$$
\left[\begin{array}{lll}
\text { Journal Club -Week } 9
\end{array}\right]
$$

Aim : To show the car first decelerated al a constant rate to come to a stop at 5 before accelerating away with the same constant acceleration denoted by a_{0}.
Steps: Derive a new equation for $x(t)$
Find angular velocity $w(t)$ that 0 - observes

Conclude
$x(t)$ a displacement as a function of time
Given 90 is constant acceleration/deceleration we know

$$
\begin{aligned}
& v(t)=\text { ot } {[v]=T X K H L T^{-1} } \\
& v {[a]=L T T^{2} } \\
& \text { velocity } \\
& \text { as a ruction of of lime } {[t]=T }
\end{aligned}
$$

$$
L T^{-1}=L T^{-2} \times T
$$

dimentionally consistent $=$
using Knowledge of differentiation

$$
v(t)=\frac{d x}{d t}
$$

E multiplying by at

$$
d t v(t)=d x
$$

Integrating $d x$ with respect to time gives us an equation for $x(t)$

$$
\begin{aligned}
\int_{0}^{x} d x & =\int_{0}^{t} v(t) \times \int_{0}^{t} t d t \\
& =a_{0} x \frac{1}{2} t^{2} \\
x(t) & =\frac{1}{2} a_{0} t^{2}
\end{aligned}
$$

Subbing into $\alpha(t)=\arctan \frac{x(t)}{r_{0}}$
gives $\alpha(t)=\arctan \frac{\frac{1}{2} a 0 t^{2}}{50}$
when so $=|05|$
and α = angle between $O S$ and $O C$.
Differentiating according to

$$
\begin{aligned}
& w(t)=\frac{d x}{d t} \\
& \Rightarrow w(t)=\frac{d}{d t} \arctan \frac{\frac{1}{2} a_{0} t^{2}}{r_{0}}
\end{aligned}
$$

Using the chain rule

$$
\begin{aligned}
& g(f)=\arctan f(t) \\
& f(t)=\frac{\frac{1}{2} \operatorname{aot}}{r_{0}} \\
& \frac{d g}{d f}=\frac{d}{d f}=\frac{d}{d f} \arctan f(t)=\frac{1}{1+f^{2}}
\end{aligned}
$$

subbing in $f(t)=\frac{\frac{1}{2} a_{0} t^{2}}{r_{0}}$ gives

$$
\begin{aligned}
\frac{d}{d f} \arctan f(t) & =\frac{1}{1+\left(\frac{\frac{1}{2} a 0 t^{2}}{r 0}\right)^{2}} \\
\text { simplify } & =\frac{1}{1+\frac{1}{4}\left(\frac{a_{0}}{r 0}\right)^{2} t^{4}}
\end{aligned}
$$

we know $\frac{d}{d t} \arctan f(t)=\frac{1}{1+f^{2}} \frac{d f}{d t}$
so $\frac{d f}{d t}=\frac{a \circ t}{r_{0}}$

$$
\begin{aligned}
\therefore \quad \omega(t) & =\frac{1}{1+\frac{1}{4}\left(\frac{a_{0}}{r 0}\right)^{2} t^{4}} \times \frac{a_{0} t}{r_{0}} \\
& =\frac{a_{0}}{r_{0}} t \\
1+\frac{1}{4}\left(\frac{a_{0}}{r 0}\right)^{2} t^{4} & \text { as eau }
\end{aligned}
$$ required.

This shows when $90=10 \mathrm{~ms}^{-2} /$ which is what was suggested) and $r 0=10$ m then at $t=0$ when the car reached the stop sign the angular speed is zero which means the car came to a complete stop at the stop sign proving the innocence of the author.

