

Gamma-Ray Burst science with LSST

Ben Gompertz
University of Leicester
Thanks to Paul O'Brien and Antonia Rowlinson

GRB Progenitors

Collapsar – LGRBs

Binary Merger – SGRBs

LGRB: Collapsar model – occurs in region of massive (hence recent) star formation. Several examples known of associated super/hypernova signature

SGRB: Merger model (e.g. NS-NS) – can occur in any type of galaxy, and also off of a galaxy due to natal dynamic kick and long merger time

Other models are available...

SGRB+LGRB Optical Afterglows

SGRB optical afterglows are fainter than those of LGRBs

Off-axis 'Orphan' Afterglows

The shape of the optical afterglow depends on the position of the observer relative to the jet axis

LSST will detect ~ 1,000 off-axis (LGRB) afterglows per year (as well as ~ 50 'on-axis' afterglows)

These statistics will constrain the beaming angle, as well as the true rate of GRBs in the Universe.

Gravitational Waves from GRBs

[Image: NASA/CXC/GSFC/T.Strohmayer]

Class	M _v (mag)	T _{decay} (days) ^a	Universal rate ^b (Mpc ⁻³ yr ⁻¹)	LSST rate (yr ⁻¹)
TDF	-1519	30 350	10 ⁻⁶	6,000
Luminous Sne	-1923	50 400	10 ⁻⁷	20,000
SGRB orphans	-1418	5 15	3 x 10 ⁻⁷ 10 ⁻⁹	~ 10 - 100
LGRB orphans	-2226	2 15	3 x 10 ⁻¹⁰ 10 ⁻¹¹	1,000
On-axis afterglows	37	1 15	10 ⁻¹¹	~ 50

Table: LSST Science Collaborations and LSST Project 2009, LSST Science Book, Version 2.0, arXiv:0912.0201, http://www.lsst.org/lsst/scibook

^a Time to decay 2 magnitudes from peak

^b Rau et al. (2009)

Ultra-long GRBs

Swift has found a small number of "ultra long" transients/GRBs, with T_{90} >2000s [NB. harder for Swift to find due to orbit gaps…].

Brighter at late times than average GRB. Fainter at late times than Swift J1644+57

For GRB130925 only detect a dust-scattered X-ray afterglow. Others have weak afterglows relative to the prompt emission

Hard to reconcile with afterglow (GRB) or fallback (TDE) models

Redshift and Variability

- 30 second observations of each patch of sky made every 3 4 days.
- > Depth of r \sim 24.5 for a single visit and r \sim 27.5 for co-added depth.
- Large numbers of galactic photometric redshifts will be determined.

Sky map will show overlying objects in each field.

Knowing the background is essential in identifying transients.

[Image: Deep Lens Survey / UC Davis / NOAO]

Example Future X-ray Facilities

SVOM

Einstein-Probe

in "advanced study" phase - 2yrs)

Wide-field MPO
lobster-eye X-ray
telescope

- 1/12 whole sky

- VHF

VHF

SVOM, China, France (+Leicester), launch ~2020, rapid repointing – Swift-like GRB search with rapid sub-arcmin localisation

Uses Lobster-eye style X-ray optics

Payload: a wide-field soft X-ray telescope (0.5-4keV)

Orbit: 600km, circular, 30° inclination, 97min period

Mass: 380 kg (payload 150kg)

Downlink: via SVOM VHF network or relay satellites

LSST in GRB science

- Detect off-axis orphan afterglows, allowing improved estimates of jet opening angles and the rate of GRBs in the Universe
- Provide EM follow-up for the expected gravitational wave signals in short GRBs
- Build a sample of the new class of ultra-long GRBs without having to rely on triggers
- Obtain photometric redshifts of many of the potential host galaxies of GRBs
- Provide an all-sky map, which will help when identifying transients and overlying objects in the field
- Contemporaneous X-ray data required to build a full picture