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1) Introduction

 Understanding its dust content is crucial to inferring accurate  Most previous work is based on infrared (IR) data only, ignoring
information about a galaxy. Dust properties (e.g. temperature) can the stellar component which acts as the heating source and the
change with time, affecting the evolution and properties of galaxies. spectrum of which can influence dust parameters.

 Currently there is little consensus on the dust temperature evolution * We investigate the T, —z relation using full spectral energy
with redshift (T,— z), with plateauing (e.g. Liang et al. 2019) to distribution (SED) fitting from the ultraviolet (UV) to the IR.
exponential-like (e.g. Viero et al. 2022) derived relations.
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4) UV-IR disconnect

5) Conclusions
In 15 of 20 subsamples at z > 4.5, the best-fitting model constrains the stellar component

while under-predicting the IR flux (Figure 5). This is likely due to a spatial separation in peak .

We find a linear T, —z relation, which
UV and IR emission from galaxies which breaks the fundamental energy-balance formalism.

agrees with majority of literature but
differs crucially to Viero et al. (2022).
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Figure 5. Best-fit model from BAGPIPES in orange against observational data in blue. The subsample bin is labelled.
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