The Gravitational Wave Optical Transient Observer (GOTO)

Ryan Cutter (Warwick)

D. Steeghs (Warwick)

National Astronomical Meeting 2017

Detecting Gravitational Waves

Gravitational waves are detected when compact objects merge.

National Astronomical Meeting 2017

(Milky Way image: Axel Mellinger)

Detecting Gravitational Waves

Singer, L.P., et al. (2014)

Sky Localisation simulation:

- Even with 3 gravitational wave observatories there is still a large search area
- Covering on average 500 deg² per event

Electromagnetic Signatures

Electromagnetic Counterparts:

- Binary Neutron Star mergers
- Black Hole + Neutron Star Mergers
- Potentially some Black Hole mergers DeMink, S. E., King, A. (2017)

Price, D. P., Rosswog, S. (2006)

GOTO Mission

- Wide angle, fast survey allowing high cadence reference. Allowing coverage of GW localisation error boxes.
- Seeing deep enough to probe EM signatures from NS mergers
- Robotic with an automatic response to LIGO alerts
- Optimised pipeline to extract transient sources in real time.

Installing GOTO on La Palma Credit: Paul Chote

- Currently in phase I
- 4 × 40cm bespoke telescopes
- 50 Megapixel detector per telescope
- 4.5 deg² field of view per telescope
- 21st Magnitude in the optical regime, taking 5-10 minutes.
- Filter wheel R,G,B, Optical band, and Clear
- Scalable, flexible design. More telescopes can be added

First light! (11/06/2017)
M13 (a giant globular cluster in Hercules)

Phase II

Illustration of GOTO's second phase

- Fully funded
- 4 additional telescopes
- Covering a total area of 36deg² per pointing
- 6-7 days to cover the night sky
- To be completed end of 2017

Phase III and beyond

Illustration of GOTOs third phase

- Add another 8 telescopes on La Palma
- Lowers sky cadence 3-4 days
- Filter flexibility
- Considering a second node in the southern hemisphere.

Aasi, J., et al. (2013)

Abbott, B. P., et al. (2016)

Hunt for the Counterpart

- Survey mode building a high cadence reference of the night sky
- When a gravitational wave event is received GOTO will shift from survey mode to a targeted search mode.
- Optimised pipeline to extract transient sources

Follow-up Astronomy

- Confirmation
- Light curves
- Spectroscopy
- Red shifts
- Host properties

Follow-up Astronomy

Consortium Facilities

- Warwick 1.0 Metre telescope
- PT5M
- NARIT 2.4 Metre telescope
- NARIT 0.7 Metre cluster

Approved Facilities

- William Herschel Telescope
- Isaac Newton Telescope
- Liverpool Telescope
- Hubble Space Telescope

Additional Research Opportunities

- Big data challenges such as storage, machine learning, gaussian processes.
- Real-time processing while searching for a counterpart. Filtering false positives such as supernovae and galactic foreground
- Developing the best search strategy that exploits GOTO's flexibility.
- Large sky survey offering opportunities for other time domain science.

Time Domain Science

Extra-Galactic

- Tidal Disruption Events
- Active Galactic Nuclei
- Fast Radio Bursts
- Gamma Ray Bursts
- Supernovae

Galactic

- Millisecond pulsar companions
- White dwarf binaries
- Pulsating variables
- Luminous Blue Variables
- Symbiotics
- Cataclysmic Variables

Closer still

- Asteroids
- Comets

Summary

- Entering the era of Multi-Messenger Astronomy and a dedicated fast wide field of view survey telescope would be optimal when searching for the counterpart to a Gravitational Wave trigger.
- The GOTO prototype has just been deployed in La Palma with plans in place to upgrade it into its second phase.
- A vast array of secondary time domain astronomy can be completed using the wide field survey.
- Opportunities for research in big data Astronomy

Time (MJD)	dt1 (days)	dt2 (days)	Filter	Mag	Telescope	$^{ m Flux^a}$ $(\mu m Jy)$	Reference
57758.0595	0.6345	-0.2003	g	> 17.7	SWASP/GOTO	< 340	Steeghs et al. (2017)
57758.0595	0.6345	-0.2003	\mathbf{r}	> 17.0	SWASP/GOTO	< 580	"
57758.0920	0.6670	-0.1678	g	> 17.6	SWASP/GOTO	< 370	"
57758.0920	0.6670	-0.1678	\mathbf{r}	> 16.9	SWASP/GOTO	< 640	"
57758.2100	0.7850	-0.0498	g	> 17.0	SWASP/GOTO	< 650	"
57758.2100	0.7850	-0.0498	\mathbf{r}	> 16.3	SWASP/GOTO	< 1120	"

Bhalerao, V., et.al (2017)

Bhalerao, V., et.al (2017)

