The orbits and dynamics of long-period sub-stellar companions

Tim Pearce

Mark Wyatt & Grant Kennedy

Institute of Astronomy, Cambridge
Many long-period sub-stellar companions have been detected by direct imaging

- PZ Tel (Biller)
- GJ 504 (Kuzuhara)
- TWA 5 (Neuhäuser)
- κ And (Carson)
Question 1: What constraints can we put on their orbits?
Question 1: What constraints can we put on their orbits?
Question 1: What constraints can we put on their orbits?
Question 1: What constraints can we put on their orbits?
Question 1: What constraints can we put on their orbits?
Question 1: What constraints can we put on their orbits?
Possible orbits are typically explored using MCMC
Possible orbits are typically explored using MCMC.
Possible orbits are typically explored using MCMC

Interpreting MCMC distributions of orbital elements is difficult
Alternative method: plot orbital elements as functions of z and \dot{z}
Alternative method: plot orbital elements as functions of z and \dot{z}
We find analytic solutions for the allowed ranges of orbital elements (e.g. a general companion’s minimum eccentricity)
Question 2: How would a long-period companion interact with other bodies in the system?
Planet mass \gg disc mass
Planet mass \sim disc mass
Application to HD 107146

ALMA 1.25mm data: Ricci et al. 2015
Application to HD 107146

ALMA 1.25mm data: Ricci et al. 2015
Summary

I study the orbits and dynamics of long-period sub-stellar companions. I am particularly interested in

1) How to constrain the orbits of long-period companions
 - alternative techniques complimentary to MCMC
 - how to remove biases in orbit interpretation

2) How eccentric companions interact with debris
 - how does a general system evolve
 - can debris structures reveal unseen perturbers
 - can we model specific systems