

Investigating Dust Growth in Protoplanetary Discs

Amena Faruqi & Farzana Meru

Midlands Discs Meeting 6 June 2023

Credit: ESO/L. Calçada

Background & Motivation

- Observed rings & gaps may indicate the presence of an embedded planet.
- Planet perturbs disc, carving out a gap and creating gas pressure bumps which trap dust.
- ~800 multi-planet systems found further study into how existing planets affect the formation of additional planets is required.

Source: ALMA Partnership, 2015

Amena Faruqi

Amena Faruqi

Midlands Discs Meeting 2023

2

Past Studies

- <u>Rosotti et al. 2016</u> modelled planet embedded in disc at a fixed location with fixed dust grain sizes.
- Meru et al. 2019 modelled migrating planet embedded in disc with fixed dust grain sizes.

Amena Faruqi

Past Studies

- <u>Rosotti et al. 2016</u> modelled planet embedded in disc at a fixed location with fixed dust grain sizes.
- Meru et al. 2019 modelled migrating planet embedded in disc with fixed dust grain sizes.

Neither included effects of dust coagulation/fragmentation but the planet's presence was found to alter the dust density profile.

Past Studies

- <u>Lau et al. 2021</u> 1D HD models of dust growth in an axisymmetric disc with a gap (no planet).
- <u>Drążkowska et al. 2019</u> 2D HD models of dust growth with a Jupitermass planet at a fixed location.

Amena Faruqi

Past Studies

- <u>Lau et al. 2021</u> 1D HD models of dust growth in an axisymmetric disc with a gap (no planet).
- <u>Drążkowska et al. 2019</u> 2D HD models of dust growth with a Jupitermass planet at a fixed location.

Midlands Discs Meeting 2023

Drążkowska et al. 2019

Confirmed that full treatment of coagulation/fragmentation necessary for modelling dust growth in rings.

Project Goals

Build on work of past studies to model dust growth in the presence of lower mass planets.

- How is the formation of gap/ring structures affected by the inclusion of growth (if at all)?
- How does the overdensity of dust affect dust growth in rings?
- What does this tell us about sequential planet formation?
- How do these answers change if the planet is migrating?

Model Considerations

- Effect of planet masses and locations ideally use planets with masses $M_p < M_{Jupiter}$, located within a few 10s of AU of the disc inner edge.
- Planet to disc mass ratio must be high enough for planet to perturb disc (see Rosotti et al. 2016).
- Star to disc mass ratio must be high enough to prevent GI.

Computational Tools

FARGO3D + coagulation toolkit (Garaud et al. 2013) used to run 2D $(r + \phi)$ HD models of dust advection and growth.

	Planet?	Growth?	Dimensions?	Migration?	
1	\checkmark	X	2	X	Complete
2	X	\checkmark	1	X	
3	\checkmark	\checkmark	2	X	In progress
4	\checkmark	\checkmark	2	\checkmark	← To do…

Results – Planet, Fixed Dust Size

Amena Faruqi

Midlands Discs Meeting 2023

2.0

Results – No Planet, Dust Growth

3. Dust accretion.

Midlands Discs Meeting 2023

ratio

(Preliminary) Results – Planet, Growth

Midlands Discs Meeting 2023

(Preliminary) Results – Planet, Growth WARWICK

Amena Faruqi

Midlands Discs Meeting 2023

Ongoing & Future Work

- 1. Investigate absence of gap in gas disc.
 - \circ Resolution too low?
 - o Planet/disc mass?
 - Number of orbits elapsed?
- 2. Model dust growth in the presence of a fixed, embedded planet
 (a) Using higher resolution models
 (b) Testing a full parameter space different planet masses, planet locations, disc masses, etc.
- 3. Model dust growth with planet able to migrate.

Conclusions

- ✓ Modelled production of a gap and ring in a protoplanetary disc due to a planet (dust size fixed, no growth).
- \checkmark Modelled dust growth in axisymmetric protoplanetary discs.
- In process of modelling dust growth in rings formed by an embedded planet.
 - Address absence of gap in gas component of disc.
 - Consider how model parameters will impact dust growth.
 - Improve model resolution and accuracy.

Dust Size Distribution

Amena Faruqi

Midlands Discs Meeting 2023

Methods Implemented

Coagulation/fragmentation rate computed via methods described in:

- Brauer et al. 2008
- Filbet & Laurençot 2004
- Booth et al. 2018

Overall dust evolution (advection and growth) computed via one of the kernels described in:

- Birnstiel et al. 2012
- Garaud et al. 2013

Methods Implemented

Coagulation/fragmentation rate computed via methods described in:

- Brauer et al. 2008
- Filbet & Laurençot 2004
- Booth et al. 2018

Used in results shown so far

Overall dust evolution (advection and growth) computed via one of the kernels described in:

- Birnstiel et al. 2012
- Garaud et al. 2013

Slower, but more accurate (particularly for larger grains)