AM CVn stars a source of information about accretion disc physics

Iwona Kotko

Astronomical Observatory of Jagiellonian University

In collaboration with J.-P. Lasota

3rd AM CVn workskop, Warwick

Introduction

- Discs in AM CVn stars :
 - small
 - helium dominated
- Light curves characteristic features:
 - normal outbursts: PTF1J0719, KL Dra, CR Boo (?), V803 Cen (?)
 - superoutbursts (all ?)
 - cycling states, standstills (e.g. CR Boo, V803 Cen)
 - dips (e.g. KL Dra, PTF1J0719)
- 3 "tools" for investigation of AM CVn stars

Properties of outbursting AM CVns

The Disc Instability Model

Normal oubursts of Dwarf Novae → the thermal-viscous instability in the disc :

the change in opacities is induced by the partial ionization of the dominant chemical element in the disc

• The outward angular momentum transport in the disc \rightarrow

 α - parameter (Shakura-Sunyaev 1973)

• α is different for the disc in a hot and a cold state :

$$\alpha_h \neq \alpha_c$$

 The geometrically thin disc → allows decoupling of disc vertical structure and disc time evolution equations

Disc Instability Model for AM CVns

Disc Instability Model for AM CVns

Standard DIM - light curves

Superoutbursts

Additional effects :

- \cdot heating by the bright spot
- irradiation of the disc by the primary WD
- truncation of the inner radius by the weak magnetic field or evaporation

Still impossible to obtain:

superoutbursts, dips and cycling state

The enhanced mass transfer model (EMT):

Superoutbursts are due to the major enhancement of the mass transfer rate

$$\dot{M}_{tr} = max (\dot{M}_{0,tr}, \gamma \dot{M}_{acc})$$
 (Hameury et al. 2000)

Dips, cyclings, standstills

2. Direct irradiation - warped disc

(Smak 2009)

Additional "tools"

1. Outburst amplitude - recurrence time relation

(Kukarkin-Parenago relation)

Can be derived in the framework of DIM :

- estimation of mass transfer rates
- estimation of primary mass
- 2. Decay rate from the outburst

$$\tau_{dec} \sim \alpha_h^{-1} R_d M_{\odot}$$

• α_h for AM CVns: ~ 0.2 (?)

3. Both constrain α_c

Summary

1. DIM with modulations of the enhancement of mass transfer rate:

superoutbursts, normal outbursts, dips during superoutbursts, cycling state

- 2. Three methods to investigate AM Cvn stars :
- decay rate from the outburst $\rightarrow \alpha_h$ (with known M1, Porb)
- Kukarkin-Parenago relation $\rightarrow \alpha_c$ (Mtr ?)
- comparison between model light curves and real light curves \rightarrow

chemical composition, missing physics ?

- 3. The observations which we need:
- possibly detailed light curves
- M1 and/or Mtr estimated
- information about chemical composition