Predicting radial-velocity dispersion due to granulation in FGK stars

Dr Shweta Dalal

with Raphaëlle Haywood, Annelies Mortier, William Chaplin and Nadége Meunier

University of Exeter

1. planet detection and radii determination from photometric transits of planets in orbit around bright stars (V < 11)

2. determination of planet masses from ground-based radial velocity follow-up,

3. determination of accurate stellar masses, radii, and ages from asteroseismology, and 4. identification of bright targets for atmospheric spectroscopy.

PLATO

Stellar Variability: An Obstacle in the Hunt for Other Earths

Stellar Variability: An Obstacle in the Hunt for Other Earths

Data Credit - https://dace.unige.ch/dashboard/

Stellar Variability: An Obstacle in the Hunt for Other Earths

Data Credit - https://dace.unige.ch/dashboard/

Time (BJD)

Overcoming the stellar variability

- Observational strategies that average out oscillations over time (Dumusque et al. 2011; Chaplin et al. 2019)
- **De-trending the stellar activity signal using activity indicators** (Boisse et al. 2009; Tuomi et al. 2014)
- Building simple models of stellar surface features (Lanza et al. 2010; Boisse et al. 2012)
- **Gaussian Processes** to account for correlated stellar noise (Haywood et al. 2014; Rajpaul et al. 2015; Barragán et al. 2019)

Understanding the stellar variability

Insights into the Characteristic Amplitudes and Timescales of active regions (Saar et al. 1998, Bastien et al. 2014, Rodríguez Díaz et al. 2022)

Understanding the stellar variability

Insights into the Characteristic Amplitudes and Timescales of active regions (Saar et al. 1998, Bastien et al. 2014, Rodríguez Díaz et al. 2022)

Stellar parameters

Understanding the stellar variability

al. 1998, Bastien et al. 2014, Rodríguez Díaz et al. 2022)

Stellar parameters

Insights into the Characteristic Amplitudes and Timescales of active regions (Saar et

- Select most amenable targets for future missions such as PLATO.
- Step closer to modeling the radial velocity variability for stellar activity signals -> perform MHD for detailed analysis.

GRANULATION ON THE SURFACE OF STAR

- Granulation is the visible signature of convective cells at the surface of stars, which have a convective envelope in their outer layer.
- Granules are small, bright areas of hot rising gas, while intergranular lanes are dark, thin areas between granules where cooler gas sinks.
- Typical granule has a diameter of 30 -1500 kilometres with characteristic lifetimes of ~ 10 minutes.

Credit: NSO/NSF/AURA

Stellar Granulation

Stellar Granulation

Convective Blueshift

Model : To predict Convective Blueshift of FGK stars

(\mathcal{I}) Our model for Convective Blueshift

(7) Our model for Convective Blueshift falls Hot gas rises S đ \mathbf{O} Convection velocity Convection factor V_{c} ooler

Cross Section of Granule

Our model for Convective Blueshift falls Hot gas rises g Convection velocity Convection factor V_{c} ooler $v_c \propto T_{\rm eff}^{32/9} g^{-2/9}$ Basu & Chaplin 2017 Cross Section of Granule

Our model for Convective Blueshift falls Hot gas rises g Convection velocity Convection factor V_{c} ooler $v_c \propto T_{\rm eff}^{32/9} g^{-2/9}$ $f_c \sim I_c^2$ Basu & Chaplin 2017 Cross Section of Granule

Convective Blueshift (\mathscr{V}) - **Temperature**

Convective Blueshift (\mathcal{V}) - **Temperature**

Comparison with Observed Convective Blueshift

Convective Blueshift (\mathcal{V}) - Observed

Cross- Section of granules

Convective Blueshift (\mathscr{V}) - Observed

Convective Blueshift (\mathcal{V}) - Observed

THIRD SIGNATURE OF GRANULATION

Cross- Section of granules

Convective Blueshift (\mathscr{V}) - Observed

Convective Blueshift (\mathscr{V}) - Observed

Liebing et al. 2021

Sample & Stellar Parameters

1. Liebing et al. (2021) sample : HARPS database

2. Removed M-dwarfs

3. SWEET-Cat stellar parameters - Delgado Mena et al. (2017).

320 stars

Convective Blueshift (\mathscr{V}) - Temperature

Convective Blueshift (\mathscr{V}) - Temperature

Reasons for this offset :

- Using the Sun as a reference when retrieving the observed convective blueshift may lead to an offset.

Offset : 0.16 *350m/s = **56 m/s**

Reasons for this offset :

- Using the Sun as a reference when retrieving the observed convective blueshift may lead to an offset.
- Offset.
 We do not consider any wavelength dependence on the velocity and intensity contrast of the granules.

Reasons for this offset :

- Using the Sun as a reference when retrieving the observed convective blueshift may lead to an offset.
- We do not consider any wavelength dependence on the velocity and intensity contrast of the granules.
- Our model doesn't include foreshortening effects.

Image Credit: Dr. Heather Cegla

Radial-velocity dispersion due to stellar granulation

Divide the visible hemisphere of the star in N granules. Ignoring foreshortening, number of granules :

We assume that all granules behave in as statistically independent manner and their velocity dispersion scales as their velocity (Basu & Chaplin 2017):

Predict granulation noise using the following relation:

 $\sigma_g = f(M, Fe/H)$

Summary

- Our model accurately predicts the convective blueshift of FGK stars.
- We also provide equations to predict the granulation noise to inform exoplanet surveys for selecting the most amenable targets.
- searching for other Earths.

- K stars (and high metallicity stars) are the most suitable targets for monitoring when

