A-level Refresher Course

Keith Ball

Chapter 1. Functions

Functions are some of the most important objects in mathematics. But it was only in
the 19" century that mathematicians finally settled upon a clear definition of what they
meant by functions. They chose just about the simplest possible concept.

Suppose A and B are sets. A function from A to B sends each element of A to something
in B. That’s all. We don’t say anything about how the function does its job: the only
thing we insist is that it sends each element of the first set, to something in the second.

Thus, every function comes “equipped,” with two sets: A, the set of points where the
function is defined, and B, the set of possible values of the function. If the name of the
function is f, we can draw attention to these sets by writing

f:A— B.

The set A is called the domain of f: B is called its codomain. For each element = of
the domain we write f(x) for the place to which z is sent: the image of x under f.

The figure shows a schematic representation.

There is no stipulation that different ele-
ments in A end up at different places in B:
two arrows can point to the same place. Nor
is there any insistence that every member of
B should lie at the point of an arrow: some
members of B may be “redundant”.
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The only rule is that every element of the domain, should be the origin of precisely one
arrow: for each z in A, there is an unique image, f(z).

Example. Let s : R — R defined by

2

s(x) =z  for each real number x. (1)

What does equation (1) tell us? It says that whatever real number you pick, the image
will be the square of that number. The function s, maps each real number to its square.
s is the function that squares things.

The last sentence illustrates the real idea: A function is what it does. If you want
to say what a particular function is, you have to say what it does, to each point of its
domain.

Let’s go back, for a moment, to the definition of s:

s(z) = 2®,  for each real number z. (2)
As I mentioned, this definition can be written: “s is the function that squares things.”
When you write the definition this way, you see that the “x” disappears. We don’t need
an x when we write the definition in words. This brings out the fact that the definition
is not telling us anything about x: it is telling us about the function s. The statement
says that, whatever number you put in to s, you will get out the square of that number.
The statement

s(w) = w?,  for each real number w (3)

says exactly the same as (2). Each of them tells us what the function s does: and therefore,
what s is.

Now let’s look at a rather different function. This time we will take the domain and
codomain to be the finite set
{1,2,3,4}

consisting of just 4 numbers. Let p be the function given by

We have not written down any “formula” for the function. But we have certainly specified
a perfectly good function: we know what p does to each element of its domain.
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It is important to try to rid oneself of the feeling that a function has to be given by a
“formula.” There is nothing in the definition which requires that it should. All we know
is that each point of the domain has to get sent to a point of the codomain. To illustrate
this issue let me address the following question.

Find a function f defined for all real numbers with the property that f(0) =1, f(1) =0
and f(2) = 2.
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You might be tempted to try to find a formula for something like the function on the

right. (And clearly I did just that in order to tell the computer how to draw it.)

Here is a simpler possibility. Let f : R — R be defined by

1 ifxz=0

0 ifz=1
@) =939 oo

0 otherwise

Once you see this example you understand that the question was a stupid one. Of course
there is a function taking the specified values: we just define it to take the specified
values. Mathematicians don’t spend their time answering stupid questions like this: but
sometimes it is important to know that a question is stupid and to understand why.
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Composition of functions

Functions can be combined in various ways. One of the most important is composition.
If you have functions
g:A— B

and

f:B—=C

then it is possible to build a new function which maps from A to C by first applying g
and then applying f to the result. This new function sends an element x of A, to the
element f(g(x)) of C. The new function is called the composition of f and g and is often
written f o g.

So f o g is our name for the function which first does ¢ and then does f to the result.
Suppose f : R — R and ¢ : R — R are given by

flt) =
g(z) = 1+2°

What is the composition f o ¢? What does f o g do to z?

fog(x)=flg(x)) = (1427

1/3

Algebra of functions

Suppose f : R = R and ¢ : R — R are functions which, as is indicated, map real
numbers to real numbers. We can form a new function

[+g

in the following way: we define f + g by

(f +9)(x) = f(z) + g(z).

Remember that in order to say what f + g is, we have to say what it does: and indeed
we have. f + g is the function which takes each number z to the sum of the values f(x)
and g(x).
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This addition of functions is already very familiar to you. You have often worked with
polynomial functions
x> 1+ 31 + 227

which are built by adding multiples of powers.
The point I want to make here, which you have perhaps glossed over in the past, is that
we use the addition of ordinary real numbers,

fx) +g(x)

to provide us with a way of adding functions.

In a similar way we can multiply functions. We can form a new function f.g from two old
ones by defining

(f-9)(x) = f(z)g(x).

Again you are very familiar with this process. The function z — (1 4+ z)v/1+ 22 is
obtained by multiplying the functions z — 1 4+ x and = — /1 + x2.
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Chapter 2. Polynomials

Polynomials make up the simplest class of functions which are varied enough to be inter-
esting. A polynomial is a function such as

x> 1 — 3z +4/72* + 27ma®

which acts on a number (z in this case) by adding up multiples of 1, z, 2%, ... up to some
power z". The general example is thus

T ap + a1 + asx® + ...+ a,z"

where n is a non-negative integer and ag, ay, ... are numbers. The highest power with a
non-zero coefficient is called the degree of the polynomial.

We often use polynomials to approximate more complicated functions: they are varied
enough to enable us to approximate pretty accurately, but simple enough for us to be
able to calculate them efficiently.

The simplest polynomials are the linear functions such as

r — 14+4x
x = 2/7T—x.

A linear polynomial is a function of the form
T ar+0b
where a and b are numbers. These functions are called linear because if you plot the
graph y = ax + b you get a straight line.
One useful property of linear functions is that you can easily solve equations of the form
ar+b=0

(where a # 0): so you can easily find where a linear function takes the value 0. You may
have exploited this fact already in Newton’s method for approximating the solutions of
equations.
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The next simplest kind of polynomial is the quadratic polynomial
T — ax® +bxr + ¢

for numbers a, b and c. If you plot y = az?+ bz + ¢ you get a parabola (as long as a # 0).
Again we can solve equations of the form

ar’+br+c=0

to find z. If @ # 0 and
az® +br +c =0

then

_ —bE Vb —4ac

= 5 )

However, in this case we need square roots to express the solution.

X

To use the formula in concrete cases, we need an efficient and reliable method for calcu-
lating square roots. (Your calculator is equipped with such a method, probably a relative
of Newton’s method.)

Zeros and factors

The most basic property of polynomials relates their zeros and their factors.

Theorem (Zeros and factors of polynomials). Let p be a polynomial and suppose that
p(a) = 0: that a is a zero of p. Then we can factorise p as a product of two polynomials

p(z) = (z — a)q(z)
for an appropriate polynomial q.

For example, if p(z) = 23 — 1122 + 7z + 3 then you can check that p(1) = 0 and we
can write
2? —112° + 7x + 3 = (z — 1)(2* — 102 — 3).

Once you have factorised the polynomial you can immediately see that p(1) = 0 because
the first factor is 0 when x = 1. Putting it another way, if a polynomial is zero at «,
it is zero for a very simple reason: there is a linear factor of the polynomial which is
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“obviously” zero at «. This is not true in any normal sense for other functions. sinz is
zero at x = m but sin x is not “divisible” by x — 7 in any algebraic sense.

How do we demonstrate that each zero corresponds to a linear factor? The argument we
need is very close to what we actually do to find the factor. Suppose we want to factor
the polynomial

23— 112? + 70 +3 = (z — 1)g(x).

How do we do it? We have in our minds, or on a piece of scrap paper, a tentative product
2 —112® + T2 +3 = (z — 1)(72® + 72 + 7).

What do we need to start off with in the second factor if we are going to get z® in the

product? Clearly we need an z2:

2 — 12 + 70 +3= (v —1)(2* + 72+ 7).

3

Now what? Our product now looks like (x — 1)2? = 2 — 2% so we need to get an extra

—102% somehow, in order to end up with —112? altogether. We can get this —1022 by
putting in an extra —10x into q:

2 —112° + 72 +3 = (v — 1)(2* — 102 + 7).

Now we have a product (z — 1)(z* — 10z) = 2* — 1122 + 10z, so we need a further —3x
to get 7x. So we put —3 into ¢:

2? —12? +7r +3 = (v — 1)(2* — 10z — 3).

Now we have no more question marks left to fill, so we just have to hope that the last
term of p, the 3, automatically works out right. Sure enough it does. Is this a miracle
or can we see why?

If we were to start with any polynomial p(z) and divide by  — 1, we could continue to
choose terms in ¢(x) until we had managed to get all the powers of x we wanted except
the last one; the constant term. So we would have

p(z) = (z —1).q(x) +r (4)

where ¢ is a polynomial and r is a number. Now suppose that p(x) = 0 when z = 1; ie.
p(1) = 0. Then, if we put x = 1 into equation (4) we get

0=0.q(1)+r
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and hence r = 0.

In other words the constant term works out automatically. Now if we put » = 0 back into
(4) we get

p(z) = (z —1).q(z)
which is the factorisation that we wanted. The division process just described is a special
case of a more general fact.

Theorem (Division of polynomials). If p and d are polynomials then we can divide p
by d in the following sense. We can write

p(x) = d(z)q(x) +r(z)

where q, the “quotient” is a polynomial, (possibly 0) and r, the “remainder,” is a polyno-
mial whose degree is lower than the degree of d, the divisor.

For example if p(z) = 2* + 2® + 22% + 22 + 2 and d(x) = 2* + 2 + 1 then we can write,
2?4202 420 +2 = (PPHa+DE@E+FD 4+ (z+1).

If d is a linear polynomial, as in the (z — 1) example, then the remainder r is a constant.
Consequences of factorisation

Once you have factored a polynomial (if you can), you have a pretty good idea of how
the polynomial behaves. For example, if p(z) = x(z — 1)(x — 2) then it’s pretty easy to
see that the graph of y = p(x) looks something like this:

The function is zero at 0, 1 and 2,
negative between 1 and 2, positive

to the right of 2, and so on. - \/2 3
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One of the most important consequences of factorisation is a bit more theoretical. If you
multiply together some linear factors, let’s say five of them,

(x —ay)(z — ag)(z — az)(x — ay)(z — o)

you get a polynomial of degree 5. So we can immediately see that a polynomial of degree
4 cannot have 5 different zeros since this would make it a product of 5 or more factors.
In general:

Theorem (Zeros and degree of a polynomial). A non-zero polynomial of degree n
cannot have more than n different zeros.

This principle can be reinterpreted. Suppose that f and g are two polynomials of degree
at most 5 and suppose we know of 6 different places where f and g take the same value:
they agree at 6 different places. In other words I can find zg, x4, ..., x5 with

f((l]()) :g(l'g), f('rl) :g(x1)7 SRR f(ZE5) :g(x5)

Then the polynomial f — g also has degree at most 5 but is zero at 6 different places.
(f —g9)(xo) = f(xo) — g(xp) = 0 and so on.

So this polynomial must be “identically zero”: it must be the zero polynomial. This in
turn means that f and g must be the same as one another.

Thus we end up with the so-called uniqueness principle.

Theorem (Polynomial uniqueness). If two polynomials of degree at most n, agree at
n + 1 different points, then they are the same polynomial.

It wasn’t too hard to show that polynomials can’t have too many zeros: we just observed
that they obviously can’t have too many factors. The question of whether they have any
zeros is much more difficult. For a start, in order to guarantee that you can factor
polynomials, you need to introduce complex numbers. This was not really done until the
18" century. The first arguments which clearly showed that you can always factorise
polynomials, did not appear until the 19" century. This stunning fact is called the The
Fundamental Theorem of Algebra. We shall discuss this remarkable fact later on.
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Chapter 3. Summation

It often happens in mathematics that we need to refer to the sum of a large number of
terms or perhaps of an indeterminate number of terms

14+2+3+...+n.

In these situations it is convenient to use the ) notation. Thus, the expression could be

n
E 1.
i=1

written as

In a similar way we use the expression

Z 7 (5)

to mean
T, + Ty + 23+ ...+ T, (6)

Before moving on to calculations, I want to draw your attention to the role of the letter ¢
in each of these expressions. Whereas i appears in the expression (5) it does not appear
in the expanded version (6). The letter i is merely a “dummy variable” which is being
used to give us an instruction: “Add up the numbers 1, x5, ... x,.” This remark makes

it clear that
13
>
i=1
and
13
Do
k=1
are the same: they are different ways to write the same expression
ZL‘1+C(72+ZL‘3+...+ZL‘13.

It is important to bear in mind the meaning of expressions such as these when using
them.
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In addition to being a shorthand, sigma notation helps to clarify sums when the terms

are complicated.
1 1 1 1 1
624760 120 210

means the same as

1
Z n(n+1)(n+2)

n=1

but it is much easier to see what’s going on in the second expression.
Geometric series

The most important example of summation is one that you have met. Suppose r is a
number and we consider the sequence

(1,r, 7% 1%, ..)
in which each number is r times the previous one. Such sequences occur naturally in the

calculation of interest repayments and the study of radioactive decay for example. Can
we find a simple expression for the sum of the terms of such a sequence

n
E rk?
k=0

As we increase n, these sums look more and more complicated and it is less and less easy

to see how they behave:
1

1+7r
147412
L7472 47

However there is a simple trick which enables us to rewrite these sums. If you multiply
one of these expressions by 1 — r, almost everything cancels: for example,

A=) +r+r2+r) =1 + r + 2 + 13
O S !
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Now, as long as r is not equal to 1, you can divide by 1 — r and get

1— 4
l4+r+r+r= T.
1—7r
In the same way, for each integer n,
1 —pntl
l+r+r 4. ="
1—r

It is clear that the method will not work if » = 1, but in this case, it is easy to write down
the sum anyway:
I+14+12 4. +1"=n+1.

In all cases we have obtained an expression for the sum
n
2
k=0
which has the advantage that it does not become more complicated as n increases.
Theorem (Summation of a geometric progression). If r is a number other than 1,

and n is a positive integer, then,

1— n+1
Lbrdr =
1—r

Notice that we could interpret this theorem as a statement about the factorisation of a
polynomial:
l—a" =1 -2)1+z+2>+ - +2").

Thus, the formula for the sum of a geometric progression is just a statement about fac-
torising a special family of polynomials.

Infinite series

An extremely significant role is played in mathematics by infinite sums. Important func-
tions like the exponential and trigonometric functions can be expressed as so-called power
series

f(z) =ao+ a1w +agx® + .. ..
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Power series are supposed to be like polynomials, but with infinitely many terms. It comes
as no surprise that we have to be rather careful when we talk about infinite sums: they
aren’t quite as simple as finite sums.

Consider the sum,
L
stztgt
Let’s set about adding these terms one at a time. We get successively

and it’s pretty clear that this sequence of numbers is approaching 2. So it seems reasonable
to say that the infinite sum is equal to 2.

1 1 1
l+-+-+=+...=2 7
totytg T (7)

On the other hand, suppose we look at the sum
1+24+4+8+16+....

If we keep adding more terms, the result just shoots off out of sight, so we have no way
to make sense of this infinite sum.

Experience has shown us that the most convenient way to make sense of an infinite sum
corresponds to this idea of watching what happens as we add successive terms. If we have
a sequence of numbers

ay, a2, as, Gy, as, . ..

and if the sequence of partial sums

aq

ay + az

ap + az + ag

a; +ag+as+ay

approaches a fixed number A then we say that the series > |° a;, converges and

i ap = A.
k=1
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Using sigma notation we can rewrite the earlier equation (7) as

22—’9 =92.

k

oo
=0

It is a special case of a more general statement about geometric series. Suppose that
—1 < r < 1. Recall that
1— rnJrl
l+r+r+..  +rm=—
1—r

Thus our formula for the sum of a geometric progression tells us the size of the partial
sums of the infinite series
L+r+r+....

As n gets larger, the right hand side approaches

1
1—r

because r"™! — 0. (This depends upon the fact that —1 < r < 1.)

So, according to our definition

1
1—7r

L+r+ri4+m4.. . =

Using > notation, we can write this as

1
Zrkzl—r'

k

00
=0

Equation (8) tells us how to sum infinite geometric series. These are some of the most
important infinite series in mathematics. They crop up all over the place.

Theorem (Geometric series). If —1 <r <1 then

1

l+r+r2+r+... = :
1—7r
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Chapter 4. The binomial Theorem.

The Binomial Theorem concerns the expansions of the powers of a sum of two numbers
(hence “binomial”). The powers 2 and 3 give rise to the familiar expansions

(x+y)=a"+2zy+y°

and
(z +y)* =2 + 32%y + 329 + o>

More generally (x 4 y)" has an expansion of the form
" 4 2"y 4 2R 4 2y

where the question-marks denote coefficients: the so-called binomial coefficients, which

appear in what is known as Pascal’s Triangle!:

The coefficients in the expansion of (z+y)" appear in the n'® row of the triangle, provided

t row. BEach row of the triangle is obtained

we count the single 1 at the top, as the zero
from the previous row in a simple way: to obtain a given entry you add together the two

entries above it.

'The triangle was known hundreds of years before Pascal in India, China, Persia and probably else-
where.
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To see why Pascal’s triangle appears let’s try to find the coefficients in the expansion of
(r + y)* from those before. We can write (z + y)* in terms of the previous expansion in
an obvious way.

(z+y)'=(z+y)(z+y)°

So, assuming we know the third row of the triangle, we get

(x+9)* = (v +y)(2* + 322y + 3oy* + 7).

If we multiply the second factor by x and by y in turn, we get two pieces which contribute

to the total:
rt 4+ 32y + 32%?r + P

sy + 32%y? + 3z + ot

Each of these pieces has coefficients 1,3,3,1 like the 3" row, but the coefficients are
attached to different combinations of x and y. When we combine the two pieces, we
therefore add shifted copies of the 3" row to get

ot + 42y + 62%y* + 4oy + ot
Schematically, we could represent it like this

1 3 31
1 3 31
1 46 41

It is no coincidence that the table above looks rather like a long multiplication. Try mul-
tiplying 1331 by 11 on paper and see what you write down. The same shifting operation
accounts for the way we build all the other rows of Pascal’s Triangle from the previous
ones.

We denote the coefficients in the n'® row of Pascal’s Triangle

() (7). ()

The expansion can thus be written
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The coefficient ( f ) is pronounced “en choose kay” for reasons described later. The

Pascal triangle property of the coefficients can be written as follows
ny\ [(n-—1 N n—1
E) k-1 k '

So far we have examined Pascal’s Triangle and explained why it is built up in the way
that it is, but we didn’t really do anything more than reinterpret multiplication by x + y
in terms of addition. If we are to use binomial coefficients, it would be nice to have a
simple formula which will enable us to calculate them without going through the whole
business of building Pascal’s Triangle.

Can we determine the numerical value of

20

7 )
for example, without finding 20 rows of the triangle? The answer is provided by the Bi-
nomial Theorem which tells us that the coeflicients can be written in terms of factorials.

Theorem (Binomial Theorem). For any x and vy,

(z+y)" = i ( Z ) gy

k=0

where for eachn and 0 < k <n

The simplest way to prove the Binomial Theorem is to check algebraically that the ex-
pressions involving factorials do indeed satisfy the Pascal triangle property:

(1)-()(7)
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Once you know that the factorial expressions do satisfy this equation you can deduce that
they are the binomial coefficients by induction: assuming that they give the correct values
in the n'* row we can conclude that they also give the correct values in the (n+ 1)* (and
so we only need to check the first row in order to get the induction started).

This inductive argument gives a perfectly good proof of the Binomial Theorem but it
isn’t very illuminating. It just seems to work by magic without really explaining why the
coefficients have the factorial formula or how someone came up with the formula in the
first place. There is a much more instructive way to find the formulae.

If you were to multiply out the product

(z+y)?=(x+y)(z+y)(z+y)

all at once (instead of squaring = + y and then multiplying again) you would write down
each possible product made up of one factor from each bracket:

TTX Xy TYY
YT yxry
yxrzr yyx yyy

This procedure makes it clear that the coefficient of zy? is equal to 3 because there are
three different ways of getting a product of one x and two y’s.

The binomial coefficient ( 3 ) is thus the number of ways of selecting two factors from

among the three: namely the two factors which contribute y to the product. It is auto-
matically equal to the number of ways of choosing one factor from among the three (the
factor which contributes the x).

In the same way, ( " ) is the number of different choices of k objects from a given n

k

objects. This is why we call it “n choose k”. For each k£ we have that

(0=
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simply because, instead of focusing upon the k& we choose, we could instead focus upon
the n — k that we don’t.

Now we're ready to derive the factorial formula. Let’s do a particular example, with
n =7 and kK = 4. We want to calculate how many different 4-somes we can make out of
7 objects.

Suppose that the objects are numbered from 1 to 7. Imagine first that we write down all

possible orderings of the 7 objects,
1234567

3146752

There are 7! = 5040 of them. Now from each ordering, select the first 4 objects. So from
the second ordering above we would select the foursome {1,3,4,6}.

How many times will each 4-some get selected? The 4-some {1, 3,4, 6} will be selected each
time that our ordering has these four numbers distributed among the first four positions
and the numbers 2, 5 and 7 distributed among the last three positions.

There are 4! x 3! ways of doing this, since the numbers 1, 3, 4 and 6 can be ordered in
4! ways and the other three in 3! ways. So from our 7! orderings, each foursome will get
selected 4! x 3! times. This means that the number of different foursomes is

7!
41 3!

which is what we wanted to check.
The same argument works just as well for arbitrary n and k.

What does the Binomial Theorem really say?

There are many ways to state the Binomial Theorem. The important thing to understand
is that the theorem links two apparently different questions and provides two different
interpretations of the binomial coefficients.
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Expanding (z + y)™ tells us that

-G

selecting k-somes tells us that

(+)

and the two things are actually the same.

21
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Chapter 5. Linear equations and matrices.

Consider the following simple problem. You have at your disposal two commercially
available mixtures of nitrate and phosphate fertilisers: call the mixtures X and Y. 1kg of
each of these mixtures contains the following amounts of each fertiliser.

X Y
Nitrate 200g 100g
Phosphate 100g 200g

You wish to make up a bag containing 120g of N and 150g of P. Can you do it, and if so
how much of each mixture do you need?

To solve the problem you let « be the number of kilos of X and y be the number of kilos
of Y. Then you want to arrange that

200z + 100y = 120
100z + 200y = 150.

These are simultaneous linear equations which are easily solved to yield

r = 0.3
y = 0.6

so that you need 300g of X and 600g of Y (and you can indeed achieve your aim).

Let us think for a moment why this problem gave rise to linear equations (which we have
no difficulty solving). Why is it that x and y appear only in simple linear combinations?
There are two closely related points involved:

e The amount of nitrate contributed by mixture X is proportional to the amount of
mixture X present

e The total amount of nitrate is just the sum of the amount of nitrate coming from
X and that coming from Y.
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When you lump together some of X and some of Y you simply add the amounts of N
contributed by each (and similarly the amounts of P).

This “additivity of lumping together” principle, holds in a wide variety of situations. For
example, if you put together two lumps of a certain radioactive substance, then the number
of atoms which decay in any given period is just the sum of the numbers from the two
lumps. As you may know, radioactive decay is governed by a differential equation rather
than by algebraic equations like those above. Nevertheless, we still refer to this differential
equation as a linear differential equation because it exhibits the same additivity principle
as the linear equations above.

Linear equations are the most useful in mathematics, for three reasons:

e They turn up naturally in many situations.

e Even when the true equations are non-linear, we can often approximate them by
linear ones.

e Linear equations are usually much easier to solve than nonlinear ones.

(The difficulty of solving non-linear equations is well-illustrated by the fact that we cannot
solve, precisely, the equations governing the motion of three heavy objects under gravity.)

Matrices

We have developed a useful shorthand for writing systems of linear equations using vectors
and matrices. The system

20—y =
r+2y = 5.

() ()-(

Our choice about how to multiply vectors by matrices is made deliberately so as to

1s written

correspond to the way in which linear equations are built from their coefficients. We

define
2 -1 r\ [ 2x—y
1 2) \y ) \z+2y
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precisely because we have found it useful in dealing with linear equations.

However, once we have decided how to multiply a vector by a matrix, we can study this
operation in a slightly different way. Instead of trying to solve some particular set of
equations we can think of multiplication by the matrix

(1)
1 2
as giving rise to a transformation of the x, y-plane. The transformation is
x 2z —
()= ()
The diagram shows what the map does to the unit square. It is a rotation together with
an enlargement.

In the same way, every 2 X 2 matrix gives rise to a transformation of the plane. The

(o)

takes the point (z,y) to the point (ax + by, cx + dy).

matrix

One matrix is especially important: the matrix

(o V)
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leaves vectors unchanged. We call it the (2 x 2) identity matrix.

Since every matrix gives rise to a map, the obvious question is “Which maps arise from
matrices?” Not all of them do: only those with certain special properties. Suppose I
am thinking of a matrix and I tell you what it does to the points (1,0) and (0,1). For
example,

(1,0) — (3,7)

(0,1) — (4,5)

a b

c d)’
We can see that such a matrix takes the point (1,0) to the point (a,c). So it must be
that, a = 3 and ¢ = 7. Similarly, b = 4 and d = 5. So the matrix is

(31)

This tells us that any map that is given by a matrix is a very special map: once you know

What is the matrix? Let’s suppose it is

what it does to the points (1,0) and (0, 1), you know what it does to everything. The
reason for this is an additivity property for matrix multiplication. If M is a matrix and
u and v are vectors then

M.(u+v)=Mu+ M.

Multiplication by M preserves addition of vectors: if you add the vectors you add their
images. Similarly, if you double a vector you double its image or if you multiply a vector
by the number ¢, you multiply its image by ¢.

Every map of the plane that is given by a matrix multiplication has these properties. If
M is a matrix, u and v are vectors and A is a number then:

M.(u4+v)=Mu+ Mo

M.(Au) = AM.u.

A map with this property is called a linear map. All maps of the plane given by matrix
multiplication are linear maps.
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Have we answered our earlier question: “Which maps arise from matrices?” We can see
that all matrix maps are linear: is it true that all linear maps are given by matrices?” Yes
indeed: and we have more or less demonstrated this, already. (See if you can give an
explanation of this fact: that any map which is linear is given by a matrix.)

Now we know that the linear maps of the plane to itself are exactly those maps which are
given by matrices. This should prompt us to ask the following question. If linear maps
are just the same as matrix maps, why have we invented a fancy new name for them:
“linear”? The reason is that linear maps turn up in many other situations (not just maps
of the plane), where matrices do not seem to be remotely relevant.

Definition (Linear maps). A map M is linear if whenever u and v are vectors and A

18 a number,
M.(u+v)=Mu+ Muv

M.(Au) = AM ..

There are at least two operations that you have met, other than matrix multiplication,
which possess properties like these: differentiation and integration. For example, when
you differentiate the sum of two functions, you can do it by differentiating each of them
and then adding the results. Differentiation and integration are linear maps: except that
these maps act, not on vectors or points, but on functions.
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Chapter 6. Matrix multiplication.

In the last chapter I talked about transformations of the plane which are given by matrix
multiplication. I glossed over the question of why these transformations of the plane are
interesting or useful. We shall see that among other things, rotations about the origin are
linear maps. Rotations are certainly very important: we need to understand rotations in
order to be able to relate observations made by one person to those made by someone
else, who is facing in a different direction.

For the moment, I want to take for granted that linear maps are useful and to talk a
bit more about some of their properties. One of the first things we always do when we
have thought of some kind of mathematical operation is to see what happens if we do
one after another (if we can). Suppose we have a pair of 2 x 2 matrices M and N. If
we transform the plane using M and then transform using N we will end up with some
overall transformation.

There is a question which is practically screaming to be asked. Is this new transformation,
of the same kind as before: is it given by a matrix? Or have we found a new kind of
transformation? If the new transformation is given by a matrix, which matrix is it: how
does it relate to M and N? Even if you didn’t know the answer before, you would probably
have guessed what it is.

Let’s have an example. Suppose that

2 1 3 2
(5 4)mav=(15)
After multiplication by M, the vector < v > ends up at
Y

2x +vy
3r+4y )

When you multiply this by N you get

3 2 2z +y [ 122+ 11y
1 5) \3z+4y ) \ 17z +21y )
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This means that the map is given by a matrix; namely
12 11
17 21 )°
How is this matrix related to M and N7 As you will have guessed, this new matrix is the

product N.M.
3 2 21 - 12 11
1 5)°\34) \17 21 )"

(Note that N is written before M in the product, even though the map it corresponds to
consists of “first do M and then do N”. This inversion of the order results from the fact
that we write maps on the left of the vectors to which they apply.) In general, whenever
we apply a matrix map M followed by a matrix map N we get a matrix map given by
the matrix product N.M.

Theorem (The reason for matrix multiplication). Composition of matriz maps
corresponds to multiplication of matrices.

You might like to check this for yourself by demonstrating it for an arbitrary pair of
matrices. Owing to the fact that you have met matrix multiplication before, I chose simply
to tell you that composition of maps corresponds to matrix multiplication. But this tends
to hide the crucial point: the reason that we multiply matrices the way we do, (and not
some other way) is that we want to talk about combining transformations, one after
another. Funny rules for combining bracketed arrangements of numbers are not our real
aim. Our real aim is to describe what happens when we combine matrix transformations
of the plane (or higher-dimensional space). Matrices and matrix multiplication are the
tools that do the job.

When you first came across matrix multiplication you may have been a bit distressed by
the fact that it is not what we call “commutative”; the order of the matrices makes a
difference. The two products below do not produce the same result:

() Gr) e V) )

The two matrices we are multiplying correspond to two transformations
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e A quarter turn anticlockwise
e A stretch by a factor of 3 in the x direction

Think about what happens to a square if you first stretch in the x direction and then
rotate through 90°; or if you first rotate and then stretch in the = direction.

You shouldn’t be surprised that matrix multiplication doesn’t commute: transformations
don’t commute.

Matrix inverses

Once we know how to combine linear maps, we can ask how to invert (or undo) them. If
you give me a linear transformation of the plane, can I find a linear transformation which
returns every point to its original position? Let’s try it for the matrix

v-(31)
()

which we saw in the last chapter, and which corresponds to the transformation which

Recall the “identity” matrix

leaves all points where they are. Our task is to find a matrix, let’s call it

()
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with the property that

() (5a)-6):

so that the combined transformations yield the identity map which doesn’t move anything.
(Now we see why something as boring as the identity map plays an important role.)

The matrix on the left is
( 2u+3v uw+4v )

2¢ + 3y x+ 4y

So we would like to satisfy the following linear equations

2u + 3v =
u + 4u =
2 + 3y =
r + 4y =

_— o O =

Although these are 4 equations in 4 variables, they separate automatically into two sets
of 2 equations. When you solve them you get

4 1 3 2
u=-, v=--, T=-—, =<
5 5 5 YT
so that the matrix we are looking for is
4 1
5 5
3 2
5 5

This matrix is called the inverse (or left inverse) of M and we usually write it M. Notice
that once you have found the inverse, you can check that M~'.M = I very easily; much
more easily than you could find M.

We constructed the matrix M ~! above in order to satisfy M~'.M = I. However we get
an unexpected (and extremely important) bonus. Since we are talking about matrices,
it isn’t obvious what will happen when we multiply M and M~! in the opposite order,
M.M~1. Tt turns out that we automatically get the identity, I. In other words, if M~!
is the left inverse of M then it is also the right inverse of M. It is for this reason that
we just refer to M~! as the inverse of M and we think of M and M~! as inverses of one
another.



Refresher Course, Keith Ball 31

Theorem (Left and right inverses). If two square matrices multiply to give the identity
i one order, then they automatically do the same, in the other order.

For 2 x 2 matrices you can check this by hand. For general n x n matrices some theory
is needed to handle the same question.
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Chapter 7. The trigonometric functions

The Babylonians chose to measure angle in degrees, but this is a very arbitrary measure,
which is unsuitable for most mathematical purposes. The most natural way to measure
angle is in radians. Let’s recall what that means?

We draw the circle of radius 1 and then for a
given angle we use the length of the circular
arc that it spans as the measure of the angle. t

If the circular arc bounding the sector has 1
length ¢, then we say that the angle of the
sector 1s t.

Often when one first meets radians one feels that they have a rather mysterious quality.
They don’t. We just use the length of the circular arc, as a way to measure the angle.
Nothing could be simpler.

It is immediately clear that a full turn is angle 27, a half turn is 7 and so on. Naturally,
if we have a circle whose radius is different from 1, we have to calculate angle by taking
the ratio of the length of the arc, to the radius.

Let us start by noticing that radians have one property, (in common with degrees), which
is vital.

When you rotate through one angle and then
through another, the total angle you get is
the sum of the original ones. This is clear be-
cause the same statement holds for lengths:
lengths add up in the obvious way.
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Later we shall discuss the crucial property of radians which is not possessed by degrees,
(nor by any measure of angle other than radians).

Cosine and Sine

Frequently in mathematics, we need to be able to relate circular to linear motion. For
this we need the trigonometric functions. Again, draw a circle of radius 1.

(cos 0, sin 6)

Mark a point on the circle at an angle 6, mea-
sured from the horizontal. The x and y co-

ordinates of this point are the numbers cos 6 0 1
and sin 6.

Again, we can express each of these numbers as a ratio of lengths, when we look at a
circle whose radius is different from 1.

There is a tendency to think of trigonometry as “the study of right-angled triangles.” Such
a view makes trigonometry seem absurdly specialised and rather arbitrary. In reality, the
importance of the trigonometric functions stems from the importance of the circle. Right-
angled triangles come into the picture because we use axes that are at right-angles to one
another.

The geometric definition of cos and sin makes the following standard properties obvious.
For any 6,
cos? 0 +sin? 0 = 1.

(This is Pythagoras’ Theorem.) Both functions cos and sin repeat themselves after an
angle 2m: they are periodic with period 27. cos is an even function while sin is an odd
function and for any @,

_ T

sin § = cos (5 — 8) .
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The graphs of cos and sin are the following familiar pictures.

SN
N

T 2n

7\/”
1k

There is no simple way to calculate cos and sin for a general angle. In order to approximate
them, we need to use the techniques of calculus, just as we do for the exponential and
logarithmic functions. However, for certain special angles, we can find the values of cos
and sin using simple geometric arguments. For integral multiples of 7 we can easily see
that both functions are 1 or 0 and can easily check which. The cosines and sines of %

and 7 are also not too hard to calculate. In the examples, you are asked to find cos g,

I and cos %’r You could continue to think up new angles for which you can obtain

12
exact expressions, but this is not an efficient way to calculate for a general angle. We

COSs

shall discuss a more systematic approach in later chapters. I want to devote the rest of
this chapter to the addition formulae for cosine and sine.

The addition formulae

In an earlier chapter I mentioned that rotations about the origin are linear maps: they
are given by matrices. Let’s quickly convince ourselves of that. What we want to know
is that if u and v are vectors and R is a rotation, then R(u + v) = R(u) + R(v). The
question is, do we get the same thing if we rotate the sum of u + v, as if we add together
the rotated vectors R(u) and R(v). The picture tells the story:
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As we rotate the vectors v and v we rotate
their sum because we can represent the sum as the third side of a triangle with u and v
on the other sides.

So now we know that rotations about the origin are linear maps. What are their matrices?
Let’s find the matrix that gives the rotation through an angle 6 anticlockwise? Suppose

(©1)

We want to find the numbers a, b, ¢ and d. As we did in the last chapter, we can look at

it is the matrix

what the matrix does to a special choice of vectors:

(o) = (1)

The images of these two vectors are

. (2a)-(o)=(2) wa (20)-(1)=(2)

What are the images supposed to be?
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(—sin 6, cos 6)

(cos 0, sin 6)

0 (1.0)

The picture shows that after rotation through an angle 6,

1 . cosf 0 . —sind
0 sinf )’ 1 cosf )
So the matrix of a rotation about the origin through the angle 6 is
cosf —sind
sinf  cosf )’
These matrices (for different @) are used in many ways throughout physics and engineer-

ing: whenever you programme a computer to handle rotations you need to give it these
matrices. We don’t have any other quantitative description of a rotation.

The first use to which we will put these matrices is to discover the addition formulae for
cos and sin. You have met these formulae and begun to realise that they turn up a lot.
The reason is that addition of angle is a natural thing to do: as we saw, it corresponds
to following one rotation by another. Rotation through ¢, followed by rotation through 6
produces rotation through 6 + ¢.

The matrices for rotations through # and ¢ are

cosf —sin6 cos¢p —sing
d )
( sinf  cos® ) o < sing  cos¢ )
The matrix for the sum is of course

< cos(f + ¢) —sin(0 + ¢) )
sin(0+¢)  cos(@+¢) )
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But we saw yesterday that the matrix for the composition, one map followed by another,
is obtained by multiplying the matrices of the separate maps. So the last matrix is equal

cosf) —siné cos¢p —sing
sinf  cosf ) \ sing cos¢p

cos 6 cos ¢ — sin @sin ¢ — cos fsin ¢ — sin f cos ¢

to the product

which is

sin 6 cos ¢ + cos @ sin ¢ —sin #sin ¢ + cos 6 cos ¢

By equating the two expressions for the “6 + ¢” matrix we can immediately read off the
standard addition formulae.

Theorem (The addition formulae).
cos(f + ¢) = cos @ cos ¢ — sin O sin ¢
sin(f + ¢) = sin 6 cos ¢ + cos 0 sin ¢.

If you haven’t ever tried it, you might find it instructive to derive the addition formulae
using “old-fashioned” constructive geometry: it isn’t too hard: but it isn’t too pleasant
either.

Once we have the addition formulae for cos and sin we can derive the formula for tan: try
it. Naturally we can also derive the double angle formulae: for example

cos2 = cos(f+0)
cosfcosf — sinfsin 6
= cos’f —sin%6

= 2cos’H—1.

In a few chapters’ time, we will look at the addition formulae in the context of complex
numbers and see an alternative way to understand (and hence remember) them.



Refresher Course, Keith Ball 38

Chapter 8. Differentiation.

Ancient Greek mathematicians devoted enormous effort to calculating the volumes or
areas of different solids or shapes. Antiquity’s greatest genius, Archimedes, was so de-
lighted by his discovery of the areas of segments of the sphere that he is said to have had
a diagram of it inscribed on his tomb. Today, such problems are, almost literally, child’s

play.

In the middle of the seventeenth century, with an extraordinary burst of activity, Isaac
Newton not only explained the motion of the planets and the behaviour of falling bodies on
the basis of a single principle of gravitation, but also created the mathematical tool known
as calculus. By relating the two operations that we now call differentiation and integration,
and by inventing a systematic method for carrying out the former, Newton practically
restarted mathematics. Ever since Newton, mathematical knowledge has grown at a rate
incomparably greater than it did at any time before him. In this and the next two chapters
I want to recall the major ideas involved in differentiation; in finding derivatives. The
aim is to study rates of change of numerical quantities, (relative to one another).

The concept of the derivative

As you know the earth is round (more or less). However, if you look out of the window, it
looks flat. The more closely you look at a curve, such as the curve of the earth’s surface,
the flatter it looks.

Let’s look at a mathematical curve which is easier to describe than the earth’s surface; for
example the curve y = s(x) = 2. T have drawn three graphs of this function for different
ranges of the z-coordinate, near to the point (1,1) on the curve. The ranges are,

0 < = < 2
06 < = < 14 and
09 < = <« 1.1
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05F

09+

The graphs for the shorter ranges have been blown up to fill the same width of picture.
What you notice is that smaller pieces of the curve look flatter even when you blow
them up to the same size. Contrast this with what happens when you focus onto a

sharp corner:

0.1

-0.1 0.1

In this case the corners look exactly the same as you blow them up: there is no flattening.
However in the case of the smooth curve, as you focus on smaller and smaller pieces, your
graph looks more and more like a straight line, even when you scale up the picture.
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Not only does the curve look more and more straight as you focus on smaller pieces: there
is a particular straight line that the curve is copying: the tangent line. This straight line
just brushes the curve at a particular point.

How can we find which line is the tangent? One thing we know about the tangent is
obvious: it passes through the point. The problem is to find its slope. The tangent line
to a graph, at a point, is supposed to provide a good description of how the function is
behaving near that point. Can we understand algebraically how the function z +— 22 is
behaving near x = 17

If x is close to 1, then I can write  as 1 + h for some small number h. The value of the
function at x is thus
2= (1+h)?*=1+2n+h.

The first thing you notice about this expression is that if A is small, then the function is
fairly close to 1. If  is close to 1 then 2?2 is close to 1. That hardly comes as a surprise.
Much more important however, is that if A is a small number, then h? is extremely small.
For example, if A = 0.01 then h? = 0.0001 which is much smaller.

Thus, if  is close to 1, so that A is a small number, the value of 2 = 1 + 2h + h? is very
close to
1+ 2h.

So we can see that if we increase x just a bit, from 1 to 1+ h, then we increase the value
of 2% by about twice as much; from 1 to 1 + 2h. The instantaneous rate of change of the
function, at x = 1, is 2: as we increase = from 1 to 1 4+ h the function increases twice as
fast.
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This ratio 2, is the slope of the tangent line that we wanted to find. As you know we call
it the derivative of the function at = = 1.

1+2h

0 1 1+h

Let’s try to find the derivative of the function z ~ x? at other places. Let’s try an
arbitrary value x = ¢. How does the function behave near ¢? Put x = ¢+ h and evaluate
the function at x:

2?2 = (c+h)? = c® +2ch + h2.

Near ¢ we can see that the function is well approximated by the linear function ¢ + h +—
c? +2ch. As we increase x from c to ¢ + h, the value of 22 increases by about 2c times as
much; from ¢? to ¢® + 2ch. So the derivative of the function at ¢ is 2c.

Let’s do another example. Suppose ¢(x) = x* and we wish to calculate the derivative of
q at an arbitrary number x. We choose a number nearby x + h and evaluate g(x + h).

gz +h)=(x+h)>=2"+32°h + 3xh® + h*

If h is very small, the last expression differs from ¢(z) = 2 by about 3z%h. So the slope
of the curve at the point (z,z%) is 322

Can we give a more systematic description of what we just did? We evaluated ¢ at x and
x + h and looked at the difference between them:

gz +h)—qlx) = 2°+32°h+3zh* +h* —2°
= 32°h+ 3zh® + 1’
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Then we picked out “the coefficient of h” in this difference; namely 3x%. We can do the
“picking out” algebraically: divide the difference by h to get 322 + 3zh + h? and now see
what happens to this as h approaches zero. Clearly as h approaches 0, the expression
3x2 + 3xh + h? approaches 322

Our procedure thus consisted of forming the quotient

q(z +h) — q(x)
h

and then asking what happens to it, as h approaches zero. We can try to repeat this
procedure for any function. Let’s call it f. We evaluate the function at ¢ and at ¢ + h.
We take the difference, and divide by h:

flx+h) - fx)
h

Now we ask, does this ratio approach a limiting value, as h approaches 07

Let’s do one more example. Suppose r(z) = % The value of r at z is

r(z) = =

The value at x + h is .
x—+h

Now it isn’t so easy to see what to do with this. We can’t “expand” this reciprocal in

the same way as a square or a cube. We have to use our more formal description of the
procedure. We write down the ratio

r(z+h) —r(z) T s 1( 1 1)

h h h
In order to see what happens to this expression as h approaches 0, our only hope is to
simplify it, by combining the fractions in the bracket. We get

(w) - i (ewm)
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Thus
et -l

h  (r+h)z

Now we are home. As h approaches 0, x+h approaches x and so this expression approaches

-1

xr2

(at least provided z # 0). So, the derivative of the function z — < at z is =;.

Let us summarise. Let f be a function defined near x. If the quotient

flz+h) - [f(x)
h

approaches some limiting value as h approaches 0, we say that f has derivative at x, equal
to this value. We denote it

f'(z).

Near ¢ the function f is approximated by a linear function

f(@+h) = f(z) + f/(x).h

whose slope is equal to the derivative.

We now understand what we mean by the derivative and we know how to calculate
derivatives for some special functions. We could continue, adding to our repertoire of
differentiable functions: but we would go nuts. Instead, we need a machine to do the
work for us. The point is that the functions we use in mathematics are built up in
fairly simple ways from a few basic functions. The machine tells us how to differentiate
complicated functions, once we already know how to differentiate the pieces out of which
they are built.
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Chapter 9. The differentiation machine: exponentials.

The machine has three basic pieces:

e the sum rule
e the product rule

e the chain rule
and special attachments to differentiate particular types of function:

e polynomials
e exponentials

e trigonometric functions.

The sum rule expresses the derivative of a sum of functions in terms of the derivatives
of those functions. The product rule tells us how to differentiate a product of functions
as long as we already know how to differentiate the factors. If f and g are differentiable
functions then

(f+9) =f"+9g
and

(fg9) = fg+ fd.

Once we know the derivatives of the two very simple functions x — 1 and x — x we can
use the product rule to find the derivatives of all the monomial functions

l"—>l’2

x = 2

In other words we can find the derivatives of all functions x — x™ where n is a positive
integer, since each of these is built up from the function x +— x by multiplication. Using
the sum rule as well, we can now find the derivatives of all polynomials.

The third part of the differentiation machine is the chain rule: it tells us how to express
the derivative of a composition of functions in terms of the derivatives of those functions.
Suppose f and g are functions and we form the composition

z = flg(x))-
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(We usually write this function as f o g.) Choose a number x where we want to calculate
the rate of change of f og. The value of the function at x depends upon the value of g at
x and the value of f at g(x). Similarly, the values of fog near x depend upon the values
of g near x and the values of f near g(x). So it is not surprising that the rate of change
of the composition, depends upon the derivative ¢’(x) of g at cx, and also the derivative

f'(g(cx)) of f at the point g(x).
(fog)(z) = [f(9(x))-g'(z)

Let’s have an example. Let g and f be given by g(z) = 1+ 2? and f(t) =  respectively.
Then

g'(x) =2
while 1
f(t) = ¥l
Hence
@) = 5 = T
So
d 1 —2z

Derivatives of inverses

Inverse functions play a rather important role in mathematics: the logarithm as the inverse
of the exponential, the inverse sine function and square roots for example. So it natural
to ask whether we can find the derivative of the inverse of a function whose derivative we
already know. In order to find out, we need some sort of idea.

Suppose f is differentiable and g is its inverse. Since f and g are inverses of one another,
if you do g followed by f you get back where you started:

flg(x)) ==

for each z in the domain of g. The right hand side of this equation, we know how to
differentiate explicitly: we get 1. The left hand side, we can differentiate using the chain
rule, to get

f(g(x)).g'(z).
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Thus we have found that for each z

and hence

The upshot is the following principle If f and g are inverses then

, B 1
9@ = Ty

Let’s have an example: let’s look at the function g given by
g(x) = 22 = V.
The thing we know about ¢ is that its inverse is the function
t 17

that squares things. As above we’ll call this inverse function f. So f(t) = ¢2.

Now, since f(t) = t* we know that f'(t) = 2t. So

,( )_ 1 B 1 B 1
T = Po@) ~ 29(x) 20072

Thus we get the familiar derivative for the function z — /2 by using our knowledge of

=1/2271/2,

the derivative of its inverse.
The exponential function

There are many functions in which the variable is the exponent: x +— 2% x +— (5.267)"
and so on. These functions have certain things in common: most especially, if f is an
exponential function then

flx+y) = f(x).f(y)

Exponentials turn addition into multiplication.
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But there is one exponential function which is special: and because it is so special we call
it the exponential function. Let’s look at the graph of y = 2*.

4l
2,
) 21 1 2

If you try to estimate the slope of this curve at the point (0, 1) you will find that it comes
out to be about 0.693... This is not terribly convenient. If you try the same thing with
the graph of y = 3* you get a slope of about 1.099... Again this is not very helpful.

However, there is a number, which we call e, between 2 and 3 with the property that the
curve y = e” has a slope equal to 1 at (0,1). The curve and its tangent are shown below.

Why is it vital that we should have a special exponential function whose derivative at 0
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is 17 As you know
d

X X
—e' =¢
dx

the exponential function is its own derivative. For this to be true we need that the slope
at 0 is equal to 1: because e’ = 1.

Our choice f(x) = e of the exponential function is intended to guarantee that the expo-
nential is its own derivative. In the first instance it just guarantees that e” has the correct
slope at x = 0. What this means is that as h — 0

fO+h)—f(0) _e"—1

h =— — 1. 9)

Now let’s calculate the derivative everywhere else. We want to know what happens to the

ratio
et h) = flz) et -
h N h
as h — 0. But this is
er.eh — e xeh—1_>x
— =€ e”.
h h

Hence if f(x) = e® then f'(z) = e®. The exponential function is thus its own derivative.
This is what makes the exponential function useful in calculus.

The above treatment of the exponential function was a bit cavalier: I made no attempt
to justify my claim that the number e exists, although this claim is intuitively very
reasonable. I certainly made very little attempt to calculate e: could it be % perhaps?
We shall return to this later.
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Chapter 10. The differentiation machine: the trigonometric functions.

In Chapter 7 we recalled that we measure angle in radians and found the addition formulae
for sine and cosine. My aim in this chapter is to find the derivatives of the trigonometric
functions and in doing so explain why radians are so important.

The two graphs below show the two functions
T sinx

and
T — sin z°.

The two