Magnetars in extended emission gamma-ray bursts Ben Gompertz University of Leicester Thanks to Paul O'Brien and Antonia Rowlinson W W #### **Properties of GRBs** #### **Short GRBs:** - $-T_{90} < 2$ seconds - Spectrally hard - Often found with large offsets from host galaxies - Long-lived (~ 1000 s)X-ray plateaus - Binary mergers #### Long GRBs: - $-T_{90} > 2$ seconds - Spectrally softer - Found close to star forming regions - Always observed with type 1b/c supernovae where possible - Core collapse supernovae #### A Third Class? ## Magnetar central engine - Prompt emission from relativistic jets, launched by initial merger - Initial decay from the 'curvature effect,' created by high latitude emission - Plateau created by energy injection from spin-down of a highly magnetised, rapidly rotating neutron star (magnetar) ### Magnetar central engine $$T_{em,3} = 2.05(I_{45}B_{p,15}^{-2}P_{0,-3}^2R_6^{-6})$$ $$L_{0,49} \sim (B_{p,15}^2 P_{0,-3}^{-4} R_6^6)$$ Zhang & Mészáros (2001) Stable & extended emission - Extended tail may affect spin period - Assume EE draws entirely on rotational energy reservoir - Assume constant dipole field $$\Delta E = 2\pi^2 I (P_i^{-2} - P_0^{-2})$$ #### Results SGRBs (Green, blue): Rowlinson et al. 2013 LGRBs (Black): Lyons et al. 2010; Dall'Osso et al. 2011; Bernardini et al. 2012 (Gompertz et al. 2013, MNRAS, 431, 1745) # Magnetic propulsion - Marginally bound material ejected by the merger can return to the central object on time scales of a few seconds (e.g. Lee et al. (2009)) - Returning material encounters an extremely strong, rapidly rotating magnetic field Material orbits at the same speed as the NS surface at the co-rotation radius (r_c ; green line) and nominally comes under the influence of the magnetic field at the Alfvén radius (r_m ; red line). Both are influenced by dipole field (B) and spin period (P). - A) r_m is suppressed by a high accretion rate (and/or high P and/or low B). $r_c > r_m$ so material is orbiting faster than the field lines at the point of encounter. Interaction SLOWS material, spinning up the magnetar and allowing accretion onto the surface. - B) As accretion falls off, r_m expands. - C) When $r_m > r_c$ material is orbiting slower than the field lines when they encounter each other. Interaction ACCELERATES material, ejecting it from the system. This is the propeller regime. - D) Loss of angular momentum to expelled material causes r_c to expand. - E) When disc is depleted, r_c slowly expands as spin lost to dipole emission. ## Synthetic light curves 540 synthetic light curves were created, using varying P, B, M_{d} , R_{d} and M_{NS} # **Fitting** Assumed 40% KE to EM propeller efficiency; 5% for dipole; <0.9c ejection velocity #### Results | GRB | P
(ms) | $^{\mathrm{B}}_{(10^{15}G)}$ | M_d (M_{\odot}) | R_d (km) | |--|---|---|---|--| | 050724
051227
060614
061006
061210
070714B
071227
080123
111121A | 0.93 ± 0.04
0.69 [L]
0.69 [L]
1.51 ± 0.21
0.69 [L]
0.69 [L]
1.54 ± 0.12
3.75 ± 0.46
0.69 [L] | 0.88 ± 0.04 0.45 ± 0.19 1.17 ± 0.05 1.48 ± 0.07 0.18 ± 0.05 0.31 ± 0.05 0.57 ± 0.08 1.92 ± 0.16 0.31 ± 0.03 | $ \begin{array}{c} (2.63 \pm 0.13) \times 10^{-2} \\ (1.10 \pm 0.18) \times 10^{-2} \\ (1.20 \pm 0.01) \times 10^{-2} \\ (2.01 \pm 0.37) \times 10^{-2} \\ (3.20 \pm 2.88) \times 10^{-3} \\ (6.91 \pm 0.28) \times 10^{-3} \\ (7.63 \pm 1.02) \times 10^{-3} \\ (5.82 \pm 1.10) \times 10^{-3} \\ (4.80 \pm 0.10) \times 10^{-3} \end{array} $ | 1217 ± 4 695 ± 41 1300 ± 4 400 ± 2 674 ± 753 1378 ± 72 1131 ± 17 742 ± 6 1538 ± 43 | - Derived disk masses between 3x10⁻³ to 3x10⁻² solar masses. - Outer disk radii between 400 1500 km. - Consistent with theoretical predictions (e.g. Lee et al. 2009) - P and B still lie in allowed parameter space. - Best fits require an exponential accretion profile rather than a power law as expected in the presence of strong outflows (Fernández & Metzger 2013). - Propeller fits require efficient (> 10%) conversion of KE to EM. # Summary - SGRB X-ray plateaus are consistent with energy injection from a millisecond magnetar - EE GRBs also have dipole fields and spin periods consistent with an underlying magnetar if EE is driven entirely by rotational energy - There appears to be nothing 'special' about the field strengths and spin periods of any magnetars underlying EE GRBs when compared to the short sample as a whole – the difference may arise from the environment or formation mechanism - Extended emission could be powered by a magnetic propeller if the conversion efficiency of KE to EM is high (> 10%) and accretion follows an exponential profile - EE GRBs may be an even more diverse class than currently appreciated