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Kepler’s laws of planetary motion. Kepler
(1571-1630) developed three laws of planetary mo-
tion. Although he did his work before the invention
of calculus, we can more easily develop his theory,
as Newton did, with multivariate calculus. His laws
state:

1. The orbit of a planet is an ellipse with the sun
at one focus of the ellipse.

2. During equal time intervals, a planet sweeps
out equal areas, that is, the line from the sun to
the planet covers equal areas in equal times.

3. The square of the period of an orbit is propor-
tional to the cube of the length of the semimajor
axis of the ellipse.

We'll derive the first law from Newton’s laws of
motion. Derivations of the other two laws are de-
scribed in the text.

The path of a planet is planar. We’ll use one
of Newton’s principles to show that the path of a
planet lies in a plane. First, some notation. Let’s
put the sun at the origin 0 € R?, and let the posi-
tion of the planet at time t be

x = (2,9, 2).

Throughout this discussion, t is the independent
variable and we’ll simplify the notation by leaving
off the (¢), so, for instance, we’ll write x instead of
x(t).

Let r be the distance from the planet to the sun

r=|x|| = &2+ y* + 22

Now, the derivative of the position x with respect
to t is the velocity,

V= X/ - (I/J y/7 Z/)7

and its derivative is the acceleration,
" ! "
(", y", 2").

Now, Kepler determined that the acceleration of
the planet was toward the sun. Newton explained
that in terms of gravitational force by saying, first,
that the gravitation of the sun is an attractive force
F on the planet in the direction of the sun. More
precisely,

alt)=v' =x"=

GMm

r2

F=- u

where G is a gravitational constant, M is the mass
of the sun, m is the mass of the planet, r = ||x|| is
the distance of the planet from the sun, and u is
the unit vector in the direction of the planet, that
is,

u=—.
T

Second, force equals mass times acceleration.
(That’s more or less Newton’s definition of force.)

F =ma
GM
Therefore, ma = — Qmu. and, so,
r
GM GM
r2 r3
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Thus, the acceleration a is the scalar - times
r

the position vector x of the planet.

That’s enough to allow us to conclude, as we will
soon, that the path of the planet lies in a plane, and
furthermore, the cross product x x v of the position
and velocity of the planet is a constant vector. (Our
argument isn’t quite the same as Newton’s since he
didn’t use the concept of cross product.)

We’ll show it’s a constant vector by showing that
its derivative is 0. Here’s how.

(xxv) = xX'xv+xxVv

= vVvXv+4+XxXa

But the cross product of any vector with itself is
0, so v x v = 0. Furthermore, the cross product



of any vector with a scalar multiple of itself is also
0, and since a is a scalar multiple of x, therefore
xxa = 0. Thus, (xxv) = 0. But if the derivative
of x x v is 0, then x x v itself is constant, that is,

X XV=C¢C

where c is a constant vector.

Since the cross product of two vectors is orthog-
onal to each, therefore c is orthogonal to x. Hence,
the position x of a planet at any given time is in
the plane orthogonal to the constant vector c. In
other words, the orbit of the planet—which is the
path x—Ilies in the plane orthogonal to the constant
vector c.

Figure 1: Orbit

Let’s set the coordinate system of R? so that the
plane of the planet is the (z,y)-plane. Then c is on
the z-axis, so ¢ = (0,0, ¢) where ¢ = ||c||. In figure
1, the vector c is vertical, and the orbit lies in the
xy-plane. We have yet to show that the orbit is an
ellipse with the sun at one focus.

Kepler’s first law. Next, we’ll derive an equa-
tion for the orbit of a planet. There’s an awful
lot of work to this step. Eventually, we’ll get the

equation
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where r and # are the polar coordinates of the mov-
ing planet, G is the gravitational constant, M is the
mass of the sun, and ¢ and d are parameters that
describe the shape of the ellipse. This equation is
the polar form of the equation of an ellipse with
one focus at the origin.

First, the position x of the planet is the prod-
uct ru of its distance r to the sun times the unit
direction u of the planet. We’ll differentiate the
equation x = ru with respect to time to get an-
other expression for the velocity v:

r

v = (ru) =ru +r'u
Now, put that in the equation x X v = c to get
C = XXV
= (ru) x (ru’ +r'u)
= r*(uxu)+rr'(uxu)
= r’(uxu)
From the discussion above on force and acceler-
ation, we have

a— —

u.
r2

Now, putting together the two equations for a

and c, we get
M
(—G u) x r?(u x u')

axc =
r2

= —GMux (uxu)
= GM (uxu') xu

At this point, we can use an identity on cross prod-
ucts to evaluate this expression. In general, if x, y,
and z are three vectors, then

(xxy)xz=(x2z)y—(y z)x
In our case, we get

axc=GM ((u-u)u' - (u-u)u)



But u is a unit vector, so u-u = 1. Also, as we
saw earlier, u is orthogonal to u’, that is, u-u’ = 0.
Then the last equation simplifies to

axc=GMu.

Also, a x c is the derivative of v X ¢ since c is a
constant vector. Now, since

(v xe) =GMu,

therefore v x ¢ and GMu have the same derivative.
Hence, they differ by a constant vector d:

vxc=GMu-+d.

Furthermore, since both v x ¢ and u lie in the (z, y)-
plane, so does d.

At this point, we may adjust the coordinate sys-
tem so that d lies on the z-axis. Then d = (d,0,0),
where d = ||d||.

We now have the constants ¢ and d necessary to
describe the equation of the elliptical orbit. But we
still have to derive that equation, and when we do,
it will be in polar coordinates r and 6.

Let 6 be the angle of x = (z,y,0). Then

xr = rcosf and y = rsinf, as usual. Also,
u = (cosf,sind,0).
Now,
A = cf*=c-c
= (xxv)-c (triple scalar product)
= x-(vxc)
= ru-(GMu+d)
= GMr+ru-d
= GMr+rdcosf

which gives us the polar form for the equation of

an ellipse
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