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Image credit: NASA GSFC

Qin et al. (2013)
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Collapsar - LGRBs Binary Merger —- SGRBs

LGRB: Collapsar model — occurs in region of massive (hence recent) star formation.
Several examples known of associated super/hypernova signature

SGRB: Merger model (e.g. NS-NS) — can occur in any type of galaxy, and also off
of a galaxy due to natal dynamic kick and long merger time

Other models are available...
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The decelerating fireball model

Flux (0.3-10.0 keV) (erg cm=—2s")
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- Prompt emission from
shocks between shells of
expanding ejecta

- Afterglow from blast

wave deceleration in
CBM

- Late plateau suggests
long-lived central engine
activity
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Magnetar central engine

- Prompt emission from relativistic jets, launched by
initial merger

- Initial decay from the 'curvature effect,' created by
high latitude emission

- Plateau created by energy injection into the forward
shock from spin-down of a highly-magnetized, rapidly-
rotating neutron star (magnetar)

M"‘:15Mma}: M"ﬁ:Mmax

Magnetar Stable magnetar

supported by

rotation

M > 1.5 Mmax M > Mmax
Unstable magnetar

Mmax = maximum allowed NS mass
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%  Stable magnetars 10 ¢ g
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+ Long GRB candidates
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Gompertz et al. 2013, MNRAS, 431, 1745
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The broadband view

- Standard dipole fitting assumes certain conversion efficiency from X-ray light

curves.

- Gives no information on emission at longer wavelengths.
- Perform broadband modelling of forward shock emission with dipole (and EE)

profile as time-varying energy injection.

- Available data is not constraining to self-absorption break (very few radio
observations, even fewer detections) or cooling break (if above X-ray frequency).

- Many combinations of physical parameters can match available data.
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Radio signature

- Order of magnitude parameter space search for 3 physical parameters (g, €5
and n) and 3 energy terms (prompt, EE and dipole contributions).

- Each successful match provides a family of parameters that are self-consistent
within the magnetar model.

- Can be used to create the expected radio signature for a magnetar injecting
energy into a forward shock.

- Difficult to reproduce early-time radio observations with forward shock alone.
Evidence for reverse shock?
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Detectability

Gompertz et al. (2015)
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- SGRB light curves are consistent with energy injection from a magnetar central
engine.

- The magnetar model implies a great deal of energy injection, resulting in a
brighter radio signature than the black hole scenario.

- Broadband observations are consistent with forward shock energy injection, but
reverse shocks required at early times

- Paucity of observations means a wide range of potential physical parameters

- Previous radio observations provide some constraints to parameter space, but
have not yet fully probed the model. Detections are likely to be from reverse
shocks.

- Phase 1 of the SKA will have sufficient sensitivity to test the predicted radio
signature of magnetar energy injection in most cases.

- SKA phase 2 will be able to go deeper than our lowest prediction for around a
year after trigger!
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