How Planetary Migration Influences Planetesimal Growth

Amena Faruqi 9 September 2024

Credit: ESO/L. Calçada

Background & Motivation

Observations of Discs

- Observed rings & gaps may indicate the presence of an embedded planet.
- Rings comprise regions of enhanced dust density i.e. potential sites for planetesimal formation.
- ~800 multi-planet systems found further study into how existing planets affect the formation of additional planets is required.

Source: ALMA Partnership, 2015

Amena Faruqi

Gap & Ring Formation

- 1) Planets heavier than the isolation mass $(M_p > M_{iso})$ can repel large dust from their orbit, causing a dust pile-up.
- Massive enough planets (Mp > M_{gap}) repel gas from the region of their orbit, opening a gap.
- Gas pressure bumps form interior/ exterior to planet, trapping dust.

3

Amena Faruqi

.

KEY QUESTIONS

How does planetary migration influence disc substructures?

How does this affect dust growth and planetesimal formation?

<u>HYPOTHESIS</u>

Migration encourages substructure formation and growth

Methods

Mass Regimes

	M _P < M _{iso} M _P < M _{gap}	M _{iso} < M _P < M _{gap}	M _P > M _{iso} M _P > M _{gap}
	Planet not massive enough to perturb gas or dust	Planet massive enough to form dust ring but not gas gap	Planet massive enough to form gas gap and dust ring
•	${\sf M}_{\sf iso}\simeq 25{\sf M}_{igoplus}$, ${\sf M}_{\sf g}$	$_{ m ap} \simeq 140 { m M}_{igoplus}$ for planet a disc (around a 1 { m M}_{\odot} star)	t 40AU in 0.01M _O

Amena Faruqi

Mass Regimes with Migration

M _P < M _{iso}	M _{iso} < M _P <	M _P > M _{iso}	
M _P < M _{gap}	M _{gap}	M _P > M _{gap}	
Planet not massive enough to perturb gas or dust	Planet massive enough to form dust ring but not gas gap	Planet massive enough to form gas gap and dust ring	

Regime boundaries depend on planet mass and location, so migrating planets can cross regime boundaries.

Amena Faruqi

Hydrodynamical Models

- Goal: Study and compare dust growth in rings formed by an embedded planet when the planet is (a) stationary or (b) migrating.
- Models run using FARGO3D + coagulation toolkit to run 2D $(r + \phi)$ hydro models of dust advection and growth.

10 models: [3 (1 per mass regime) + 2 (crossing regime boundaries)] \times 2 (migrating and stationary)

Results & Analysis

UKI Discs 2024

...except when at odds with other mechanisms

Dust pile-up due to pebble isolation competes with migration.

As large grains travel inwards, their St goes down and they can more readily escape the dust trap.

Amena Faruqi

Summary & Conclusions

- Migrating planets affect a disc in different ways, depending on:
- ★ The planet mass and location how strongly does it perturb the disc?
- ★ The St of grains in a dust trap, which changes as the ring migrates
- ★ The migration rate vs drift rate of grains in the dust trap

<u>Take-home message</u>

Migrating planets are more favourable for dust growth and ring formation but migrating rings are not!

BACKUP SLIDES

Additional Results

Fragmentation rate increases for a type II migrating planet (gapopening regime)

Loss of mass in the largest size bins

Amena Faruqi

Parameter Selection

- Effect of planet masses and locations ideally use planets with masses $M_p < M_{Jup}$, located within a few 10s of AU of the disc inner edge.
- Planet-to-disc mass ratio must be high enough for planet to perturb disc (Rosotti et al. 2016).
- Disc-to-star mass ratio < 0.1 (prevent GI).

$$\begin{array}{c|c} R_{p} = \ 40 \text{AU} & M_{*} = 1 \ \text{M}_{\odot} & \text{M}_{disc} = 0.01 \text{M}_{\odot} \\ \\ H/R = 0.05 & \alpha = 10^{-3} \end{array}$$

Amena Faruqi