

Magnetars in short and extended emission gamma-ray bursts

Ben Gompertz¹, Paul O'Brien¹, Graham Wynn¹, Alexander van der Horst², Antonia Rowlinson³, Klaas Wiersema¹

¹ University of Leicester

² University of Amsterdam

³ CSIRO Astronomy and Space Science

Properties of GRBs

Short GRBs:

- $-T_{90} < 2$ seconds
- Spectrally hard
- Large offsets from host galaxies
- Binary mergers

Long GRBs:

- $-T_{90} > 2$ seconds
- Spectrally softer
- Found close to star forming regions
- Observed with type1b/c supernovae

0.01 0.1

10 100 1000 104

Restframe time since BAT trigger (s)

Extended emission GRBs

engine

Magnetar central engine

- Prompt emission from relativistic jets, launched by initial merger
- Initial decay from the 'curvature effect,' created by high latitude emission
- Plateau created by energy injection into the forward shock from spin-down of a highly magnetised, rapidly rotating neutron star (magnetar)

Magnetar central engine

$$T_{em,3} = 2.05(I_{45}B_{p,15}^{-2}P_{0,-3}^2R_6^{-6})$$

$$L_{0,49} \sim (B_{p,15}^2 P_{0,-3}^{-4} R_6^6)$$

Zhang & Mészáros (2001)

Stable & extended emission

- Extended tail may affect spin period
- Assume EE draws entirely on rotational energy reservoir
- Assume constant dipole field

$$\Delta E = 2\pi^2 I (P_i^{-2} - P_0^{-2})$$

- Stable magnetars
- Unstable magnetars
- Long GRB candidates
- **EE GRBs**
- EE GRB light curves energetically compatible with a magnetar central engine
- Magnetar parameters in the EE sample indistinguishable from SGRB sample
- Difference in formation mechanism or environment?
- Unequal mass binary?
- Magnetic propeller? (see Gompertz, O'Brien & Wynn, 2014)

Wider GRB context

Gompertz et al. 2013, MNRAS, 431, 1745

The broadband view

- Standard dipole fitting assumes certain conversion efficiency from X-ray light curves.
- Gives no information on emission at longer wavelengths.
- Perform broadband modelling of forward shock emission with dipole (and EE) profile as time-varying energy injection.
- Available data is not constraining to self-absorption break (very few radio observations, even fewer detections) or cooling break (if above X-ray frequency).
- Many combinations of physical parameters can match available data.

Radio signature

- Order of magnitude parameter space search for 3 physical parameters (ϵ_e , ϵ_B and n) and 3 energy terms (Prompt, EE and dipole contributions).
- Each successful match provides a family of parameters that are selfconsistent within the magnetar model.
- Can be used to create the expected radio signature for a magnetar injecting energy into a forward shock.
- Difficult to reproduce early-time radio observations with forward shock alone. Evidence for reverse shock?

Detectability

10⁻²

10-4

10⁻¹

10⁰

10¹

arXiv:1411.5477

10²

Time (days)

10³

10⁴

Summary

- Short and EE GRB light curves are both consistent with energy injection from a magnetar central engine
- Magnetar properties appear to be identical in both classes; difference may be down to formation or environment
- A magnetic propeller provides a possible source of EE, since it is predicated on the presence of a fall-back disc, regardless of magnetar properties
- Broadband observations are consistent with forward shock energy injection, but reverse shocks required at early times
- Paucity of observations means a wide range of potential physical parameters
- Previous radio observations provide some constraints to parameter space, but have not yet fully probed the model. Detections are likely to be from reverse shocks.
- New observatories, in particular ALMA and the upgraded VLA, are now able to fully probe the radio signature if on target within ~ 2 weeks
- SKA (phase 2) will be able to go deeper than our lowest prediction for around a year after trigger!