Lecture 2 - Diagrammatic expansion for systems with pair interactions

Lecture 1 summary:

$$
\begin{aligned}
& \hat{H}|\alpha\rangle=\varepsilon_{\alpha}|\alpha\rangle \Leftrightarrow\left(\varepsilon^{+}-\hat{H}\right) \hat{\sigma}_{(\varepsilon)}=\hat{I} \\
& G\left(\underline{I}, \underline{I}^{\prime} ; \varepsilon\right)=\left\langle\underline{r}^{\prime}\right| G(\varepsilon)|\underline{r}\rangle
\end{aligned}
$$

F-l integral:

$$
\begin{gathered}
G_{0}\left(r, r^{\prime} ; \varepsilon\right)=-i\left\langle\Psi(\underline{r}) \Psi\left(r^{\prime}\right)\right\rangle_{0} \\
\equiv-\frac{i}{2} \int \Phi \Psi \oplus \psi \bar{\psi}(r) \psi\left(r^{\prime}\right) e^{i S_{\varepsilon}} \\
S_{\varepsilon}^{+}=\int \Psi(r, \varepsilon)\left(\varepsilon^{+}-\hat{H}\right) \Psi(r, \varepsilon) d r \\
\varepsilon_{1 \prime \prime}+i \delta \\
G_{0}^{+}\left(r, r^{\prime} ; \varepsilon\right)=\sum \frac{\Psi\left(r^{\prime}\right) \Psi(r)}{\varepsilon-\varepsilon_{\alpha}+i \delta} \quad \text { (Lehman's } \\
\text { representation) }
\end{gathered}
$$

$\hat{H} \rightarrow \hat{H}-\mu \hat{N} \rightarrow$ to 80 to the grand canonical
$\varepsilon_{\alpha \alpha} \rightarrow \varepsilon_{\alpha}-\mu$

$$
G_{0}^{+}\left(\underline{r}, \Sigma^{\prime} ; \varepsilon\right)=\sum_{\alpha} \frac{\bar{\psi}\left(r^{\prime}\right)+(\Sigma)}{\left(\varepsilon-\gamma_{i}\right)-\varepsilon_{\alpha}+i \delta}
$$

Next step: introducing the causal GF to be able to make FT to the t-repa-sontotion is such a way that $e^{-i \xi t}$ doesn't lead to divergence:

$$
\hat{\mathcal{G}}_{0}^{ \pm} \rightarrow \hat{G}_{0}=\sum_{\text {causal }} \frac{1}{(\varepsilon-\mu)-\varepsilon_{\alpha}+i \delta \operatorname{sgn}(\varepsilon-\mu)}
$$

$$
\hat{G}_{0}=\left\{\begin{array}{llll}
G_{0}^{+} \equiv G_{0}^{R} & (\text { retarded }) & \text { for } & \varepsilon>\mu \\
G_{0}^{-} \equiv G_{0}^{A} & (\text { advanced }) & \text { for } & \varepsilon<\mu
\end{array}\right.
$$

The FT from ε to t is now well defined:

$$
\begin{array}{c}
\text { Parceval's } \\
\text { theorem }
\end{array}=\int \underbrace{d r d t}_{\equiv d x} \Psi \underbrace{\Psi(r, t)}_{x \equiv(r, t)}(i)_{t}-\hat{H}-\mu) \pm(r, t)
$$

Relations to observables:
$L D_{0} S: \nu(r, \varepsilon)=\frac{i}{2 \pi}\left(G^{R}-G^{A}\right)(r, \varepsilon)=\frac{1}{\pi} \operatorname{Im} G^{R}(\underline{r}, \varepsilon)$

$$
\begin{aligned}
\langle\hat{A}\rangle & =\int \Psi(\Gamma, r) \hat{A} \psi(r, t) d r \\
& =\lim _{t \rightarrow+0} \int \hat{A} G(r, r ; t) d r= \\
& =\lim _{t \rightarrow+0} \frac{1}{2} \int \Psi(r, t) \hat{A} \Psi(r, t) e \quad D \Psi \Delta t
\end{aligned}
$$

Average density, final $\quad \rho(\sigma, t)=\sum_{i} \delta\left(\sigma-\underline{r}_{i}\right)$

$$
\langle\rho(上, t)\rangle=\langle\bar{\psi}(\underline{r}, t) \psi(r, t)\rangle=i \lim _{t \rightarrow 0} G(r, r, t)
$$

Pair interaction

$$
\hat{H}=\underbrace{\hat{H}_{0}}_{\substack{\text { quadratic } \\ H}}+\hat{H}_{\text {int }}
$$

$$
\begin{aligned}
& \hat{H}_{\text {int }}=\frac{1}{2} \sum_{\substack{i \neq j \\
\text { sun over } \\
\text { peptides }}} V\left(\underline{r}_{i}-r_{j}\right)= \\
& =\frac{1}{2} \int d \underline{d} \underline{r}^{\prime} \underbrace{\sum_{i} \delta\left(r-r_{i}\right)}_{\rho(r)} \underbrace{\sum_{j}^{j} \delta\left(\underline{-}-r_{j}\right)}_{\rho\left(r^{\prime}\right)} v\left(r-r^{\prime}\right) \\
& \text { (up to the }
\end{aligned}
$$ solidus self-interaction, $i=j$)

$$
\begin{aligned}
& =\frac{1}{2} \int d r d r^{\prime} \bar{\Psi}(r, t)^{\prime} \pm(r, t) V\left(r-\underline{r}^{\prime}\right) \Psi\left(r^{\prime}, t\right) \Psi\left(r^{\prime}, t\right) \\
& =\frac{1}{2} \int d r d r^{\prime} \bar{\psi}(r, t) \Psi\left(r_{-1}^{\prime}, t\right) V\left(r-r^{\prime}\right) \Psi\left(r^{\prime}, t\right) \psi(r, t) \\
& =\frac{1}{2} \int d x d x^{\prime} \bar{\psi}(x) \Psi\left(x^{\prime}\right) \cup\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right) \psi(x)
\end{aligned}
$$

where $V\left(x-x^{\prime}\right) \equiv V\left(r-r^{\prime}\right) \delta\left(t-t^{\prime}\right)$
The leap of faith:
Introduce $S=S_{0}+S_{\text {int }}$, and

$$
G\left(x, x^{\prime}\right) \equiv G\left(r, r^{\prime} ; t-t^{\prime}\right)=-i\left\langle\Psi(x) \psi\left(x^{\prime}\right)\right\rangle
$$

where $\langle\ldots\rangle=\frac{1}{2} \int D \psi D \psi(\cdots) e^{i S}$
Here $\quad S_{0}=\int d x \bar{\psi}(x)\left(i \partial_{t}-\hat{H}_{0}-\mu\right) \psi(x)$

$$
S_{\text {int }}=\frac{1}{2} \int d x d x^{\prime} \bar{\psi}(x) \bar{\psi}\left(x^{\prime}\right) V\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right) \psi(x)
$$

We can ont calculate Gaussian cutegraes: will get rem dy expanding

$$
e^{i S}=e^{i S_{0}+i S_{n t}}=e^{i S_{0}} \sum_{n=0}^{\infty} \frac{\left(i S_{n-t}\right)^{n}}{n!}
$$

By analogy with simple Ganssien integrals,

$$
-\int(\bar{z} z)^{n} e^{-|z|^{2}} d \bar{z} d z
$$

we shall calculate $\int(\bar{\psi} \psi)^{\text {ans paper }} e{ }^{\text {sin }} \Phi \bar{\psi} D+$
simple Gaussian we cochleate using

$$
e^{-(\bar{z}-\bar{h})(z-h)}=e^{-|z|^{2}+\bar{k} z+\bar{z} h-\bar{h} h}
$$

and using $\frac{\partial^{2}}{\partial \tilde{\hbar} \partial h}$ necessurij number of times
We used, similar approach for G_{0} :

$$
\begin{aligned}
S_{0}[\bar{L} h
\end{aligned}=S_{0}+\int(\bar{\Psi} h+\bar{h} \psi) d x \quad \begin{aligned}
& =S_{0}+\bar{\psi} \cdot h+\bar{h} 0 t
\end{aligned}
$$

Then, we used

$$
\frac{\delta h(x)}{\delta h\left(x_{1}\right)}=\delta\left(x-x_{1}\right)
$$

and, on the other hond, the shift

$$
\begin{aligned}
& \psi \rightarrow \psi-h \\
& \psi \rightarrow \psi-h
\end{aligned}
$$

gave us the result

$$
\frac{1}{2} \int e^{i S_{0}[h]} \theta_{\psi} \theta+=e^{-\overline{h_{0} G_{0} o h}}
$$

$$
\Rightarrow \quad G_{0}=-\frac{i}{2} \int \bar{\psi} \psi e^{i S_{0}} \nabla \overline{4} D+
$$

Now we want to use this for malting $\psi^{\prime} s$ in pre-exponential factor.
Each $S_{\text {int }}=\frac{1}{2} \int d x_{n} d x_{n}^{\prime} \bar{\psi}\left(x_{n}^{\prime}\right) \bar{\psi}\left(x_{n}\right) V\left(x_{n}-x_{n}^{\prime}\right) \psi\left(x_{n}\right) \psi\left(x_{n}^{\prime}\right)$

When calculatip G, in the $1^{\text {St }}$ ordo at be expansion we have

This is equivalent
to taking functional

$$
\frac{\delta^{2}}{\delta \dot{h}\left(x_{1}\right) \delta h\left(x_{1}\right)} \frac{\delta^{2} \text { derivatives }}{\delta \dot{h}\left(x_{i}^{\prime}\right) \delta h\left(x_{1}^{\prime}\right)} e^{i \hbar \circ G_{0} \circ h}
$$

Graphically, we can account for all possible pairings of $\bar{\psi} \& \psi$, by introducing

$$
\underset{x}{0} \underset{x}{\rightarrow} \underset{x^{\prime}}{\sim} \equiv G_{0}\left(x-x^{\prime}\right)
$$

$$
\begin{array}{llll}
\underset{x}{\infty} & \underset{\psi}{ }\left(x_{1}\right) & \bar{\psi}\left(x_{1}^{\prime}\right) & \underset{\psi}{ }\left(x^{\prime}\right) \\
\psi(x) &
\end{array}
$$

We need to pair $\underset{\sim}{\longrightarrow}-0$ bo make G_{0}.

(we can interchaye

$$
\left.x_{1} \not x_{1}^{\prime} \quad\right)
$$

$x_{1} \longrightarrow x_{1}^{\prime}$ doubles all these, and compensates $\frac{1}{2}$
coming from $S_{\text {int }}=\frac{1}{2} \int \ldots$
For fermions, any closed loop means reordering two ψ 's, and hence "-1".

Now we need to make the same expansion it

$$
\frac{1}{2}, \quad z=\int e^{i s} D \bar{\psi} \Delta_{4}
$$

Then, on the $1^{\text {st }}$ order we only have $\overbrace{\overline{4}}^{4}$

$\left\langle\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right)\right\rangle\left\langle\bar{\psi}\left(x_{1}^{\prime}\right) \psi\left(x_{0}^{\prime}\right)\right\rangle$

Then, as this expansion cones from the denominator, the ugh is apposite to what we had is

Remember: $\left\langle\bar{\psi}(x) \psi\left(x^{\prime}\right)\right\rangle \neq 0$ as it cones from $\frac{\delta^{2}}{\delta \bar{h} \delta h}$
Something line $\langle\bar{\Psi}\rangle=0$, as it breaks the symmetry.
Similarly, $\quad \int z^{2} e^{-|2|^{2}} d z d z=0$
as $z=|z| e^{i \varphi}$
$z^{2}=|z|^{2} e^{2 i \rho}$ which is killed by the angalder integration.

Alternatively, we wite $1^{\text {st }}$ order as

$$
\underbrace{\Psi(x) \psi\left(x^{\prime}\right)} \Psi\left(x_{1}\right) \bar{\psi}\left(x_{1}^{\prime}\right) \psi\left(x_{1}^{\prime}\right) \psi\left(x_{1}\right) \quad \frac{1}{2} V\left(x_{1}-x_{1}^{\prime}\right)
$$

This pairing comes from actily by

$$
\frac{\delta^{2}}{\delta h\left(x_{1}\right) \delta \bar{h}\left(x_{1}\right)} \frac{\delta^{2}}{\delta h\left(x_{1}^{\prime}\right) \delta \bar{h}\left(x_{1}^{\prime}\right)}
$$

In the $2^{\text {nd }}$ order, we have

$$
\frac{1}{2!}\left(i S_{\text {int }}\right)^{2}=\frac{1}{2!} \int d x_{1} d x_{1}^{\prime}(u 4) \int d x_{2} d x_{2}^{\prime}(u \prime)
$$

Interchanging $\quad x_{1} \rightleftarrows x_{2}$ comoxesates $\frac{1}{2!}$ In the $n^{\text {th }}$ order, making all the permantetions cancels $\frac{1}{n!}$.
Similarly, $\quad x_{n} \not \geqq x_{n}^{\prime}$ cancels $\frac{1}{2}$ coming in the Sink.
$\rightarrow x_{i} \rightarrow x_{n}{ }_{n}$ ink to we need to make all connected pairs in the $2^{\text {nd }}$ order

Let's toy:

Most important is the cancellation of $\frac{1}{n!}$ The absence of numerical factors would allow us a graphical diagrammatic summation.

What are the diagrams analytically?

$$
\begin{aligned}
& G_{0}\left(x, x^{\prime}\right)=G_{0}\left(x, x^{\prime}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +\int d x_{1} d x_{1}^{\prime} V\left(x_{1}-x_{1}^{\prime}\right) G_{0}\left(x-x_{1}\right) G_{0}\left(x_{1}-x_{1}^{\prime}\right) G_{0}\left(x_{1}^{\prime}-x^{\prime}\right) \\
& +\frac{\xi_{x_{1}^{\prime}}^{\prime}}{x x_{1}}+\int d x_{1} d x_{1}^{\prime} V\left(x_{1}-x_{1}^{\prime}\right) G_{0}\left(x-x_{1}\right) G_{0}\left(x_{1}-x^{\prime}\right) \\
& G_{0}(0)
\end{aligned}
$$

Expressions like That are simplitied it we can make a FT from the real to the momentum space.

We use the homegenuity by introducing

$$
\begin{aligned}
& G(q) \equiv G(p, q)=\int G(x) e^{i q x} d x \\
& G(x)=\int G(q) e^{-i q x} \frac{d q}{(2 \pi)^{d+1}}
\end{aligned}
$$

Substituting all $G\left(x-x^{\prime}\right)$ by the above integrals would give as a couple of δ-functions coin from $\int e^{-i q x} \frac{d y}{(2 a)^{a+1}}=\delta(x)$

