt 2) Figure 1: The directions
of the =, y and z axes at
a point on the Earth’s sur-

face with latitude .

Thus for unit vectors i, j and k, directed along
the = (east), y (north) and z (upwards) axes
fixed on the Earth’s surface (see figure |1]), we

have .
di .
— =wAl,

dj , dk
o a—w/\‘] and — =wAk. (3)

dt



Now consider the position vector of a particle in this coordinate system,
r =i+ ryj+r.k (4)

Note that the origin of the coordinate system here (where r = 0) is at the
centre of the Earth. The rate of change of this vector will be measured
differently by an observer in an inertial frame, as compared to an observer
standing on the Earth’s surface. We shall use V to denote the rate of change
of r as measured by the inertial observer and v and I to denote the rate of
change of r as measured by the non-inertial observer on the Earth’s surface.
The rates of change of scalar quantities, i. e. the derivatives of r;, r, and
r,, will always be measured to be the same by both observers. According to
the non-inertial observer on the Earth’s surface, the directions of the unit
vectors are constant in time, so
vei= gy dryg, dre

FTI TR T (5)

For the inertial observer, however, the directions of the unit vectors are
varying in time, so we have

dre. dry. dr. & dj  dk

A PR A SN L S

T T S T e Ty Ty
=T+ wAr, (6)

from equations [3] and 4l Applying the same formula, the rate of change of
V as measured by the inertial observer is

dVv .

where V is the rate of change of V as measured by the non-inertial observer.
From equation [6]

V=Ff+wAl+wAT
and WAV=wAT+wA (wAT).

Hence,
A=F+2wAT+wA(wAT)+wWAT. (8)

Newton’s second law for a particle moving under the influence of gravity
plus an additional force F is

mA =mg+ F, 9)



where we must consider the absolute acceleration A = dV /dt, since equation
|§| holds only in inertial frames. (If one were to use V in place of A then
equation |§| would not be valid). g is a vector pointing towards the centre
of the Earth, with a magnitude equal to g (=~ 9.81 ms™!). Substituting
equation [§ into [9 and rearranging, we obtain

mi=mg+F —2mwAt—mwA(wAr)—mwAr. (10)

Equation [10]is the equation of motion for a particle in a non-inertial rotating
frame. The third and fourth terms on the right hand side are the Coriolis
and centrifugal forces respectively. The fifth term is the Euler force, which
can be neglected since, for the Earth, w = 0.

4 The Centrifugal Force

Let us delay our discussion of the Coriolis force and first focus on the cen-
trifugal force. This is a position dependent force, whereas the Coriolis force
is velocity dependent, which means that when any measurement is taken of
the acceleration due to gravity, what is actually measured is the effective
acceleration due to gravity,

Bef =E — WA (WAT). (11)

As one may expect, the direction of —w A (w A r) is perpendicular to the
axis of rotation of the Earth and directed outwards, thus it has components
in the y and z directions. For a point with latitude ¢,

WA (WAT)| = w|w Ar| = wrsin(90° — @) = wrcos p. (12)

Thus the y and z components of geg are
ggﬁ)": w?r cos psin ¢ (13)

g(e%: qg— w2r cos? ®, (14)

and the effect of the centrifugal force is to decrease the magnitude of the
acceleration due to gravity and to alter its direction slightly; in the north-
ern hemisphere a plumb line is deflected to the south and in the southern
hemisphere it is deflected to the north.



At the equator (¢ = 0°), the y component vanishes and the z component
has its maximum value, whereas at the poles (¢ = 90°), both components
vanish. Thus the acceleration due to gravity will be measured to be less
at the equator than at the poles. This is compounded by the fact that the
radius of the Earth is less at the poles than at the equator, which incidentally
is due to the centrifugal force. The overall effect is that one weighs less at
the equator than at the poles, although for those readers interested in weight
loss, there are simpler and more cost-effective methods.

5 The Coriolis Force

Before delving into the mathematics of the Coriolis force it is beneficial to
attempt to visualise its effect. Neglecting friction, consider a disk rotating
anticlockwise with a particle being fired across the diameter. Standing sta-
tionary (an inertial frame) and watching the disk rotate in front of you, if
you were to roll a ball across the diameter of the disk, you would see the ball
travel in a straight line through the centre of the disk. If you were rotating
with the disk (a non-inertial frame) however, and rolled the ball towards
the centre in the same manner, you would see the particle being deflected
to your right as if subject to a force acting perpendicular to the particle’s
velocity. This force is the Coriolis force and a good visual supplement to this
description is located at http://www.youtube.com/watch?v=49JwbrXcPjc|
We turn our attention back to the Earth now and imagine standing still at
the North Pole. Neglecting air resistance, a bird flying south would appear
to be following a slightly curved trajectory to the west, whereas an observer
watching from at rest in space would see the bird flying in a straight line
while the Earth rotates underneath.

With our pendulum, we assume that the distance through which the bob
moves is small enough that the gravitational and centrifugal forces can be
treated as constant and we combine them together into a constant effective
acceleration due to gravity, ges. From equation the equation of motion
now becomes

mi = mgegg + F — 2mw A T. (15)

In our coordinate system with the unit vectors i, j and k, pointing east, north
and upwards respectively, the angular velocity of a point on the Earth’s


http://www.youtube.com/watch?v=49JwbrXcPjc

surface with latitude ¢ is
w = wcos ¢j + wsin pk. (16)
Hence we obtain for the Coriolis force
Fc = —2mw AT = 2mw|(7y sin p — 7, cos p)i — 7 sin @j + 75 cos pk]. (17)

We concern ourselves primarily with the horizontal motion in the z, y plane.
The vertical component of the Coriolis force is negligible since it provides
a small correction to ges, with the sign alternating on each half-period.
Assuming that the length [ of the pendulum is large and that the amplitude
of the oscillations is comparatively small, the velocity in the z-direction can
be neglected (7, =~ 0) and we can utilise the small angle approximation
(siny ~ 1) for the angle the pendulum makes with the vertical (its rest
position). Thus from equations |15 and assuming there are no additional
external forces (F = 0), we obtain the equations of motion for the pendulum
in the x and y directions,

g

Py = —%ﬁrx + 2 ywsin o (18)
g

iy = —%ﬁry — 27w sin . (19)

The first terms on the right hand sides are the familiar restoring forces for
a pendulum exhibiting simple harmonic motion, and the second terms are
the contributions from the Coriolis force. In order to obtain an explicit
solution to these equations, we can multiply equation [19 by the imaginary
unit i = v/—1, and add it to equation |18| giving

¢ + 2iwCsinp + wi¢ =0, (20)

where ¢ = r; +iry and wo = /g eﬁ/ [ is the natural angular frequency of the

oscillations, i. e. the frequency of simple harmonic oscillations in the absence
of the Coriolis force. Equation resembles the equation of motion for a
damped pendulum, except for the imaginary “damping” term. We look for
solutions to this equation of the form ¢ = Ae’® and substituting this into
equation [20] gives

a? + 2awsin ¢ —wg =0

= a=-wsinp+/wsin®p+w = —wsinp +wy, (21)



where w; = /w?sin? ¢ + wd ~ wp since since the frequency of the rotation
of the Earth is much less than the frequency of oscillation of the pendulum
(w < wp). Hence the solution is

CZ efiwsingot(Aeiwlt + Befiwlt)' (22)

The terms in parentheses describe simple harmonic motion with frequency
w1, and A, B are constants fixed by the initial conditions. We would there-
fore expect that the prefactor e~ %? is the term which will tell us about
the rotation of the plane of oscillation. Dropping the SHO terms and taking
the real part of (, we obtain

R[(] = ry = cos(wsinpt). (23)

Defining T as the period of rotation of the plane of oscillation, clearly
ry(t=0) =71yt =T), so

cos(0) =1 = cos(wsinpT)
= wsinpT =27
2
wsinp’

= T= (24)
The value of w for the Earth in convenient units is w = 27/(24 hours).
Hence we find that the period of rotation of the plane of oscillation for a

Foucault pendulum is
24

sin

T —

hours. (25)

From equation we can also find the angle ¢ through which the plane of
oscillation rotates in one hour by finding the value of the argument of the
cosine for ¢t = 1 hour, thus

2 360
)= i sinp rad. = o1 sin ¢ deg. (26)
The latitude of Warwick University is 52° 22’ 48” (52 degrees, 22 minutes
and 48 seconds). Inserting this into equations and gives values of
T = 30.3 hours and 3 = 11.9°. The yellow lines on the floor display are
separated by this angle.
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