The Impact of Planetary Migration on Collisional Growth of Dust

Amena Faruqi

22 August 2024

RO NARWICK HE UNIVERSITY OF WARWICK

Royal Astronomical Society

Credit: ESO/L. Calçada

Background & Motivation

01

Observations of Discs

- Observed rings & gaps may indicate the presence of an embedded planet.
- Planet perturbs disc, carving out a gap and trapping dust interior/exterior to planet's orbit.
- ~800 multi-planet systems found further study into how existing planets affect the formation of additional planets is required.

Source: ALMA Partnership, 2015

Amena Faruqi

Gap & Ring Formation

- Mechanisms for formation of dust rings:
- Planets heavier than the isolation mass (M_p > M_{iso}) can repel large dust from their orbit, causing a dust pile-up.
- Massive enough planets (Mp > M_{gap}) repel gas from the region of their orbit, opening a gap.
 - Gas pressure bumps form interior/ exterior to planet, trapping dust.

Amena Faruqi

Collisional Dust Growth in Rings

- Collisional growth is typically inhibited by the <u>radial drift</u> and <u>fragmentation</u> of grains.
 - Rings comprise regions where the collision rate is higher and collisional velocities are lower, meaning
 - a) collisions will be more frequent, leading to more coagulation,
 - b) the likelihood of fragmentation is lower (lower velocities)
 - c) larger grains that form are trapped by pressure maxima, preventing them from radially drifting inwards

Planetary Migration

A planet embedded in a protoplanetary disc can perturb the disc so that the disc exerts torques on the planet, causing it to spiral inwards.

Type I: planet not capable of opening gap in disc, migration rate scales with planet mass.

Type II: planet opens gap, migration rate is much slower.

Amena Faruqi

KEY QUESTIONS

How does planetary migration influence disc substructures?

How does this affect dust growth and planetesimal formation?

Methods

02

.

· · ·

Parameter Selection

• Planet-to-disc mass ratio must be high enough for planet to perturb disc (Rosotti et al. 2016).

• Disc-to-star mass ratio < 0.1 (prevent GI).

Amena Faruqi

McMaster University Journal Club

8

	Mass Regimes			CK RWICK
	M _P < M _{iso} M _P < M _{gap}	M _{iso} < M _P < M _{gap}	M _P > M _{iso} M _P > M _{gap}	
	Planet not massive enough to perturb gas or dust	Planet massive enough to form dust ring but not gas gap	Planet massive enough to form gas gap and dust ring	
	$M_{iso} \simeq 25 M_{igodot}$, M_{gag}	$_{\rm o} \simeq 140 {\rm M}_{igoplus}$ for planet at $_{\rm o}$	40AU in 0.01M _☉ disc	
Amena Faruqi		McMaster University Journal Club		9

Hydrodynamical Models

Goal: Study and compare dust growth in rings formed by an embedded planet when the planet is (a) stationary or (b) migrating.

Models run using FARGO3D + coagulation toolkit to run 2D HD models of dust advection and growth.

10 models: [3 (1 per mass regime) + 2 (crossing regime boundaries)] \times 2 (migrating and stationary)

o run egime

Amena Faruqi

Results & Analysis

03

Regime 1: No substructure

t = 0.5MyrDust (10-100cm) Gas M_D = 12M⊕ -37.0 -37.2 Concentric rings due 1.5 0.5 1.0 Σ [g/cm²] <u>-3</u>7.4 ∼_ to low resolution -37.6 Stationary -37.8 -38.0 0.0 No perturbations -38.2 50 AU 50 AU to disc, no difference in migrating vs. Migrating stationary model 50 AU 50 AU

Amena Faruqi

Regime $1 \rightarrow 2$: Weak ring

Regime 2: Ring (no gap)

Regime $2 \rightarrow 3$: Weak gap

Regime 3: Gap formation

WARWICK THE UNIVERSITY OF WARWICK

Summary & Conclusions

- Migrating planets affect a disc in different ways, depending on:
 - ★ The planet mass and location how strongly does it perturb the disc?
 - ★ The St of grains in a dust trap, which changes as the ring migrates
 - ★ The migration rate vs drift rate of grains in the dust trap
 - Future & Ongoing Work
- Does a migrating planet affect ring widths? (ongoing work with Ralph)
- □ How much mass is contained in rings/what kinds of planets can we form?
- □ Are there any observational signatures of the mechanisms at play?

Amena Faruqi

Thank you for your time ③