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Todo pasa y todo queda, pero lo nuestro es pasar,

pasar haciendo caminos, caminos sobre el mar.

Nunca persegúı la gloria, ni dejar en la memoria

de los hombres mi canción; yo amo los mundos sutiles,

ingrávidos y gentiles, como pompas de jabón.

Me gusta verlos pintarse de sol y grana, volar

bajo el cielo azul, temblar śubitamente y quebrarse...

Caminante, son tus huellas el camino y nada más;

caminante, no hay camino, se hace camino al andar.

Al andar se hace camino y al volver la vista atrás

se ve la senda que nunca se ha de volver a pisar.

Caminante no hay camino sino estelas en la mar...

Cuando el jilguero no puede cantar. Cuando el poeta

es un peregrino, cuando de nada nos sirve rezar.

”Caminante no hay camino, se hace camino al andar...”

Golpe a golpe, verso a verso.

Antonio Machado
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Aungwerojwit, P. Rodrı́guez-Gil, V. Karamanavis, M. Krumpe, E. Tremou, R. Schwarz, A.

Staude and J. Vogel: ”Post-Common-Envelope Binaries from SDSS - III. Seven new orbital

periods” MNRAS.1.112 (2008)

Chapter 9 is based on: A. Rebassa-Mansergas, B. T. Gänsicke, M.R., D. Koester and
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Abstract

Close binaries containing a compact object make up a wide variety of objects. The

evolution of all close binaries depends crucially on the rate at which angular momentum is

extracted from the binary orbit. The two most important sources of angular momentum loss

are the common envelope phase and magnetic braking. Both processes have been known

for long but are still poorly understood, and significant progress will only be achieved if

they can be calibrated using innovative observational input. Post-common-envelope bina-

ries are probably among the best-suited class of objects to improve our understanding of

close binary evolution, because (1) they are both numerous and well-understood in terms

of their stellar components, and (2) they are not contaminated by the presence of an accre-

tion disc. The Sloan Digital Sky Survey provides the possibility of dramatically improving

the observational size of known post-common-envelope binaries, with already more than

1500 white dwarf-main sequence binaries having been identified. The major task is now

to identify those systems that have undergone a common envelope and to measure their

binary parameters. This new, large sample of well-studied post-common-envelope binaries

will then provide the much-needed constraints for further development of binary evolution

theory.

Through my PhD I dedicated all my efforts towards identifying post-common-

envelope binaries, obtaining orbital periods of these new systems, and determining their

stellar parameters. For this purpose, I adopted the following strategies:

(1) About 10% of the white dwarf-main sequence binaries in the Sloan Digital Sky

Survey have more than one survey spectrum available. By measuring radial velocities from

xvi



the NaI λλ 8183.27,8194.81 absorption doublet and/or the Hα emission line in the differ-

ent spectra from each object, I was able to identify radial velocity variable stars, which

are prime candidates for being post-common-envelope binaries. This method resulted in

the identification of 18 new post-common-envelope binariesamong 130 white dwarf-main

sequence binaries with multiple Sloan spectra. In addition, using a spectral decomposi-

tion/model atmosphere analysis I determined the stellar parameters such as mass, radius,

and temperature for the white dwarfs, and spectral types of the main sequence stars in

these 130 white dwarf-main sequence binaries, along with the distances to the systems.

I discussed also an apparent systematic issue with the spectral type-radius relation of the

companion stars in those white dwarf-main sequence binaries.

(2) Follow-up observations by our team have lead to the identification of 89 post-

common-envelope binaries from Sloan, which triples the number previously known. Intense

radial velocity studies have lead to the determination of orbital periods for 42 of these

systems, seven of them discussed in detail in this thesis.

(3) I have developed a procedure based onχ2 template fitting and signal-to-noise

ratio constraints to identify white dwarf-main sequence binary candidates in the Sloan Dig-

ital Sky Survey Data Release 6 spectroscopic data base. Thiscatalogue contains 1591 white

dwarf-main sequence binaries identified in this way. Using aspectral decomposition/model

atmosphere analysis, I have derived white dwarf temperatures, masses, companion star

spectral types, and distances, and discussed the distributions of these parameters. In addi-

tion, I have analysed the selection effects of white dwarf-main sequence binaries in Sloan.

This sample is an excellent data base for future follow-up observational studies of white

dwarf-main sequence binaries.

xvii





Chapter 1

Overview of Close Binary Evolution

1.1 Introduction

Most stars are formed as parts of binary or multiple systems1. Therefore the study of binary

star evolution represents an important part of studying stellar evolution. While the majority

of wide main sequence (MS) binaries evolve as if they were single stars and never interact,

a small fraction are believed to undergo mass transfer interactions (Sect. 1.2.1). Once the

more massive MS star becomes a red giant it eventually overfills its Roche-lobe. Dynam-

ically unstable mass transfer exceeding the Eddington limit ensures onto the companion

star, which consequently also overfills its own Roche-lobe.The two stars then orbit inside

a common envelope (CE, Sect 1.2.2), and friction inside thisenvelope causes a rapid de-

crease of the binary separation. Orbital energy and angularmomentum are extracted from

the binary orbit and lead to the ejection of the envelope, exposing a post-common-envelope

binary (PCEB). After the envelope is expelled, PCEBs keep onevolving towards shorter

orbital periods through angular momentum loss via gravitational radiation and, for com-

panion stars above the fully convective mass limit (≃ 0.3 MJ), by magnetic wind braking

(Sect. 1.3.1). In binaries that do not undergo a CE phase bothcomponents evolve almost

like single stars and keep their wide binary separations. This is the situation given when

1Note though that the binary frequency declines for stars of spectral type later than G, and that only 30%
of the M stars are formed as part of binaries [Lada, 2006]. Since the stellar initial mass function broadly peaks
at 0.1-0.5 MJ (M stars, see Chapter 2), then most stellar systems in the Galaxy might consist of single rather
than binary or multiple stars.
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no mass transfer takes place, or when the mass transfer from the H-core burning donor star

(case A; this is the first epoch in which the leaving MS star undergoes a gentle growth of

its radius), from the He-core burning donor star (case B; in this case the expansion is more

rapid, towards the first giant branch), or from the post-He-core burning donor star (case

C; also rapid increase of radius, in this case the expansion is towards the asymptotic gi-

ant branch) to the MS companion is stable. A predicted consequence is hence a strongly

bi-modal binary separation and orbital period distribution among post-MS binaries, with

PCEBs concentrated at short orbital periods, and non-PCEBsat long orbital periods.

The scenario outlined above is thought to be a fundamental formation channel for

a wide range of astronomical objects such as double degenerate white dwarfs, cataclysmic

variables and super-soft X-ray sources. Some of these objects will eventually end their lives

as type Ia supernovae, which are of great importance for cosmological studies.

In the following sections of this Chapter, I give an overviewof close binary evolu-

tion. In Sect. 1.2, I provide a description of the physical phenomena involved, and give

details of the CE phase. In Sect. 1.3, I deal with the evolution of PCEBs. Finally in

Sect 1.4, I describe the objectives of my thesis based on the theoretical background de-

tailed in Sect. 1.2 and Sect. 1.3. Throughout this thesis, I will use the term WDMS binary

to refer to the total class of white dwarf plus main sequence binaries, and PCEBs to those

WDMS binaries that underwent a CE phase. I also define a PCEB asa WDMS binary with

an upper limit to its orbital period≤ 300 d, a PCEB candidate as a WDMS binary with

period 300d≤ Porb≤ 1500d, following Fig. 10 from Willems & Kolb [2004], which shows

the period and mass distribution of the present-day WDMS binary population at the start of

the WDMS binary phase.

1.2 Formation of Post-Common-Envelope Binaries

Wide MS binaries are considered to be the progenitors of close compact binaries. Popula-

tion synthesis models predict that∼25% of the MS binary population suffer mass transfer

interactions [Willems & Kolb, 2004]. The stellar components of the remaining∼75% pop-

ulation evolve as if they were single stars. Even though the majority of interacting binaries
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are expected to undergo a CE phase and become close compact binaries, the details of their

evolution crucially depends on the conditions of mass transfer, and consequently on the

initial masses of both stars.

1.2.1 Mass Transfer

Roche geometry

Under the assumptions of Roche geometry (the orbits are circular, and the star that loses

mass, or donor star, is tidally locked), two orbiting stars have a total potential given by

the sum of the gravitational potential of the stars and the rotational potential of the system

(Eq. 1.1, whereω is the angular frequency of the orbit,r1 and r2 are the positions of the

two stars,M1 andM2 are the masses of the stars, beingM1 the more massive component

at the initial MS binary configuration, andG is the gravitational constant). The shape and

dimension of the equipotential surfaces depend on the masses of the stars (or the mass ratio

q = M2/M1), and the orbital separation, respectively.

φ(~r) = −
GM1

|~r −~r1|
−

GM2

|~r −~r2|
−

1
2
(~ω×~r)2 (1.1)

The equipotential surfaces are mainly spherical for stars of small radius, and the shape is

distorted for larger radii. When the radii are sufficiently large the equipotential surfaces of

the stars cross each other (Lagrangian points). In Fig 1.1 I provide a schematic represen-

tation of Roche geometry forq = 0.4. As seen in the figure, there exist five Lagrangian

pointsL1− L5
2. The two surfaces touching atL1, the inner Lagrangian point, are called

Roche-lobes. Mass transfer occurs when one of the stars overfills its Roche-lobe. If both

stars remain inside their Roche-lobes the system isdetached. When one of the stars overfills

its Roche-lobe, mass transfer is then initiated towards thecompanion, and its shape is the

same as its Roche-lobe. The system is considered assemi-detached, and the Roche-lobe

radius of the donor star can be written as [Eggleton, 1983]:

RL =
a0.49q2/3

0.6q2/3 + ln(1+q1/3)
(1.2)

whereRL is the radius of a sphere with the same volume as the Roche-lobe. As I will show

in Sect 1.2.2, two stars in a binary may both overfill their Roche-lobes. In this case the

2Only L1-L3 have physical interpretation in this context.
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system is incontact. When this happens a CE is formed (Sect. 1.2.2), and matter can be

expelled throughL2 andL3.

Mass transfer in MS binaries

When the more massive component in a MS binary departs from the MS, its radius starts to

increase. The orbital separations of these binaries are normally wide enough for the Roche

equipotential surfaces to be spherical around each star, and to allow their evolution as if

they were single, i.e. no mass transfer interactions. Nevertheless, in∼25% of the cases the

evolved star is expected to overfill its Roche-lobe and mass transfer is then initiated to the

MS companion [de Kool & Ritter, 1993; Willems & Kolb, 2004]. The system’s response to

the mass loss can be extremely different depending on the initial masses of the stars.

If the donor is less massive than the accretor, and the thermal timescale3 of the donor

star is short enough to adjust the star to its equilibrium radius, the mass transfer will be then

dynamically and thermally stable. This can be understood considering the conservation of

the total angular momentum of the system: since the donor is less massive, the transferred

material ends up closer to centre of mass of the system, consequently losing angular mo-

mentum. In order to conserve the angular momentum of the system the binary separation

increases, so does the Roche-lobe radius (Eq. 1.2). Henceforth the donor star stops filling

its Roche-lobe, and mass transfer is stopped. The radius of the donor star though is con-

tinuously expanding, as it is evolving through the giant branch (GB), or asymptotic giant

branch (AGB), and consequently overfills its Roche-lobe again, leading to another process

of mass transfer, and to an additional increase of the Roche-lobe radius. This situation re-

mains until the donor leaves the GB, or AGB, and becomes a white dwarf. The resulting

system is then a wide WDMS binary, with a final orbital separation larger than the initial

MS binary separation.

If the donor star is more massive than its companion, the masstransfer will be

dynamically unstable. In this case the transferred material moves further from the centre

of mass, and the separation decreases in order to conserve the angular momentum. The

3Estimate of how long a given star would shine with its currentluminosity if the only power source were the
conversion of gravitational potential to heat. The thermaltimescale is also known as Kelvin-Helmholtz (KH)
timescale, and can be written asτKH = 1

2
Egrav

L ≈ GM2

RL .
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Figure 1.1: Cross section of Roche-lobe equipotential surfaces in the orbital plane of the
semi-detached eclipsing binary BP Muscae, a binary withq = 0.4. The Lagrangian points
are represented byL1-L5. The secondary star with massM2 is overfilling its Roche-lobe,
and mass transfer results to the primary companion of massM1. CM represents the centre
of mass of the system. The coordinates are given inRJ units. Taken from Carrier et al.
[2003].
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Roche-lobe radius decreases, and consequently the mass transfer rate increases consider-

ably. Under these circumstances the donor star can never readjust to its thermal equilibrium

radius, and consequently the mass transfer is also thermally unstable. The non-stopping

inflow of material on to the companion makes itself to be driven out of thermal equilibrium

and consequently it will fill its own Roche-lobe. Hence, the system initiates a contact phase,

referred to in the literature as the CE phase. The friction inside the envelope drives a rapid

(∼ 103 years) decrease of the binary separation through an in-spiralling process. The en-

ergy and angular momentum extracted from the binary orbit ultimately eject the envelope

and give birth to a hot sub-dwarf/WDMS binary, surrounded bya planetary nebula. The

hot white dwarf cools down and the planetary nebula is dispersed, and the system is finally

observed as a PCEB.

The formation of a He- or a C/O- or O/Ne/Mg-core white dwarf depends on when

the mass transfer is initiated [Iben & Livio, 1993; Willems &Kolb, 2004]. If mass trans-

fer is initiated before the more massive star in the initial MS binary burns He into C, the

white dwarf will contain a He-core (MWD <∼ 0.5 MJ). If mass transfer initiates when a

substantial amount of He has been burnt into C/O, the resulting white dwarf will have a

C/O-core (0.5MJ <∼ MWD <∼ 1.1MJ). In the same way, if mass transfer starts when a sub-

stantial amount of C/O has been burnt into Ne/Mg, the resulting white dwarf will contain

an O/Ne/Mg-core (1.1MJ <∼ MWD <∼ 1.38MJ).

1.2.2 Common Envelope Phase

Qualitative description

Even though the concept of CE evolution is straightforward,it involves a large number of

hydrodynamic and thermodynamic processes on both time and scale lengths spanning very

large ranges. Moreover, it is intrinsically a three-dimensional problem.

Paczynski [1976] considered for the first time that the binary components move

inside a non-co-rotating envelope, transferring angular momentum and energy, and reducing

the orbital separation. The energy extracted from the orbitmight be used to expel the

envelope before the components merge. The importance of establishing the efficiency of
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deposition of orbital energy into the envelope became evident. This efficiency is defined as

αCE =
∆Ebind

∆Eorb
(1.3)

where∆Eorb is the change in the orbital energy of the binary between the beginning and

the end of the spiral-in process, and∆Ebind is the binding energy of the ejected material.

Eq 1.3 neglects any other source of energy apart from the orbital energy. This comes from

the fact that CE evolution is rapid compared to the thermal time scale of the envelope, and

so radiative losses are small. Livio [1989] and Iben & Livio [1993] noted that, even though

αCE depends strictly on the orbital energy, the efficiency of deposition of energy into the

envelope could be modified by other physical processes. Two factors are believed to reduce

αCE: the efficiency in the energy transport [Taam et al., 1978; Meyer & Meyer-Hofmeister,

1979; Livio & Soker, 1984; Soker et al., 1984], and non-spherical effects [Bodenheimer &

Taam, 1984; Taam & Bodenheimer, 1989; Livio & Soker, 1988, see the definition ofβCE in

the next paragraph]. Among the physical processes that can increase the efficiencyαCE, the

recombination energy in the ionisation zones is the most plausible (i.e. the energy released

when the material of the envelope recombines is an extra energy that can be used to expel

the envelope). In fact, Han et al. [1994, 2002] include a second α-parameter in Eq 1.3,

characterising the fraction of the initial thermal energy content on the CE available for its

ejection. Nevertheless this has been strongly criticised by Soker & Harpaz [2003], since

(1) Eq 1.3 depends strictly on the orbital energy, and (2) an enhancement in mass-loss rate

provides final orbital distributions similar to those obtained including an extraα-parameter.

Livio & Soker [1988] not only considered the efficiencyαCE, but also defined two

more parameters:βCE and γCE. βCE parametrises the importance of three dimensional

effects, and is defined asτdecay/τkep, whereτdecay is the orbital decay timescale, andτkep

is the Keplerian timescale of the envelope. Thus whenβCE ≤ 1 no spherical symmetry

can be assumed, as the energy is deposited locally.γCE is defined asτspin−up/τdecay, where

τspin−up is the timescale for the spiralling-in binary to spin up the envelope, and describes

the efficiency of spin-up of the envelope as a result of deposition of angular momentum. It is

expected that significant spin-up of the envelope will occurfor γCE ≤ 1. This would reduce

the relative velocity between the secondary and the envelope prolonging the spiralling-in

process, since the drag force decreases.
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The α-formalism

The change in gravitational energy∆Eorb in Eq. 1.3 can be written as

∆Eorb =
GM2Mc

2af
−

GM2(Me+Mc)

2ai
, (1.4)

whereMc is the mass of the giant core,Me is the mass of the envelope, andMg is the mass of

the giant (note thatMe is approximately the mass lost by the giant and consequentlyMc+Me

is approximately the mass of the giantMg), M2 is the mass of the companion, andai andaf

are the initial and final separations, respectively.

Several interpretations of the binding energy∆Ebind of the envelope and the binary

can be found in the literature [Tutukov & Yungelson, 1979; deKool, 1990; Nelemans et al.,

2000; Nelemans & Tout, 2005]. Among them the most commonly used is [Nelemans &

Tout, 2005]:

∆Ebind =
G(Mc+Me)Me

λRg
, (1.5)

whereRg is the radius of the giant andλ is a parameter that depends exclusively on the

structure of the red giant. Dewi & Tauris [2000] found thatλ not only strongly depends on

the evolutionary stage, but also thatλ ∼ 0.2− 0.84. λ can be approximated as [Webbink,

2008]

λ−1 ∼ 3.000−3.816me+1.041m2
e +0.067m3

e +0.316m4
e, (1.6)

whereme is Me/Mg.

From equations Eq 1.3, Eq 1.4 and Eq 1.5 we obtain

GMgMe

Rgλ
= αCE

(

GMcM2

2af
−

GMgM2

2ai

)

(1.7)

This equation represents the outcome of the envelope as determined from the energy balance

between the binding and the orbital energies, referred in the literature as theα-formalism.

Values ofαCE close to unity imply that the orbital decay is very efficient in expelling the

envelope. On the contrary, a lowαCE permits the formation of shorter orbital period PCEB

systems, as the process is less efficient. Typical values ofαCE are in the range∼0.15-1

[Bodenheimer & Taam, 1984; Taam & Bodenheimer, 1989, 1991; Livio & Soker, 1988; de

4In some cases, particularly in the AGB, it is possible thatλ > 5.
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Kool, 1990; Terman et al., 1994; Maxted et al., 2006; Afşar &Ibanoǧlu, 2008]. A plausible

value as low as 0.054 was found for V 471 Tau, an eclipsing DA+KPCEB [O’Brien et al.,

2001]. These results tell us thatαCE is far away from being a universal constant, and that it

probably depends on different binary parameters, such as the masses of the stars, the evolu-

tionary stage of the primary, and the nature of the secondary. Politano & Weiler [2007] have

initiated a comprehensive population synthesis study of variable CE efficiency parameters.

In this work (the first of the series) they assume both a power law dependence,αCE = Mn
2,

and a dependence in whichαCE approaches 1 for large secondary masses andαCE = 0 below

some assumed cutoff mass,αCE = 1−Mcut/M2, whereMcut is the cutoff mass. Politano &

Weiler [2007] find that the distribution of PCEB secondary star masses varies significantly

depending on the model used, and claim that a well-defined, statistically complete sample

of PCEBs would be desirable for a comparison with their population models.

Quantitative remarks of the Common Envelope phase

Although hydrodynamic studies have provided much insight into the phases of the CE stage,

calculations at high spatial resolution are still necessary to further quantify the outcome of

the envelope. As noted by Taam & Ricker [2006] and Ricker & Taam [2008] “in recent

years the development of sophisticated computer methodologies has made it possible to

achieve this goal. Specifically, adaptive mesh refinement techniques have advanced to the

point where such calculations can now be envisioned”.

The γ-formalism

First Nelemans et al. [2000], and then Nelemans & Tout [2005]reconstructed the evolution

of observationally confirmed white dwarf binaries (double degenerates or DDs). A double

degenerate configuration is in principle achieved after twomass transfer processes, either

both being unstable (i.e. two CE phases), or the first being stable and the last unstable

(i.e. one CE phase). As expected, the binary separations in DDs are very short, making

these systems excellent candidates of Supernova Type Ia progenitors [Langer et al., 2000;

Parthasarathy et al., 2007]. Knowledge of the orbital periods and masses of DDs makes it

easier to reconstruct their evolution, as one can assume that the observed white dwarfs were
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the cores of giant stars from which they ascend. Thus the effect of the CE phase on the orbit

can be reconstructed. Nelemans et al. [2000], and Nelemans &Tout [2005] demonstrated

that the first phase of mass transfer can not generally be described by theα-formalism, as

they measured negative values ofαCEλ. This result was later confirmed by van der Sluys

et al. [2006] for the efficiencyαCE. Thus Nelemans et al. [2000] introduced a new algorithm

based explicitely on the equation for angular momentum balance

∆J
J

= γ
∆Mtot

Mtot
= γ

Me

Mg +M2
(1.8)

and found that thisγ-formalism could explain both phases of the evolution5. Unfortunately

theγ-formalism still does not give a physical understanding of the process, and the results

are still open to debate [Webbink, 2008]. It is worth mentioning though that recently Beer

et al. [2007] proposed a physical mechanism that could explain the γ-formalism, based on

the accretion energy of some of the transferred matter. Thisenergy could eject the remaining

matter and hence the systems could avoid the CE phase. Nevertheless, while comparing

their results with theα- andγ-formalisms, neither of them give a full description.

In Fig. 1.2 I provide distributions of reconstructed valuesof bothγ andαCEλ from

Nelemans & Tout [2005] derived from their analysis of the observed sample of DDs (top),

and observed pre-cataclysmic variables (bottom). Values of αCEλ cluster below∼ 0.5,

implying that the orbital separations after the ejection ofthe envelope are considerably

lower than the initial separations. Consequently the energy equation does not work for

DDs because it predicts too short orbital periods. The angular momentum equation though

can explain all kinds of mass andPorb combinations withγ values clustering in a small

range [Webbink, 2008]. As a consequence, the orbital periods for PCEBs will concentrate

to shorter orbital periods in theα-formalism than in theγ-formalism, and a longer tail to

longer orbital periods will be expected in theγ-formalism.

5Note thatγ is notγCE. Note also that Nelemans & Tout [2005] never affirmed there isno CE phase at the
first stage, but only that theα-formalism does not explain it well. Nevertheless, the factthatαCEλ are negative
implies that the orbital energy has increased, i.e. quasi-conservative mass transfer. Consequently these DDs
have likely not undergone a CE in the first process of mass transfer [Webbink, 2008].
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Figure 1.2: Histograms of the reconstructedγ (white) andαCEλ (white and black) values for
the last phase of mass transfer that leads to the formation ofDDs (top) and pre-cataclysmic
variables (bottom). Taken from Nelemans & Tout [2005].
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1.3 Evolution of Post-Common-Envelope Binaries

After the ejection of the envelope, PCEBs continue decreasing their orbital separations

(and orbital periods) through the action of angular momentum loss (AML) via the emission

of gravitational waves (referred in the literature as gravitational radiation, GR), and for

companion stars above the fully convective mass limit, and orbital periods short enough

for the secondary stars to be tidally locked (Porb <∼ 10 days), via the action of magnetic

wind braking [MB, magnetically-coupled stellar wind from the tidally locked companion,

Verbunt & Zwaan, 1981; Mestel & Spruit, 1987; Hameury et al.,1988]. Depending on the

nuclear time scale of the companion star (τnuc) and the AML timescale (τAML ), the evolution

follows two different paths.

In general, PCEBs contain low-mass MS secondaries, and consequentlyτnuc ≫

τAML in this kind of stars (see Chapter 2). SinceτAML (MB) ∼ 108 years [Verbunt & Zwaan,

1981], this implies that the orbital separation shrinkage due to AML eventually makes the

secondary fill its Roche-lobe and a second phase of mass transfer ensues, in this case from

the low-mass companion to the white dwarf. If the mass transfer is thermally and dy-

namically stable, a cataclysmic variable is formed (see Sec. 1.3.1). If the mass transfer is

dynamically stable, but thermally unstable the system appears as a super-soft X-ray source.

If the mass transfer is dynamically and thermally unstable the system might enter a second

CE phase, which can lead to the coalescence of the two stars. This implies that the sec-

ondary star mass has to be significantly larger than the whitedwarf mass. In these cases the

evolution is more likely to follow the description below.

In some cases PCEB companions are A-F stars, considerably more massive than the

above low-mass MS companions. These stars do not experienceAML due to MB and con-

sequently they must wait for nuclear evolution to initiate mass transfer, i.e. they evolve into

red giants before mass transfer begins. The radius expands,the star overfills its Roche-lobe,

and mass transfer is initiated to the white dwarf. Since these stars are generally more mas-

sive than the white dwarf primaries, mass transfer is dynamically and thermally unstable,

and a second CE phase is likely initiated, which results in the formation of an ultrashort-

period DD. It is also possible, but not likely, that the mass transfer is both thermally and

adiabatically stable. In this case, the system is a symbiotic star with orbital period of>∼ 1
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day.

1.3.1 Evolution of cataclysmic variables

In the earlier 1970s it was already known that the orbital periods of cataclysmic variables

(CVs) are of order of hours, and that the material transferred from the Roche filling secon-

daries eventually forms an accretion disc [Paczyński, 1971]. Population synthesis studies

predict that 0.5-2% of the initial wide MS binary populationbecome CVs [de Kool, 1992].

The time spent to become a CV after the ejection of the envelope is∼2 Gyr [Schreiber &

Gänsicke, 2003].

The orbital period distribution of CVs (see Fig. 1.3) reveals three striking features:

(1) a long period cutoff at∼ 12 hours, (2) a short period cutoff at∼ 80 minutes, (3) an

absence of systems between∼ 2−3 hours.

The long period cutoff is a consequence of dynamically stable mass transfer in CVs.

The absence of systems between∼ 2− 3 hours, known as the period gap, can be

easily explained if AML due to MB somehow drops, and AML is driven out by GR. The

drop of MB can be associated with the transition of the secondary from a radiative core to

a fully convective state (Msec≃ 0.3 MJ, Porb ∼ 3 hours). This produces a reduction in the

mass transfer rate (froṁM ∼ 10−8−10−9 MJ yr−1 above the gap tȯM ∼ 10−10−10−11

MJ yr−1 below the gap, wherėM symbolises the mass transfer), and allows the secondary

to shrink towards its thermal equilibrium radius, causing aperiod of detachment [Rappaport

et al., 1983; Spruit & Ritter, 1983]. The CV remains detacheduntil the star fills its Roche-

lobe again atPorb ∼ 2 hours.

The minimum period cutoff occurs when the mass of the secondary star is so low

that it becomes degenerate. Mass loss in this kind of star produces an increase in radius,

and consequently the orbital orbital separation and orbital period of the CV increase also

[Paczynski & Sienkiewicz, 1981; Rappaport et al., 1982]. Another way of understanding

this is by considering the thermal timescale of the secondary. When the secondary ap-

proaches the minimum period the thermal timescale is extremely long, and the star can not

readjust to its mass loss, consequently increasing its radius.
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Figure 1.3: Current observed orbital period distribution of CVs. The most striking features
are the minimum period cutoff at∼80 minutes, the absence of systems between∼ 2− 3
hours, the period gap, and the long period cutoff at∼ 12 hours. The red solid line represents
the cumulative distribution with numbers, N< Porb, as labelled on the right axis. Taken from
Davis et al. [2008].
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Disagreement with the observations

The standard evolutionary scenario of CVs provided above, together with the CE theory

presented in Sect 1.2.2 were used to develop population synthesis models for CVs. When

comparing these results with those obtained from observational studies, discrepancies arise.

Space densities obtained from population synthesis studies [ρ ∼ 10−4−10−5 pc−3 de Kool,

1992; Kolb, 1993; Politano, 1996; Howell et al., 1997], are one order of magnitude larger

than those obtained from observational studies [ρ ∼ 10−5−10−6 pc−3, Downes et al., 1986;

Ringwald, 1996; Schreiber & Gänsicke, 2003; Pretorius et al., 2007; Ak et al., 2008]). Pop-

ulation synthesis models predict that∼99% of the intrinsic current CV population are below

the gap,∼70% of them are minimum period bouncers [Kolb, 1993], and that 18% of the

zero-age CV population contain brown-dwarf secondaries,∼80% of them formed as CVs

below the minimum period [Politano, 2004]. In contrast to this, an accumulation of systems

near the minimum period is not observed [Patterson, 1998, see though Gänsicke et al. 2008,

in preparation], and similar numbers of systems can be foundabove and below the period

gap of the observed orbital period distribution (see Fig 1.3). The fact that the minimum pe-

riod calculated [∼70 minutes, Kolb & Baraffe, 1999; Barker & Kolb, 2003; Howellet al.,

2001] is shorter than the observed minimum period (∼80 minutes, Fig 1.3) exacerbates the

mismatch between the observed and calculated distributions. In fact different theories have

been proposed as an alternative to the standard scenario [Schenker et al., 2002; Andronov

et al., 2003; Taam & Spruit, 2001]. However, none of them havebeen successful in match-

ing all features found in the observed orbital period distribution, and the issue is still open

to debate.

1.4 Motivation and structure of the thesis

Close binary evolution has been mainly developed from the efforts carried out by theoretical

studies. As shown in the previous sections both population synthesis and empirical studies

demonstrate that theoretical results are far from describing the CE phase and MB com-

pletely. A fundamental problem in advancing our understanding of CE evolution and MB

in close binaries is then the shortage of stringent observational constraints that can be used
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to test and calibrate the theory. Attempts to understand close binary evolution were initially

focused on the study of double cores inside a planetary nebula [de Kool, 1990; Livio, 1996].

These cores are the most direct evidence of a CE phase, and thestudy of their properties

are ideal to test the theoretical predictions, as a planetary nebula ensures that the observed

parameters are the same as those at the end of the CE phase. Unfortunately this kind of

system is very rare, as most PCEBs are very old and have undergone significant orbital evo-

lution after the CE [Hjellming & Taam, 1991]. Observationaltests of the CE phase, based

on measurements of12C/13C and16O/17O ratios on the surface of the secondary star, were

carried out by Sarna et al. [1995] and Marks & Sarna [1998]. However, results provided by

these studies were not conclusive [Dhillon et al., 2002].

Real progress in our understanding of close binary evolution is most likely to arise

from the analysis of PCEBs that are both numerous and well-understood in terms of their

stellar components – such as PCEBs containing a white dwarf and a MS star. Furthermore,

PCEBs are nearby and accessible with 2-8 meter telescopes, and they are not contaminated

by the presence of an accretion disc. Schreiber & Gänsicke [2003] showed that the sam-

ple of well-studied PCEBs is not only small, but being drawn mainly from “blue” quasar

surveys, it is also heavily biased towards young systems with low-mass secondary stars –

clearly not representative of the intrinsic PCEB population, and can hence not be used for

comparison with population models [e.g. Willems & Kolb, 2004]. The Sloan Digital Sky

Survey (SDSS, Chapter 6) is currently dramatically increasing the number of known white

dwarf plus main sequence binaries, paving the way for large-scale observational PCEB

population studies (Chapter 9).

We have initiated an observational programme to identify the PCEBs among the

SDSS WDMS binaries, and to determine their binary parameters. Identifying all PCEBs

among the SDSS WDMS binaries, and determining their binary parameters is a significant

observational challenge. A large sample of PCEBs will answer three important questions

in close binary evolution: (1) The disrupted MB scenario predicts an increase of the rela-

tive numbers of PCEBs by a factor∼1.8 in the range of secondary spectral types M3-M5

[Politano & Weiler, 2006, see Fig. 1.4 left panel]. Assumingthat MB is indeed disrupted,

it is expected in the case of 100 new PCEBs an increase from∼35 for M3-M4 to∼65 for
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Figure 1.4: Left: Theoretical distributions of the secondary mass in present-day PCEBs
for four different assumed AML models: GR only (dotted line), GR+RMB (reduced
MB, dashed line [Andronov et al., 2003]), GR+IMB (intermediate MB, dash-dotted line,
[Ivanova & Taam, 2003]), and GR+DMB (solid line, disrupted MB or standard scenario).
The y-axis has been arbitrarily normalised to facilitate comparison. Taken from Politano &
Weiler [2006]. Right: orbital period distribution of the combined population of detached
CVs and PCEBs for an initial mass ration(q) = 1, αCE = 0.6 (dashed line) andαCE = 0.1
(dotted line). The peak apparent in all the distributions isdue to the population of detached
CVs, the PCEB orbital period distribution increases monotonically with Porb. Taken from
Davis et al. [2008].
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M4-M5. An additional test for the validity of MB is also discussed in Davis et al. [2008]:

assuming that MB is disrupted, the orbital period gap distribution of detached WDMS bina-

ries (considering as detached the combination of those WDMSbinaries with orbital periods

between 2-3 hours, and detached CVs crossing the period gap), shows a peculiar distribution

that can be observationally tested (see Fig. 1.4 right panel); (2) The strength of AML can be

estimated by comparing the orbital period distributions ofPCEBs at different times of the

PCEB binary evolution; (3) Theα-formalism andγ-formalism differ in particular in the pre-

dicted orbital period distribution of long orbital period PCEBs (Sect. 1.2.2). Consequently,

identifying the long orbital period end of the PCEB population will clearly constrain current

theories of CE phase.

It is expected that a fraction of WDMS binaries will be eclipsing. Eclipsing binaries

are the key to determine accurate stellar masses and radii. Because short-period WDMS

binaries underwent CE evolution, they are expected to contain a large range of white dwarf

masses, which will be important to populate the empirical white dwarf mass-radius relation

(see Chapter 2). Eclipsing WDMS binaries will also be of key importance in filling in the

mass-radius relation of low-mass stars at masses<∼ 0.4 MJ (see Chapter 2).

In this thesis I present preliminary results of our ongoing project dedicated to iden-

tify and measure orbital periods of PCEBs and the stellar parameters of both WDMS bi-

naries and PCEBs. The structure is as follows. In Chapter 2 I give details of the physical

properties of white dwarfs and low-mass MS stars. In Chapter3 I give some insight into

the spectral properties of WDMS binaries. In Chapter 4 I provide a full description of the

observations carried out for the analysis presented in thisthesis. In Chapter 5 I explain

the methods I used to measure the orbital periods of PCEBs. InChapter 6 I provide a de-

scription of the Sloan Digital Sky Survey. In Chapters 7, 8 and 9 I present my results: in

Chapter 7 I make use of SDSS spectroscopic repeat observations to identify 18 PCEBs and

PCEB candidates from radial velocity variations. In Chapter 8 I present follow-up spec-

troscopy and photometry of 11 PCEB candidates identified in Chapter 7. In Chapter 9 I

present a catalogue of 1591 SDSS WDMS binaries. Finally, in Chapter 10 I discuss my

results and give the conclusions of my thesis.

18



Chapter 2

Physical Properties of White Dwarfs

and M-type Stars

In this Chapter I give some insight into the physical properties of both white dwarfs and

M-type MS stars, and I point out how the study of WDMS binariescan help improving our

understanding of these kinds of stars.

2.1 White Dwarfs

2.1.1 Luminosity of a white dwarf

White dwarfs [see reviews by D’Antona & Mazzitelli, 1990; Koester, 2002; Hansen, 2004]

are the end product of stellar evolution for the vast majority of MS stars, with the exception

of the most massive stars. Contrary to normal MS stars, wherethe gravitational collapse is

prevented by the thermal pressure generated by nuclear energy, in white dwarfs this con-

traction is balanced by the pressure of the degenerate electrons. White dwarfs evolve in

time as they decrease their luminosity, a process referred to in the literature as the white

dwarf cooling [Mestel, 1952]1 (standard notation, where time is given in Gyrs, and mass in

solar units):

1There exist updated versions of the model [Wood, 1995; Hansen, 1999; Chabrier et al., 2000]. The Mestel
[1952] model though remains a reasonable order of magnitudedescription for the white dwarf cooling [Hansen,
2004].
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L(t)/LJ = (2.3×10−3)×M× t−7/5 (2.1)

At the stage of transition from progenitor to white dwarf theluminosity is given by

the energy generated by nuclear fusion in the core of the star. Nuclear fusion stops once the

star enters the white dwarf cooling track, and the luminosity of the white dwarf is given by

the thermal energy that the white dwarf possesses.

Energy transport

In the core of the white dwarf, the transport is dominated by the electron conduction, whilst

in the thin, non-degenerate envelope the transport is carried out by radiative and/or convec-

tive diffusion on a much slower time-scale.

2.1.2 Atmospheres

Sion et al. [1983] classified white dwarfs according to theirstellar atmospheres. Thus DA

white dwarfs have H dominated atmospheres, and DB white dwarfs He dominated atmo-

spheres, the DA-type being the most dominant among white dwarfs. The reason why white

dwarfs are composed of pure H atmospheres is that the gravityis so strong that all heavier

elements sediment/sink down below the visible layers, i.e.the atmosphere. For moderately

warm (young) white dwarfs, the diffusion time scales of metals are only of the order of

days, so this happens very quickly [Koester & Wilken, 2006].In the case of DB white

dwarfs (pure He atmospheres), the outer H layer has been completely lost, and He as the

next lightest element floats up to the top. There is no yet completely consistent explana-

tion for the DB white dwarfs [Wolff et al., 2002]. A small number of white dwarfs though

are composed of different elements in their atmospheres, such as C (DQ) and other heavy

elements (DZ). Hot white dwarf atmospheres composed of ionised He are called DO, and

cool stars which show no identifiable features, i.e. a continuous spectrum (see Chapter 3

for a definition of spectrum), are labelled as DC. Pre-white dwarf atmospheres are mainly

composed of He and/or a mixture of C, N and O, or H depending on the previous evolution

from the MS. The H-rich stars remain their whole lives as DA. He- and CNO-rich stars ini-

tiate their life as hot DO, or PG1159 stars, and the diffusionof heavy elements is supposed
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to leave behind a surface of H as they cool. Thus atTeff ∼ 30000 K there appear to be no He

dominated atmospheres (DB gap). Nevertheless, the convection zone develops as these sys-

tems cool, and consequently atTeff ∼ 30000−12000 K, 25% of these objects revert back to

DB-type. BelowTeff ∼ 10000 K, the chemical evolution becomes more complicated, and

is not fully understood [Bergeron et al., 2001].

2.1.3 White dwarf mass distribution and mass-radius relation

It has been shown that the mass distribution of (DA) white dwarfs peaks sharply around

∼0.6 MJ [Koester et al., 1979; Bergeron et al., 1995a; Finley et al.,1997; Liebert et al.,

2005, see also Chapter 7 and Chapter 9]. White dwarf masses can in principle be measured

indirectly under the assumption of a mass-radius (M −R) relation [Chandrasekhar, 1935;

Hamada & Salpeter, 1961; Wood, 1995; Panei et al., 2000, 2007]. This implies knowledge

of the effective temperature and surface gravity of the white dwarf, that can be obtained

fitting the Balmer absorption lines (see Chapter 3 for a definition of Balmer lines, and Chap-

ter 7 and Chapter 9 for the application of the method), and/orknowledge of the gravitational

redshift, that can be measured if the systemic velocity of the white dwarf is known (e.g. in

a wide binary).

M−R relations make use of several assumptions regarding the composition of the

interior and the surface layers. However, it has to be stressed that theM −R relation has

not yet been observationally tested. In fact, the distribution of empirical masses and radii

shows a large scatter around the theoreticalM −R relations [Schmidt, 1996; Reid, 1996;

Provencal et al., 1998, see Fig. 2.1]. Procedures in which noM−Rrelation for white dwarfs

is assumed to estimate the mass and the radius separately canthen help constraining these

relations. Eclipsing binaries in which at least one of the components is a white dwarf, such

as WDMS binaries, are excellent systems to measure the mass and the radius separately

[Pyrzas et al., 2008, and references therein].
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Figure 2.1: White dwarfM −R relation. The black line represents the theoretical Chan-
drasekhar [1935] relation, the green, blue and red lines theHe-core, C-core and Mg-core
zero temperatureM −R relations obtained by Hamada & Salpeter [1961]. Black solid
dots represent theM −R relation provided in Bergeron et al. [1995b] forTeff = (5-10-20-
40)×103 K at a given mass (except forM = 0.2MJ andM = 0.3MJ, which showTeff =
(5-10)×103 K andTeff = (5-10-20)×103 K, respectively). Dark gray solid dots are empiri-
cal measurements for field DA white dwarfs obtained from Provencal et al. [1998] and Reid
[1996], and magenta solid dots represent empirical values measured for the visual binaries
provided in Provencal et al. [1998] (except for 40 Eri B, Procyon B, Stein 2051 B, and Sir-
ius B, where I use the more recent values of Provencal et al. [2002], yellow dots). Finally,
in cyan are shown the masses and radii measured from eclipsing WDMS binaries [Pyrzas
et al., 2008, and references therein].
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2.2 M-type stars

2.2.1 Interior

M-type stars [see Chabrier & Baraffe, 2000; Chabrier et al.,2005] are the coolest among

the MS stars, with effective temperatures of less than∼ 3800 K (and higher than∼ 2200 K,

see Chapter 7), and also the most abundant in our Galaxy [Chabrier, 2003]. The mass in

this kind of star ranges from∼ 0.5 to ∼ 0.1 MJ, and consequently the temperature in

the interior is low enough for the electrons to be partially degenerate (Tc ∼ 106 − 107 K).

Because of the low effective temperature M-type stars have convective cores and envelopes,

which grow in depth with decreasing temperature. When the convective envelope reaches

the convective core the star becomes fully convective.

MS stars find themselves in hydrostatic equilibrium, in which the thermal pressure

balances the gravitational force. In this stage of the evolution, the thermal pressure comes

from the burning of H into He in the core of the star, with the proton-proton (p-p) chain

being the burning mechanism at work in M-type stars. The rateat which stars burn H

determines the time spent in the MS. A direct consequence of this is that for p-p H burning

low-mass main sequence stars, the time spent on the MS is considerably larger than for

those stars which burn H through the CNO chain. This time can be estimated from the

following equation [Tuffs et al., 2004, see the appendix]:

tMS = 4800

(

M
MJ

)−1/3

×107,M < 0.4MJ (2.2)

tMS = 1100

(

M
MJ

)−3

×107,0.4MJ ≤ M ≤ 8.1MJ (2.3)

where the resultingtMS is in years. Thus M-type stars are not yet able to leave the MS,as

the time needed to do so is larger than the Hubble time.

Energy transport

The presence of both the convective envelope and the convective core makes it easier for

the M-type stars to transport the energy via convective flux.This is true in all areas of the

star except in the radiative zone between the envelope and the core, where the radiative

flux is dominant. However, when the temperature is cool enough the star becomes fully
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convective, and consequently the total energy transport isgiven mainly by convective flux

in the entire star.

2.2.2 Atmospheres

Given the low temperature, most of the H and C in the atmospheres of low-mass MS stars

are locked into H2 and CO molecules, respectively. Excess O is bound to form molecules

such as TiO, VO, and H2O, with some amounts also of OH. Metal oxides and hydrides such

as FeH, CaH and MgH are also present (see Chapter 3 for furtherdetails).

2.2.3 Rotation-age-activity relations

Stellar magnetic fields are believed to be caused within the convective zone of stars. A

localised magnetic field exerts a force on the plasma, which rises to the photosphere and

creates starspots on the surface of the star. This phenomenon is referred to as stellar activity,

and the reaction of stars to stellar activity on their surface is known asspottedness. Due to

the differential rotation that the star undergoes, starspots inhibit convection and produce

zones of lower temperature.

Even though significant progress concerning the rotation-age-activity relations for

M stars has been made, more studies are needed to fully understand such relations. Given

the complexity of the issue, and the fact that this topic is not the central part of this thesis,

I summarise here the most important findings up to date: (1) old stars rotate slower than

young stars, i.e. the rotational periodProt increases in time [Kiraga & Stepien, 2007]; (2)

magnetic activity decreases with time [West et al., 2008]; (3) there is a strong increase in the

active lifetimes of stars in the spectral-type range from M3to M5 [West et al., 2008]; (4) fast

rotation excites magnetic activity up to a saturation threshold of vrotsini ∼ 10 kms−1, where

vrot is the rotational velocity, andi is the rotation axis inclination of the star2. Nevertheless

rotation and activity are not always linked [West & Basri, 2008, see also Chapter 10], (5)

activity-Prot relations found for young stars are not modified below Sp = M3.5-4, where

stars are supposed to become fully convective [Delfosse et al., 1998], (6)Prot decreases

linearly with increasing mass at a given age [Cardini & Cassatella, 2007], (7) M stars in

2Note that magnetic activity depends on the rotational velocity, but that we only see vrot sini.
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close binaries rotate faster than single M stars, or M stars in wider binaries [Cardini &

Cassatella, 2007].

2.2.4 Theory versus observations

Studies have been developed to create evolutionary stellarmodels, and to derive theoreti-

cal relations between the physical parameters of low-mass MS stars [Baraffe & Chabrier,

1996; Baraffe et al., 1998, 2002, 2003]. However, when comparing empirical results with

the theoretical expectations numerous discrepancies arise [Ribas, 2006; Ribas et al., 2008].

Thus for example, current models predict radii that are∼ 15% smaller than the observed

values, and effective temperatures that are∼ 5% higher for star masses above∼ 0.3 M⊙

(see Fig. 2.2). Problems are thought to arise due to the high magnetic activity level that

a large number of this kind of star display, which is likely toaffect theM −R relation

[López-Morales, 2007; Chabrier et al., 2007; Morales et al., 2008]. Moreover, the proper-

ties of low-mass stars are expected to change depending on their metallicities [Berger et al.,

2006]. The spectral type-radius relation for M stars is alsoextremely affected by these

features (see Chapter 7). Below∼ 0.3 M⊙ there is a good agreement between the observa-

tional measurements and the models (Fig. 2.2). Nevertheless, this result can be misleading,

since “all objects in this range have rotational velocitiesvrot sini < 10 kms−1” [López-

Morales, 2007]. Consequently more radius measurements of active stars in this range are

still necessary to confirm the apparent good agreement between the theoretical values and

the empirical measurements.
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Figure 2.2: ObservationalM −R relation for stars below 1 MJ. Top: empirical values
from low-mass secondaries to eclipsing binaries with primaries more massive than 1MJ

(squares) and the components of eclipsing binaries below 1MJ (circles). Bottom: all the
measurements from single stars. The solid lines represent the theoretical isochrone model
from Baraffe et al. [1998]. Taken from López-Morales [2007].
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Chapter 3

Spectral Properties of White

Dwarf-Main Sequence Binaries

In the previous Chapter I have discussed in some detail the physical properties of both white

dwarfs and M-type MS stars. In this Chapter I will focus on thespectral features observed

in these kinds of stars, and also on the spectral properties of WDMS binaries. For this it

becomes necessary first to introduce spectroscopy as a technique in astrophysics, and to

understand what a spectrum is and how it is formed.

3.1 Spectroscopy

Spectroscopy gave birth to astrophysics as an observational science in the 1860s. This tech-

nique measures the flux emitted by an object in a certain wavelength (λ) range, providing

consequently a unique flux-wavelength dependence for each celestial object. Spectroscopy

implies the use of a spectrograph, which consists normally of a slit, a collimator, and a

dispersive element, such as a grating. The slit is situated on the focal plane of the telescope,

and isolates the light that comes from the target from other objects in the field. The light

that passes through the slit is then directed to the grating by the collimator, where it is dis-

persed. The dispersed light is directed to a detector (usually a Charged Coupled Device, or

CCD, see Chapter 4), where the spectrum is finally recorded.

A typical spectrum is normally composed of spectral lines embebbed in a contin-
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uum. These spectral features can appear in absorption or emission depending on the tem-

perature gradient in the atmosphere1. Let’s consider as an example the stellar atmosphere

of a single star. The crucial parameter in the formation of the spectral lines is in this case

the optical depth

τν =

Z

χνdz (3.1)

whereν is the frequency (or wavelength, sinceν = c/λ) considered,χν is the absorption

coefficient of the atmosphere at a given frequency, andz the geometric depth. A stellar

atmosphere is optically thick whenτν > 1, and optically thin whenτν < 1. An optically

thick atmosphere emits practically like a blackbody2

Iν ∼ Bν (3.2)

whereIν is the intensity emitted by the atmosphere andBν is the intensity emitted by a

blackbody. The energy emitted in an optically thin atmosphere is given approximately by

Iν ∼ Iν(τν)+Bντν (3.3)

whereIν(τν) is the intensity emitted in the optically thick atmosphere layer immedi-

ately interior to the optically thin atmosphere. Spectral lines in a spectrum are formed when

the optically thin atmosphere of the star becomes opticallythick due to increases of the

absorption coefficient. In this context, and depending on the temperature gradient between

the thin and the thick atmospheres, the line will be in emission or in absorption. IfIν(τν)

= 0, thenBν will always be larger thanBντν and hence an emission line will always form.

Assuming thatIν(τν) is positive, then an emission line will form ifBν > Iν(τν)+ Bντν. In

this case the inner layers of the atmosphere must be cooler than the outer layers, and the

temperature gradient then points to the surface of the star.When the inner layers are hotter,

the temperature gradient points the core of the star andBν < Iν(τν)+Bντν. In this case an

absorption line is formed.

The crucial question is then why the absorption coefficient increases at a given

frequency. The physics of stellar atmospheres tells us thatχν is strongly dependent on the

population of electrons on a certain levell in a considered atom, and on the probability of

1The following text in this section is based on the book by Mihalas [1970].
2A theoretical object that is both a perfect absorber and a perfect radiator.

28



Figure 3.1: Three transition series of the atom of H. Transitions between the ground level
and higher elements form the Lyman lines (e.g. Lyα, transition between levels 1 and 2),
transitions between level 2 and higher levels form the Balmer lines (e.g. Hα, transition be-
tween levels 2 and 3), transitions between the third level and higher levels form the Paschen
lines.

exciting an electron from the levell to another levelu, flu. In a stellar atmosphere photons

and atoms are continuously interacting, and consequently the probability of exciting an

electron due to the absorption of a photon by an atom increases dramatically. After a certain

time the electron is de-excited and liberates a photon whichcan be absorbed by another

atom. These processes are called bound-bound interactions. Thus, if the atomic level is

sufficiently populated, and the probability of exciting an electron is high, the absorption

coefficient can be dramatically increased. Since the transition of the electrons are given

at specific frequencies, the spectral lines are then always associated to specific transitions

between the levels of an atom. All transitions starting fromone level to other levels are

called a series. In Fig. 3.1 I show as an example the Lyman (ultraviolet), Balmer (optical),

and Paschen (infrared) series of the atom of H.
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3.2 Optical spectral features of white dwarfs, low-mass main se-

quence stars and WDMS binaries

White dwarfs are hot stars, henceforth have blue spectra. Normally the outer layers of the

white dwarf atmospheres contain H (see Chapter 2), and consequently the Balmer lines are

the typical spectral features for DA white dwarfs. He dominated DB atmospheres are the

second most commonly found in white dwarfs, after the H dominated DA-type stars. These

objects show HeI lines, with the complete absence of H or other elements. For the hot DO

white dwarfs, the He can be completely ionised and observed in the atmospheres as HeII.

On occasion it is also possible to detect some H (DAO) or HeI lines in this kind of star.

As outlined in Chapter 2, a small number of white dwarfs contain C and metals on their

atmospheres. Consequently only metal lines and C features (either atomic or molecular)

are detected in any part of the spectra of DZ and DQ white dwarfs, respectively. Finally DC

white dwarfs show no identifiable features in their spectra,as the effective temperature is

too low to excite transitions in the optical wavelength range. In Fig. 3.2 I provide example

spectra for all white dwarf types outlined above.

Low-mass MS stars are cool, and consequently their predominant features domi-

nate the red part of the optical spectrum. The high surface gravity typical of these stars

(logg ∼ 5.5 at the H burning limit, for a solar metallicity) makes the density in the pho-

tospheres to beρ ∼ 10−6−10−4 g/cm3. Consequently collision effects become important

and induce molecular dipoles on H2 or He-H2, yielding the so called collision-induced ab-

sorption (CIA) between roto-vibrational states of molecules. The energy distribution is

governed by the line absorption of TiO and VO (see Fig. 3.3), with some lines resulting

from NaI, K I, FeI, Mg I, CaII, Li I, and BaII transitions (see Kirkpatrick et al. [1991] for a

complete list of features identifiable in the red/near-infrared spectra, and also Cushing et al.

[2005] for an analysis in the infrared). Through the detection of specific atomic features

and/or molecular bands it is possible to differentiate not only red giants from red dwarfs,

but also early to late M-type stars [Kirkpatrick et al., 1991; Bessell, 1991; Martı́n et al.,

1999; Cruz & Reid, 2002]. In fact, the strength of molecular bands has been used to define

the spectral subtypes of low-mass stars (see Fig. 3.4). Nearthe H burning limit TiO and VO
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disappear, and alkali metals are detected in atomic form. This leads to the domain of the

sub-stellar L-type (brown) dwarfs. For even lower temperatures there is a strong signature

of methane absorption, characteristic of the T-type (brown) dwarfs.

By knowing the spectral characteristics of white dwarfs andlow-mass stars it is

then straightforward to understand the spectral properties of WDMS binaries. In general,

the white dwarf is clearly visible in the blue while the low mass companion dominates the

red part of the spectrum. The overall shape of the WDMS spectra though depends on the

effective temperatures of the stars. Thus for example, a hotwhite dwarf will dominate the

spectrum if the low-mass companion is cool. In the same way, an early M-type MS star

will dominate the spectrum if the effective temperature of the white dwarf is rather low

(see Fig. 3.5). Hence the detection of WDMS binaries is obviously subject to observational

biases (see Chapter 9). An additional feature in the spectraof WDMS binaries might be the

presence of Balmer emission, Hα being the strongest among them. This occurs when the

white dwarf is hot enough to irradiate the surface of the companion, i.e. heating effect (see

Chapter 8). Balmer emission lines might also be detected dueto magnetic activity on the

secondary star.
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Figure 3.2: Optical example spectra for the different whitedwarf-type stars described in
Sect. 3.2. The Balmer and the HeI lines are the typical features for the DA and DB white
dwarfs respectively. No features are identified in the atmosphere of the DC white dwarf to
a depth of 5%. Metal lines and C features are detected on the spectra of the DZ and DQ
stars, respectively. The DO star shows ionised He (HeII) lines typical for these hot stars.
The sample is taken from Harris et al. [2003].
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Figure 3.3: M-type star templates used in this thesis (see Chapter 7 for a complete descrip-
tion) for the spectral subclasses M0-2-4-5-7-9. The TiO andVO bands are highlighted in
blue and yellow, respectively. The strengths of these bandsvary significantly from one
subclass to another, and are used to estimate the spectral subclass of low mass-stars (see
Fig. 3.4).
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Figure 3.4: Comparison of the spectral subtypes measured for the M-type MS tem-
plates used in this thesis (see Chapter 7) applying the methods presented in Martı́n et al.
[1999] (SpPC3, red, where PC 3 = F(8230-8270Å)/F(7540-7580Å) and Cruz & Reid [2002]
(SpTiO5, blue, where TiO 5 = F(7126-7135̊A)/F(7042-7046Å). I assume a 0.5 subclass error
for our templates, and the values measured from the molecular bands. The figure suggests a
good agreement between our templates and the values obtained from Cruz & Reid [2002],
except for our M9 template. Discrepancies arise at earlier spectral subtypes when compar-
ing our templates with the values obtained from Martı́n et al. [1999]. This is not surprising,
since SpPC3 is only valid for spectral types later than M2.5. The agreement between both
methods and our templates is excellent for mid spectral subtypes (3<Sp<5).
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Figure 3.5: Three examples of WDMS binaries. Top: an MS dominant WDMS. Middle: a
typical WDMS binary. Bottom: a white dwarf dominant WDMS. The white dwarf effective
temperatures, and secondary spectral types are given for each WDMS binary in the top of
each panel. The sample is taken from Chapter 9.
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Chapter 4

Data Reduction and Observations

The major task of our project is to identify those WDMS binaries from SDSS that have

undergone a CE phase, and to measure their binary parameters. This new sample of PCEBs

will provide the much-needed constraints for further development of binary evolution the-

ory. This implies a large amount of observations are necessary, and indeed our project has

been awarded observational time on a large variety of telescopes around the world. Part of

this thesis presents and discusses observational results (see Chapters 8 and 10). It is hence

appropriate to dedicate some space to explain how to reduce raw data and to provide details

of the instrumentation used for the observations.

4.1 Data Reduction

The use of charged coupled devices, CCDs, has certainly implied a dramatic advance in

observational astrophysics. CCDs are silicon-based semiconductors composed of a two-

dimensional array with a certain number of pixels in each direction. When the photons

received from the observed object impact a pixel of the CCD a certain number of electrons

are emitted due to the photoelectric effect1. These electrons are trapped by a potential well,

and when the exposure ends, a control circuit causes each pixel to transfer its contents to

its neighbour. The last pixel of the array converts this information into counts (digitisation)

which are saved as a 2-dimensional data frame. Data reduction involves four steps: bias-

1The exact number of emitted electrons depends on the quantumefficiency of the CCD.
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subtraction, flat-fielding, sky subtraction, and calibration.2

4.1.1 Bias-subtraction

A bias frame refers to the number of counts recorded for each CCD pixel with zero exposure

time. In order to avoid negative numbers, an offset (bias level) is added to the zero level of

the CCD. The bias level needs consequently to be removed fromall data frames. A series

of bias frames are combined and averaged together to build a master bias which is then

subtracted from the science frames and the flat-fields (see next paragraph). A large number

of bias frames is necessary to guarantee that we are not adding noise to the science frames.

Another way to determine the bias level is by making use of theoverscan. The overscan is

simply a set of rows/columns of the CCD (typically selected at the right edge of the frame)

that is read out once before the science data are taken. This region is used to compute the

mean bias level by averaging the data over all the columns andfitting a certain function to

these average values. The result is then subtracted from each column of the frame. The

overscan hence can be very useful if the bias level varies in time3.

4.1.2 Flat-fielding

Each pixel in a CCD camera has a different response to the sameamount of light received.

This response needs to be normalised by the use of flat-fields.Flat-field spectra are normally

obtained using tungsten lamps, which are generally locatedinside the spectrograph, and

before the entrance slit. A master flat is obtained by combining a certain number of flat-

fields. To consider the response of the detector along the dispersion direction, it becomes

necessary to average the master flat over the spatial direction. This one-dimensional master

flat is then fitted with a polynomial of a certain order, which is used to normalise the master

flat. The pixel-to-pixel variations in the normalised flat reflect the different pixel response.

The flat-fielding process is completed by dividing the science frames by the normalised flat.

2Note that the following description, even though it is restricted to spectroscopic analysis, can be also
applied to photometry.

3The bias level in a CCD camera is usually very stable but can vary on time-scales of months.
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4.1.3 Sky subtraction

The sky background that surrounds the observed target also passes through the slit of the

spectrograph and is dispersed. Sky lines are hence present in the CCD spectra, and con-

sequently have to be subtracted. For this it is necessary to define the extraction aperture

of the object spectrum and the width of the regions where sky will be computed. Given

that the dispersion direction and the axis of the CCD are not parallel, it is also necessary to

trace the spectra by fitting a polynomial of a certain order inthe dispersion direction. The

sky contribution is computed by interpolating sky data on each side of the object spectrum,

and cosmic rays are eliminated by detecting the distortion they produce in the spatial pro-

file. The one-dimensional object spectra are finally extracted by using the above defined

aperture. All spectroscopic follow-up data presented in this thesis (Chapters 8 and 10) have

been processed using theSTARLINK packagesFIGARO and KAPPA, and the spectra were

optimally extracted [Horne, 1986] using thePAMELA package [Marsh, 1989].

4.1.4 Calibration

A spectrum gives a wavelength-dependent flux that is characteristic for every stellar object.

After the sky subtraction though, the one-dimensional spectra are provided in counts per

pixel, and consequently need to be calibrated both in wavelength and flux. These processes

are called wavelength calibration and flux calibration.

All spectroscopic data presented in this thesis (Chapters 8and 10) have been cali-

brated using theMOLLY package [Marsh, 1989].

Wavelength calibration

Obtaining a pixel-to-wavelength relation is carried out bythe use of arc lamps (normally

Ne, Ar, Cu, He, or a combination of some of them), which emit light in many specific and

very narrow wavelength ranges. The wavelengths of the linesthat form the arc spectrum are

hence well known and can be used to obtain a pixel-to-wavelength relation, which can be

applied to the rest of spectra. Ideally arc spectra have to betaken during the whole observing

run to account for the flexure of the spectrograph. In practice, we intentionally obtained
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one arc spectrum per night, and adjust the the wavelength-pixel dependence according to

the position of sky emission lines4. In this way we were able to optimise the observing time

on each night. Another way to count for the flexure of the spectrograph is to obtain a pixel-

to-wavelength relation exclusively from the emission lines. We have found that reliable

wavelength calibrations can be obtained from sky lines [Southworth et al., 2006], but that

the scatter of the fit around the wavelength solution is quitea bit larger than for arc-lamp

emission lines. In this case the statistical uncertainty [Marsh et al., 1994] is equivalent to

0.09Å so the increased scatter is relatively unimportant.

Flux calibration

Flux standard stars are stars with a well-established and tabulated flux distribution. Gen-

erally, the statistical uncertainty of these tabulations is below±0m.05 in the range 4000-

8000Å. The calibration is less secure outside this wavelength range (±0m.06− 0m.07),

and in a few cases the errors at the extreme ultraviolet (3300Å) can be extremely large

(∼±0m.1). Flux standard stars are divided into Oke [Oke, 1990] and Filippenko-Greenstein

[Filippenko & Greenstein, 1984] categories. The first category consists of measurements

of many small parts of the spectrum containing no spectral lines, so are characterised by a

central wavelength, a measurement, and a bandwidth (i.e. three columns in a datafile). The

second category uses the whole spectrum so are better suitedto faint standards, but can be

affected by spectral lines which may give systematic errors. Observations of flux standard

stars provide hence a flux-count dependence for a wavelengthrange, which can be applied

to the science spectra. For red-wavelength spectra it is very important that telluric lines are

removed. Telluric lines are due to absorption by gases such as oxygen, water vapour, or car-

bon dioxide in the Earth’s atmosphere. In this thesis I have measured the radial velocities

from both the NaI λλ 8183.27,8194.81 absorption doublet and the Hα emission (see Chap-

ters 7, 8 and 9). The NaI doublet falls in the wavelength region where telluric absorptions

are strong, and consequently telluric removal was applied in order to obtain a line profile

free of telluric features.

4Note that we measure the radial velocities from the NaI λλ 8183.27,8194.81 absorption doublet (see Chap-
ters 7, 8 and 9), and that at these wavelengths the emission lines are strong.
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4.2 Observations

Our project has been awarded observational time on a large variety of telescopes around

the world. In Table 4.1 I provide a list of the observing runs carried out so far (November

2008), the number of nights for each run, and the people involved in the observations and

data reduction. The majority of the data taken from these observations are not analysed in

this thesis (see Chapter 10 though), including also a substantial part of the data taken by

myself. In addition, a certain amount of the data presented in this thesis has not been taken

nor reduced by myself.

In Chapter 8 of this thesis I present time-resolved spectroscopy and photometry for

11 SDSS (see Chapter 6) WDMS binaries (Table 4.2, Fig. 4.1), henceforth designated SDSS

J0052-0052, SDSS J0246+0041, SDSS J0309-0101, SDSS J0820+4314, SDSS J0314-

0111, SDSS J1138-0011, SDSS J1151-0007, SDSS J1529+0020, SDSS J1724+5620, SDSS

J2241+0027 and SDSS J2339-0020. In the following sections Ibriefly describe the instru-

mentation used for the observations.

4.2.1 Spectroscopy

(i) VLT. Intermediate resolution spectroscopy of SDSS J1138-0011was obtained between

August 16, 2007 and March 26, 2007 with FORS2 on the ESO VLT/UT1 (Antu). The

exposure time was 900 sec, and the observations were carriedout using the 1028z grism

and a 1 arcsec slit, resulting in a spectral coverage of 7830–9570Å. From measurements

of the FWHMs of sky lines we find our observations have a resolution of approximately

2.5 pixels (2.2̊A) at 8200Å. Wavelength calibration of the extracted spectra was doneusing

only sky emission lines. The wavelengths of good sky lines were obtained from the atlas

of Osterbrock et al. [1996, 1997]. 37 sky lines were included, and fitted with a fifth-order

polynomial. The rms scatter around the fit was 0.11Å, so the statistical uncertainty in the

wavelength scale is 0.04̊A. Finally, the spectra were flux-calibrated and compensated for

telluric absorption using a spectrum of the standard star Feige 110. The data were taken in

service mode, and reduced by J.Southworth (see Table 4.1).

(ii) Magellan-Clay. Follow-up spectroscopy of SDSS J1138-0011, SDSS J1151-
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Table 4.1: Telescopes, number of nights, and people involved in the overall observations
of our dedicated project to identify PCEBs and measure theirorbital periods. The lines in
black represent observation runs in which I have been involved.

Telescope Date Nights Observers Data reduction
CA3.5 2008 Oct 5 R.Schwarz/M.Schreiber A.Nebot
WHT 2008 Jul 4 sm A.Rebassa
CA3.5 2008 Jul 5 A.Nebot/S.Pyrzas A.Nebot
WHT 2008 Jul 6 A.Rebassa/S.Pyrzas A.Rebassa

L.Schmidtobreik
CA3.5 2008 Jun 5 A.Nebot/R.Schwarz/M.Müller A.Nebot
CA3.5 2008 Jun 5 A.Nebot A.Nebot

A.Rebassa A.Rebassa
M-Baade 2008 Jun 4 J.Southworth/C.Tappert J.Southworth
IAC80 2008 May 8 A.Nebot A.Nebot
NTT 2007 Oct 8 A.Rebassa/A.Nebot A.Rebassa

M-Baade 2007 Sep-Oct 4 J.Southworth/A.Nebot J.Southworth
WHT 2007 Sep 3 B.G̈ansicke A.Rebassa
NTT 2007 Aug 4 A.Rebassa A.Rebassa

CA3.5 2007 Jul 6 A.Nebot A.Nebot
WHT 2007 Jun 6 A.Rebassa A.Rebassa

P.Rodŕıguez-Gil
M-Clay 2007 May 5 J.Southworth/A.Schwope J.Southworth

M.Müller
AIP 70 cm 2006 Mar 4 AIP group A.Nebot

2007 Sep
Kry 1.2 m 2006 Nov 4 V.Karamanavis V.Karamanavis

E.Tremou E.Tremou
CA 2.2 m 2006 Set 2 A.Aungwerojwit A.Aungwerojwit
IAC80 2006 Aug 6 A.Rebassa A.Rebassa
WHT 2006 Jun-Jul 6 B.Gänsicke/A.Rebassa J.Southworth

J.Southworth
Telescope Period Hours Observers Data reduction
Gemini 2008B/25h 25 sm J.Southworth
Gemini 2008A/25h 25 sm J.Southworth
Gemini 2007B/25h 25 sm J.Southworth

VLT P82/30h 30 sm J.Southworth
VLT P80/30h 30 sm J.Southworth
VLT P79/30h 30 sm J.Southworth
VLT P78/30h 30 sm J.Southworth

Notes: M-Baade and M-Clay refer to the two Magellan telescopes at Las Campanas obser-
vatory. We usesmto indicate that the data were taken in service mode. CA 2.2 and CA 3.5
are the 2.2 and 3.5 meter telescopes at Calar Alto observatory. Kry 1.2 is the Kryoneri 1.2
meter telescope at the National Observatory of Athens.
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Figure 4.1: SDSS (Chapter 6) spectra of the 11 SDSS WDMS binaries studied in Chapter 8.

42



0007 and SDSS J1529+0020, were obtained over the period 2007May 17–20 using the

Magellan Clay telescope equipped with the LDSS3 imaging spectrograph. We used the

VPH Red grism and OG 590 order-sorting filter. The detector was anunbinned STA 4k×4k

pixel CCD read out by two amplifiers. A 0.75 arcsec offset slitgave a wavelength coverage

of 5800–9980̊A at a reciprocal dispersion of 1.2̊A px−1. Measurements of the FWHMs

of the sky lines indicate that our observational setup gave aresolution of approximately

4 pixels (4.8Å) at 8200Å. Wavelength calibration was done using only sky lines. A total

of 36 sky lines were fitted by a fifth-order polynomial. The rmsscatter around the fit was

0.25Å, so the statistical uncertainty is 0.09Å. Flux calibration and telluric line removal was

performed using spectra of the standard star LTT 3218 obtained during the same observing

run. The data were taken by J.Southworth, A.Schwope and M.Schreiber, and reduced by

J.Southworth (see Table 4.1).

(iii) Magellan-Baade. Intermediate-resolution long-slit spectroscopy of SDSSJ0314–

0111 and SDSS J2241+0027 was obtained on the nights of 2007 October 2 and 3 using

the IMACS imaging spectrograph attached to the Magellan Baade telescope at Las Cam-

panas Observatory. The 600ℓ mm−1 red-sensitive grating was used along with the slit-view

camera and a slit width of 0.75 arcsec, giving a reciprocal dispersion of 0.39̊A px−1. The

IMACS detector is a mosaic of eight 2k×4k SITe CCDs, and long-slit spectra with this in-

strument are spread over the short axis of four of these CCDs.Using a grating tilt of 14.7◦

allowed us to position the NaI λλ 8183.27,8194.81 doublet towards the centre of CCD2 and

the Hα line near the centre of CCD4. By fitting Gaussian functions toarc and sky emis-

sion lines we find that the spectra have a resolution of approximately 1.6Å. He arc lamp

exposures were taken at the start of each night in order to derive a wavelength solution with

a statistical uncertainty of only 0.002̊A. This was applied to each spectrum taken on the

same night. Detector flexure was measured and removed from the wavelength solution for

each spectrum using the positions of sky emission lines. Flux calibration and telluric line

removal was performed using spectra of the standard star BD +28◦4211. The observations

were carried out by J.Southworth and A.Nebot Gómez-Morán, and the data were reduced

by J.Southworth (see Table 4.1).

(iv) New Technology Telescope (NTT). Two observing runs were carried out at the
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NTT in August (three nights) and October 2007 (eight nights), providing intermediate time-

resolved spectroscopy of SDSS J0052–0053, SDSS J0246+0041, SDSS J0309-0101, SDSS

J2241+0027 and SDSS J2339–0020. We used the EMMI spectrograph equipped with the

Grat#7 grating, the MIT/LL red mosaic detector, and a 1 arcsec wide long-slit, resulting

in a wavelength coverage of 7770-8830Å. He-Ar arc lamp spectra were taken at the be-

ginning of each night and were then used to establish a generic pixel-wavelength relation.

Specifically, we fitted a fourth order polynomial which gave arms smaller than 0.02̊A for

all spectra. We then used the night sky emission lines to adjust the zero-point of the wave-

length calibration. The spectral resolution of our instrumental setup determined from the

sky lines is 2.8̊A. Finally, the spectra were calibrated and corrected for telluric absorption

using observations of the standard star Feige 110. Observations and reduction were car-

ried out by myself. During three of the eight observing nights in October 2007 A.Nebot

Gómez-Morán helped me with the observations (see Table 4.1).

(v) William Herschel Telescope (WHT).One spectrum of SDSS J1138-0011 was

taken with the 4.2 m William Herschel Telescope in June 2007 at the Roque de los Mucha-

chos observatory on La Palma. The double-beam ISIS spectrograph was equipped with the

R158R and the R300B gratings, and a 1 arcsec long-slit, providing a wavelength coverage

of 7600-9000Å. The spectral resolution measured from the sky lines is 1.6Å. Calibrations

were carried in the same way as described for the NTT above. Observations were carried

out by P.Rodrı́guez-Gil and myself, and the data were reduced by myself (see Table 4.1).

(vi) SDSS.For one system, SDSS J1724+5620, we were able to determine anaccu-

rate orbital period from our photometry alone, but were lacking follow-up spectroscopy.

SDSS Data Release 6 (DR6, Chapter 6) contains three 1-d calibrated spectra for SDSS

J1724+5620 (MJD PLT FIB 51813 357 579, 51818 358 318, and 51997 367 564. See

Chapter 6). Each of these spectra is combined from at least 3 individual exposures of 900 s,

which are also individually released as part of DR65. For SDSS J1724+5620, a total of 23

sub-spectra are available, of which 22 allowed reliable radial velocity measurements.

5http://www.sdss.org/dr6/dm/flatFiles/spCFrame.html

44



Table 4.2: Log of the observations. Included are the target names, the SDSSugriz psf-magnitudes (see Chapter 6), the period of the observa-
tions, the telescope/instrument setup, the exposure time,and the number of exposures.
Spectroscopy
SDSS J u g r i z Dates Telesc. Spectr. Grating/Grism Exp.[s] # spec.
005245.11–005337.2 20.47 19.86 19.15 17.97 17.22 16/08/07-20/08/07 NTT EMMI Grat#7 1200 21
024642.55+004137.2 19.99 19.23 18.42 17.29 16.60 05/10/07-09/10/07 NTT EMMI Grat#7 650-800 19
030904.82–010100.8 20.77 20.24 19.50 18.43 17.77 07/10/07-12/10/07 NTT EMMI Grat#7 1500 4
031404.98–011136.6 20.78 19.88 19.03 17.76 16.98 02/10/07-03/10/07 M-Baade IMACS 600 line/mm 600-900 12
113800.35–001144.4 19.14 18.86 18.87 18.15 17.53 16/08/06-23/03/07 VLT (sm) FORS2 1028z 900 2

18/06/07-23/06/07 WHT ISIS 158R 1500 1
17/05/07-20/05/07 M-Clay LDSS-3 VPH-red 500-600 5

115156.94–000725.4 18.64 18.12 18.14 17.82 17.31 17/05/07-20/05/07 M-Clay LDSS-3 VPH-red 450-600 17
152933.25+002031.2 18.69 18.20 18.33 17.98 17.48 18/05/07-20/05/07 M-Clay LDSS-3 VPH-red 500-1000 18
172406.14+562003.0 15.83 16.03 16.42 16.42 16.52 25/09/00-29/03/01 SDSS 900 23
224139.02+002710.9 19.62 18.82 18.40 17.33 16.58 02/10/07-03/10/07 M-Baade IMACS 600 line/mm 600 2

07/10/07-12/10/07 NTT EMMI Grat#7 750-800 3
233928.35–002040.0 20.40 19.68 19.15 18.07 17.36 07/10/07-12/10/07 NTT EMMI Grat#7 1400-1700 15

Photometry
SDSS J u g r i z Dates Telesc. Filter band Exp.[s] # hrs
031404.98–011136.6 20.78 19.88 19.03 17.76 16.98 19/09/06-20/09/06 CA 2.2 m clear 35-60 10.3
082022.02+431411.0 15.92 15.85 16.11 15.83 15.38 21/11/06-24/11/06 Kryoneri1.2 m R 60 8.2
172406.14+562003.0 15.83 16.03 16.42 16.42 16.52 04/08/06-10/08/06 IAC80 I 80-180 12.2

25/03/06-13/09/06 AIP 70 cm R 60-90 55.6
Notes: M-Baade and M-Clay refer to the two Magellan telescopes at Las Campanas observatory. We usesmto indicate that the data were
taken in service mode. CA 2.2 is the 2.2 meter telescope at Calar Alto observatory.
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4.2.2 Photometry

(i) IAC80 and AIP 70 cm telescopes.We obtained differential photometry of SDSS J1724

+5620 with the IAC80 telescope at the Observatorio del Teide(Spain) and the 70 cm tele-

scope of the Astrophysical Institute of Potsdam at Babelsberg (Germany) for a total of 13

nights during May, August and September 2006 and March 2007.The IAC80 cm telescope

was equipped with a 2k×2k CCD. A binning factor of 2 was applied in both spatial direc-

tions and only a region of 270×270 (binned) pixels of size 0.66 arcsec was read. We used

IRAF to reduce the images and to obtain the differential magnitudes. Observations and data

reduction were carried out by myself (see Table 4.1). The detector used at the Babelsberg 70

cm telescope was a cryogenic 1k×1k Tek CCD. The whole frame was read with a binning

factor of 3, resulting in a scale of 1.41 arcsec/pixel. A semiautomated pipeline involving

DoPHOT [Schechter et al., 1993] was used to reduce the imagesand extract the photometric

information. Observations and reduction were carried out by the Potsdam group (A.Nebot

Gómez-Morán, M.Krumpe, R. Schwarz, A. Staude, and J. Vogel, see Table 4.1).

(ii) Calar Alto 2.2 m telescope.We used CAFOS with the SITe 2k×2k pixel CCD

camera on the 2.2 meter telescope at the Calar Alto observatory to obtain filter-less dif-

ferential photometry of SDSS J0314–0111. Only a small part of the CCD was read out in

order to improve the time resolution. The data were reduced using the pipeline described

in Gänsicke et al. [2004], which pre-processes the raw images in MIDAS and extracts aper-

ture photometry using the SEXTRACTOR [Bertin & Arnouts, 1996]. Observations and data

reduction were carried out by A.Aungwerojwit (see Table 4.1).

(iii) Kryoneri 1.2 m telescope.Filter-less photometry of SDSS J0820+4311 was

obtained in November 2006 at the 1.2 m Kryoneri telescope using a Photometrics SI-502

516×516 pixel camera. The data reduction was carried out in the same way as described

above for the Calar Alto observations. Observations and data reduction were carried out by

V.Karamanavis and E.Tremou (see Table 4.1).
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Chapter 5

Time-Series Analysis

5.1 Time-Series description

Time-series analysis is a mathematical tool that transforms time-dependent data from the

time-domain to the frequency-domain. The most fundamentalis the Fourier transform, and

can both be applied from the time- to the frequency-domain and vice versa. Mathemati-

cally speaking, a Fourier transform decomposes a periodic function into a sum of sines and

cosines and their harmonics. Each sine wave, when multiplied by an appropriate factor,

will give the power carried by the wave, per unit frequency. Different sine power form the

power spectrum of the variable. In a binary star, the analysis of time-dependent observables

related to the orbital period, such as the radial velocities(RVs) and the differential mag-

nitudes, then provide a power spectrum that can be used to determine the orbital periods

(see Chapter 8). Ideally, the power spectrum would contain asingle peak, orδ-function,

corresponding to a pure sine variation of infinite duration,i.e. an exact orbital period in our

context. Nevertheless, there are three important limitations.

The first limitation is related to the length of the observingnight. The longer the

time spent observing a particular system (on the same night), the more orbital phases are

covered. According to this, in cases where the data do not cover enough phases, the power

spectrum is then not a singleδ-function but a much broader peak (Fig. 5.1 bottom). In order

to cover additional orbital phases it is then necessary to observe on consecutive nights.

This is related to the second limitation. Applying time-series analysis to data observed on

47



consecutive nights introduces an alias pattern, composed of several narrow power peaks

around the true frequency in the power spectrum. The separation between the true peak

and the aliases will be determined by the frequency of the observations. Since the shortest

separation between observations is one night, the aliases will then be split by a minimum

of 1 d−1 from the true signal in the power spectrum. This leads to the third limitation: more

data are generally necessary to distinguish the true peak from the possible aliases. The

longer the orbital period the more difficult it is to sample the complete orbital cycle, and

consequently more data and/or nights are needed. Nevertheless, if these data are taken with

similar sampling the statistical significance of the aliases and the true peak will be very

similar. This is what is referred in the literature ascycle count ambiguity. To avoid this

ambiguity it becomes necessary to observe the system with uneven sampling. In this way,

time-series analysis of data combined from different nights will eventually provide a clear

signal in the power spectrum and provide an accurate measurement of the orbital period. To

illustrate these limitations I show in Fig. 5.1 the power spectra along four different nights of

SDSS J0052-0053, a PCEB studied in Chapter 8. A broad peak in the power spectrum on the

bottom panel of the figure (first observing night, labelled ast = 0) shows the typical feature

obtained from running time-series analysis on a single night of data. The alias pattern

obtained on the consecutive night (t = 1) gives a peak and two possible aliases, all three of

them moderately broad. More data included on the following nights (t = 2 and t = 4) narrow

the peaks considerably and finally provide a clear signal at 8.7 d−1, i.e. an orbital period of

164.2 minutes for this system. In practice, to investigate the periodic nature of the velocity

variations we run sine-fits to the velocity data sets adopting the frequencies corresponding

to the strongest peaks in the power spectrum as initial conditions (see Chapter 8). Reduced

χ2 values obtained from the sine-fits allow generally a unique solution, in which case the

reducedχ2 is close to 1.

5.2 Time-Series methods

In this thesis I have used aMIDAS/TSA package written by A.Schwarzenberg-Czerny, which

includes four different methods to apply time-series analysis. These are the methods:
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Figure 5.1: Power spectra of SDSSJ 0052-0053, a PCEB studiedin Chapter 8.
The power spectra are obtained running Scargle periodograms (see Sect. 5.2) to the
NaI λλ 8183.27,8194.81 absorption doublet RVs. The numbers in thetop right corner of
each panel indicate the observing night, assuming t = 0 as thefirst night (note that no data
were taken in the third night, t = 3). The corresponding measured orbital period is labelled
on the top left of each panel. The power spectrum on the bottompanel illustrates the typical
broad peak feature characteristic of a single observing night data. The alias pattern appears
on the rest of the nights, decreasing the strength of the aliases as more data are included,
and finally providing an accurate value of the orbital period.

49



POWER/TSA. Computes the Fourier transform to the data. This is the simplest

method for time-series analysis.

SCARGLE/TSA. This method fits a pure sine fit model to the data by computing a

Scargle [1982] periodogram.

AOV/TSA. Applies the code described by Schwarzenberg-Czerny [1989], which

folds the data over different possible orbital periods, bins them in orbital phase, and analy-

ses the variance of the resulting phase curves.

ORT/TSA. Based on Schwarzenberg-Czerny [1996] this method also folds the data

over different possible orbital periods, this time fitting aset of orthogonal multi-harmonic

sine waves to the phase-folded data.

The first two methods,POWER andSCARGLE, belong to the Fourier-type meth-

ods, and are effective for detecting faint signals, as well as quasi-sinusoidal variations.

AOV andORT belong to phase-folding methods, and are generally best-suited for abrupt

changes in the time-dependent variation. These methods arehence effective in detecting

non-sinusoidal variations, withORT resulting in a smoother power spectrum than produced

by AOV. It is important to note though, that there is no universal best method for time-series.

In Chapter 8 I use the RVs obtained from the NaI λλ 8183.27,8194.81 absorption

doublet to measure the orbital periods of 6 PCEBs, and differential magnitudes to obtain

an additionalPorb. PCEBs are not affected by the presence of an accretion disc,and their

RV variations are hence expected to be sinusoidal. Consequently POWER andSCARGLE

periodograms obtained from these RVs generally provide clear signals in their power spec-

tra (see Fig 5.1). In CVs non-sinusoidal RV variations mightbe expected due to multiple

line components originating in different parts of the binary. Thus, phase-folding methods

such as AOV and ORT might provide better results. This is alsothe case when applying

time-series analysis to light curves of eclipsing binaries, which show abrupt changes.
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Chapter 6

Sloan Digital Sky Survey

The Sloan Digital Sky Survey, SDSS, was an imaging and spectroscopic survey that cov-

ered approximately one-quarter of the celestial sphere. SDSS operated a 2.5 m wide-field

altitude-azimuth telescope at Apache Point Observatory, New Mexico. The telescope had

a 3◦ diameter field of view, and it was equipped with a large-format mosaic of 30 2048×

2048 Tektronix CCD cameras that tookugriz imaging (Fig. 6.1). The detection limit for

point sources in 1 arcsec seeing was 22.3, 23.3, 23.1, 22.3, and 20.8 magnitudes on the

AB system respectively, at an air mass of 1.4. The five filters had effective wavelengths of

3560, 4680, 6180, 7500, and 8870Å. The imaging survey was divided into two different

areas (Fig 6.2). The first area (northern Galactic Cap) was situated above Galactic latitude

30◦, and it was selected to achieve the minimum Galactic extinction. It was centred at

α = 12h20m, δ = +32.5◦, and covered∼ 10000 contiguous deg2. The second area (southern

Galactic Cap) comprised three stripes, one along the celestial equator (α = 20h7m,δ = 0◦)

and the other two north and south of the equator.

Based on colours and morphology, objects were flagged for spectroscopic follow-

up. The wavelength coverage of the spectrographs was continuous from about 3800–

9200Å, and the wavelength resolution,λ/δλ, varied from 1850 to 2200. Each “spectral

plate” refered physically to a metal plate with holes drilled at the positions of 640 spec-

troscopic plus calibration targets, covering∼ 7deg2. Each SDSS spectrum was then unam-

biguously identified by the modified Julian date (MJD) of the observation, the spectroscopic

plate (PLT) and the fibre (FIB). Up to nine spectral plates pernight were observed, with the
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necessary plates being plugged with fibres during the day. The spectra were observed with a

total integration time of 45-60 minutes, split into individual∼ 15 min exposures, depending

on observing conditions. The flux- and wavelength-calibrated spectra were provided on a

vacuum wavelength scale and corrected to the heliocentric restframe.

Special care needs to be taken in establishing the date and time when the SDSS spec-

tra were obtained: a significant fraction of SDSS spectra werecombinedfrom observations

taken on different nights (which I will call “sub-spectra” in what follows) in which case the

header keywordMJDLIST will be populated with more than one date. Hence, a meaningful

time at mid-exposure can only be given for those SDSS spectrathat were obtained in a sin-

gle contiguous observation. The headers of the SDSS data provide the exposure start and

end times in International Atomic Time (TAI), and refer to the start of the first spectrum,

and the end of the last spectrum.

The photometric data were reduced by applying “photometricpipelines” which cor-

rected the data for CCD defects, calculated overscan, biases, sky, flat-field values, and PSF

(point-spread functions) magnitudes for all point sources. The mean errors were about 0.03

mag at 20 mag, increasing to about 0.05 mag at 21 mag and to 0.12mag at 22 mag for theg,

r, andi bands. The errors increased to 0.05 at 20 mag and 0.12 at 21 magfor the less sensi-

tive u andzbands. Spectroscopic targets were selected by a “target selection pipeline”, and

reduced by the application of a “spectroscopic pipeline”, which corrected, extracted and

calibrated the spectra, and measured the redshifts. The reduced spectra were then stored in

a science data base. SDSS completed its first phase of operations (SDSS-I) in June 2005,

with more than 8000 deg2 imaged, and nearly 200 million celestial objects detected,and it

contained spectra of more than 675000 galaxies, 90000 quasars, and 185000 stars. A sec-

ond phase, SDSS-II, continued with observations through June 2008 and ended in October

2008, finishing the original galaxy and quasar survey. SDSS-II carried out three distinct

surveys: the Sloan Legacy Survey, SEGUE (Sloan Extension for Galactic Understanding

and Exploration), and the Sloan Supernova Survey. Buildingon the legacy of SDSS and

SDSS-II, SDSS-III, a program of four new surveys (BOSS, SEGUE-2, APOGEE, MAR-

VELS) using SDSS facilities, began in July 2008 and will continue through 2014. This

collaboration carries out a program focus on dark energy andcosmological parameters, on
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Figure 6.1: SDSS 2.5 mu,g, r, i and z filter responses. The curves include the quantum
efficiency of the CCD at zero air mass. Provided by R.Hickman.
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Figure 6.2: Northern and southern SDSS survey in galactic coordinates. The lines represent
the area of the sky available for SDSS imaging. Taken from York et al. [2000].

the structure, dynamics and evolution of the Milky Way, and on studies of planetary sys-

tems.

SDSS data were initially available to public in 2001 [Stoughton et al., 2002] and its

technical details were summarised in York et al. [2000]. After this different data releases

(DR) have been increasing the amount of available data, withDR 7 the latest among them1

[Abazajian et al., 2003, 2004, 2005; Adelman-McCarthy et al., 2006, 2007, 2008]. With

DR 6 the imaging of the northern Galactic cap was completed. At this point the survey

contained images and parameters of roughly 287 million objects over 9583 deg2, plus 1.27

million spectra of stars, galaxies and quasars selected over 7425 deg2. DR 6 included also

the first year of data from the SDSS-II.

There exist three separate user interfaces which permit oneto download SDSS data:

a Catalog Archive Server (CAS), which contains the measuredparameters from all objects

in the imaging survey and the spectroscopic survey. The SDSSQuery Tool is a stand-alone

1Note that DR 7 is just released and complete details are stillnot available via a refereed paper. In addition,
this thesis focusses on the analysis of SDSS DR 5 (Chapters 7 and 8) and DR 6 (Chapters 9 and 10) data. For
these reasons, I will focus on DR 6 in what follows.
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application to manage and perform Catalog Archive Server queries available for download-

ing; a Data Archive Server (DAS) which makes the raw and reduced data (corrected frames,

binned images, colour images, spectra) available; and a SkyServer, which offers web-based

access to a relational data base server (SQL).

Even though the main aim of SDSS is the identification of galaxies [e.g. Strauss

et al., 2002] and quasars [e.g. Adelman-McCarthy et al., 2006], its relevance on the obser-

vational studies of WDMS binaries and PCEBs has been clearlydemonstrated in the last few

years [see also the following Chapters of this thesis; Raymond et al., 2003; van den Besse-

laar et al., 2005; Schreiber et al., 2008; Silvestri et al., 2006, 2007; Augusteijn et al., 2008;

Pyrzas et al., 2008; Nebot Gómez-Morán et al., 2009]. A crucial point is then to understand

why SDSS observed WDMS binaries. These objects are a big source of contamination in

the quasar search in a particular colour region (see Chapter9). Thus,∼ 40% of the SDSS

spectroscopic WDMS binaries were initially targeted as UV-excess or high-redshift quasar

candidates. Richards et al. [2002, see also Chapter 9] defined WDMS binary exclusion

boxes with the aim to maximise the return of the quasar surveywithin SDSS. Nevertheless

∼33% of the observed SDSS spectroscopic WDMS binaries are within the WDMS binary

exclusion boxes, half of them observed as CV candidates, andthe rest probably observed

as quasar candidates before the exclusion boxes were defined. A final ∼25% of the SDSS

spectroscopic WDMS binaries were observed as quasar candidates fainter than the main

SDSS quasar sample, or targets carried out especially in theequatorial region.

SEGUE has been specifically designed to fill in WDMS missing from SDSS-I (i.e.

in the WDMS binary exclusion boxes and close to the main sequence), and contains∼25%

of the overall SDSS WDMS binaries, the remaining∼75% were observed as discussed in

the previous paragraph.
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Chapter 7

130 White Dwarf-Main Sequence

Binaries with multiple SDSS

Spectroscopy

7.1 Introduction

A feature of SDSS hitherto unexplored in the study of WDMS binaries is the fact that

∼ 10 per cent of the spectroscopic SDSS objects are observed more than once (Chapter 6).

SDSS occasionally re-observes entire spectral plates, where all targets on that plate get an

additional spectrum, or has plates which overlap to some extent, so that a small subset of

targets on each plate is observed again. The detection of RV variations between different

SDSS spectra of a given WDMS binary will unambiguously identify such a system as a

PCEB, or a strong PCEB candidate. In this Chapter I make use ofa sample of 130 WDMS

binaries with SDSS spectroscopic repeat observations to identify 18 PCEBs and PCEB can-

didates from RV variations. Using a spectral decomposition/fitting technique I determined

the white dwarf effective temperatures and surface gravities, masses, and secondary star

spectral types for all WDMS binaries in the sample. Two independent distance estimates

are also obtained from the flux scaling factors between the WDMS binary spectra, and the

white dwarf models and MS star templates, respectively.
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The structure of the Chapter is as follows: I describe the WDMS binary sample and

the methods used to determine RVs in Sect. 7.2. In Sect. 7.3 I determine the stellar param-

eters of the WDMS binaries in the sample. In Sect. 7.4, I discuss the fraction of PCEBs

found, the distribution of stellar parameters, compare theresults to those of Raymond et al.

[2003] and Silvestri et al. [2006], discuss the incidence ofstellar activity on the secondary

stars in WDMS binaries, and outline the selection effects ofSDSS regarding WDMS bina-

ries with different types of stellar components. I finally conclude this Chapter in Sect. 7.5.

7.2 Identifying PCEBs in SDSS

We have searched the DR5 spectroscopic data base for multiple exposures of all the WDMS

binaries listed by Silvestri et al. [2006] and Eisenstein etal. [2006], as well as a set of

WDMS binaries independently found in the SDSS data by our team. This search resulted

in a sample of 130 WDMS binaries with two to seven SDSS spectra. Among those WDMS,

101 systems have a clearly pronounced NaI λλ 8183.27,8194.81 absorption doublet and/or

Hα emission in their SDSS spectra, and were subjected to RV measurements using one

or both spectral features. The NaI doublet was fitted with a second order polynomial and

double-Gaussian line profile of fixed separation. Free parameters were the amplitude and

the width of each Gaussian and the velocity of the doublet. Hα was fitted using a second

order polynomial plus a single Gaussian of free velocity, amplitude and width. We com-

puted the total error on the RVs by quadratically adding the uncertainty in the zeropoint of

the SDSS wavelength calibration (10 kms−1, Stoughton et al. 2002) and the error in the

position of the NaI/Hα lines determined from the Gaussian fits. Figure 7.1 shows thefits to

the four SDSS spectra of SDSS J024642.55+004137.2, a WDMS binary displaying an ex-

tremely large RV variation identifying it as a definite PCEB.This figure also illustrates an

issue encountered for a handful of systems, i.e. that the Hα and NaI RVs do not agree in the

final spectrum (Table 7.1). This is probably related to the inhomogeneous distribution of the

Hα emission over the surface of the companion star, and will be discussed in more detail in

Sect. 7.4.1. In total, 18 WDMS show RV variations among theirSDSS spectra at a 3σ level

and qualify as PCEBs or strong PCEB candidates. Their RVs arelisted in Table 7.1 and
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illustrated in Fig. 7.2 and Fig. 7.3. Three systems (SDSS0251–0000, SDSS1737+5403, and

SDSS2345–0014) are subject to systematic uncertainties intheir RVs due to the rather poor

spectroscopic data. The RVs for the remaining 83 WDMS binaries that did not show any

significant variation are available in Rebassa-Mansergas et al. [2007, see also Chapter 9].

The ≥ 3σ criterion for the detection of RV variations in our sample ofWDMS

is only valid when considering two RV measurements. The inclusion of more RV data

increases the false alarm rate of the detection, and consequently the probability of detecting

a 3σ variation between two RV measurements increases with the number of measurements

made. Thus for example, in the case of SDSSJ 0309-0101, whichcontains 7 RV values (the

maximum in our sample), the false alarm rate is∼ 4.2%, which is more than ten times the

value expected when considering only two RVs (0.3%). Nevertheless, it will be shown in

Chapter 8 that WDMS are considered as definite PCEBs only whenlarge RV variations are

detected, making it unlikely that these variations are given as a consequence of false alarm

rate detections. We point the reader to Maxted et al. [2001] (their Sect. 3.3) for a description

of a better variability criterion.

As outlined in Chapter 6 a significant fraction of SDSS spectra are combined from

observations taken on different nights. A crucial questionis obviously how the fact that

some of the spectra in our sample are actually combinations of data from several nights

impacts our aim to identify PCEBs via RV variations. To answer this question, we first

consider wide WDMS binaries that did not undergo a CE phase, i.e. binaries with orbital

periods of>∼ years. For these systems, sub-spectra obtained over the course of several days

will show no significant RV variation, and combining them into a single spectrum will

make no difference except to increase the total signal-to-noise ratio (S/N). In contrast to

this, for close binaries with periods of a few hours to a few days, sub-spectra taken on

different nights will sample different orbital phases, andthe combined SDSS spectrum will

be a mean of those phases, weighted by the S/N of the individual sub-spectra. In extreme

cases, e.g. sampling of the opposite quadrature phases, this may lead to smearing of the NaI

doublet beyond recognition, or end up with a very broad Hα line. This may in fact explain

the absence / weakness of the NaI doublet in a number of WDMS binaries where a strong

NaI doublet would be expected on the basis of the spectral type ofthe companion. In most
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Figure 7.1: Fits to the NaI λλ 8183.27,8194.81 absorption doublet (right panels) and
the Hα emission line (left panels) in the four SDSS spectra of the WDMS binary
SDSS J024642.55+004137.2. The SDSS spectroscopic identifiers (MJD, Plate-ID and
Fibre-ID) are given in the top left corner of the Hα panels. NaI has been fitted with a
double-Gaussian of fixed separation plus a parabola, Hα with a Gaussian plus a parabola.
In this system, RV variations are already obvious to the eye.The top three spectra are taken
in a single night, the bottom one is combined from data taken on three nights, MJD = 52970,
52972, and 52973. The widths of the Gaussians fitting the NaI doublet are (top to bottom)
4.6Å, 5.8Å, 5.3Å, and 6.0Å.
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cases, however, the combined SDSS spectrum will represent an “effective” orbital phase,

and comparing it to another SDSS spectrum, itself being combined or not, still provides

a measure of orbital motion. We conclude that the main effectof the combined SDSS

spectra is a decreased sensitivity to RV variations due to averaging out some orbital phase

information. Fig. 7.1 shows an example of a combined spectrum (bottom panel), which

contains indeed the broadest NaI lines among the four spectra of this WDMS binaries.

In order to check the stability of the SDSS wavelength calibration between repeat

observations, we selected a total of 85 F-type stars from thesame spectral plates as our

WDMS binary sample, and measured their RVs from the CaII λλ 3933.67,3968.47H andK

doublet in an analogous fashion to the NaI measurement carried out for the WDMS binaries.

None of those stars exhibited a significant RV variation, themaximum variation among

all checked F-stars had a statistical significance of 1.5σ. The mean of the RV variations

of these check stars was found to be 14.5kms−1, consistent with the claimed 10kms−1

accuracy of the zero-point of the wavelength calibration for the spectra from an individual

spectroscopic plate [Stoughton et al., 2002]. In short, this test confirms that the SDSS

wavelength calibration is stable in time, and, as anticipated above that averaging sub-spectra

does not introduce any spurious RV shifts for sources that have no intrinsic RV variation (as

the check stars are equally subject to the issue of combiningexposures from different nights

into a single SDSS spectrum). We are hence confident that any significant RV variation

observed among the WDMS binaries is intrinsic to the system.

7.3 Stellar parameters

The spectroscopic data provided by the SDSS project are of sufficient quality to estimate

the stellar parameters of the WDMS binaries presented in this Chapter. For this purpose,

we have developed a procedure which decomposes the WDMS binary spectrum into its

white dwarf and MS star components, determines the spectraltype of the companion by

means of template fitting, and derives the white dwarf effective temperature and surface

gravity from spectral model fitting. Assuming an empirical spectral type-radius relation

for the secondary star and aM−R relation for the white dwarf, two independent distance
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Figure 7.2: RVs obtained from the NaI absorption doublet. WDMS≥ 3σ RVs variation,
i.e. PCEBs, are shown in black.
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Figure 7.3: Same as Fig. 7.2 but for the Hα RVs.
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Table 7.1: RVs of our 18 PCEBs and PCEB candidates, measured from the Hα emission line and/or the NaI λλ 8183.27,8194.81 absorption
doublet. The HJDs for SDSS spectra that have been combined from exposures taken in several different nights (see Sect. 7.2) are set in italics.
PCEB candidates with uncertain RV measurements are indicated by colons preceding and trailing the object name. Upper limits of the orbital
periods are also provided (Sect. 7.4.2). The two spectral components identified in the spectra are coded as follows. DA = white dwarf with
clearly visible Balmer lines; DC = clearly visible blue continuum without noticeable structure; blx = weak blue excess;dM = M-dwarf.
SDSS J HJD RV(Hα) kms−1 RV(Na) kms−1 Porb[d] <

0052–0053 2451812.3463 71.3± 16.6 23.4± 14.9 280
DA/dM 2451872.6216 11.0 ± 12.0 18.0± 12.7

2451907.0834 -62.1 ± 11.7 -37.7± 11.6
2452201.3308 -26.0± 16.0 -23.8± 14.9

0054–0025 2451812.3463 21.6± 15.3 4
DA/dM 2451872.6216 -25.6 ± 44.2

2451907.0835 -144.7 ± 17.2
0225+0054 2451817.3966 53.0± 14.9 58.6± 15.4 45

blx/dM 2451869.2588 -19.2± 20.7 -21.6± 11.6
2451876.2404 37.5± 22.4 25.3± 12.4
2451900.1605 -25.1± 14.0 -12.8± 17.0
2452238.2698 27.9± 22.3 37.4± 12.8

0246+0041 2451871.2731 -95.5± 10.2 -99.3± 11.1 2.5
DA/dM 2452177.4531 163.1± 10.3 167.2± 11.3

2452965.2607 140.7± 10.8 135.3± 11.0
2452971.7468 64.0 ± 10.5 125.7± 11.3

:0251–0000:2452174.4732 4.1 ± 33.5 0.0 ± 15.4 0.58
DA/dM 2452177.4530 -139.3± 24.6 15.8± 18.3

0309–0101 2451931.1241 44.8± 13.2 31.5± 13.7 153
DA/dM 2452203.4500 51.2± 14.1 48.7± 24.4

2452235.2865 27.4± 14.1 76.3± 16.2
2452250.2457 28.8± 15.0 8.1 ± 33.0
2452254.2052 53.9± 11.8 55.7± 14.3
2452258.2194 15.5± 13.0 27.9± 19.9
2453383.6493 50.7 ± 11.0 56.5± 12.8

SDSS J HJD RV(Hα) kms−1 RV(Na) kms−1 Porb[d] <
0314–0111 2451931.1242 -41.6± 12.4 -51.7± 12.4 1.1

DC/dM 2452202.3882 35.6± 10.9 35.2± 14.4
2452235.2865 9.1± 11.0 10.3± 14.2
2452250.2457 -49.8± 12.2 -128.2± 13.9
2452254.2053 -66.7± 12.8 -111.7± 10.9
2452258.2195 87.3± 10.8 135.2± 13.5

0820+4314 2451959.3074 118.3± 11.4 106.3± 11.5 2.4
DA/dM 2452206.9572-107.8 ± 11.2 -94.6± 10.8

1138–0011 2451629.8523 53.5 ± 16.9 35
DA/dM 2451658.2128 -38.1± 18.6

1151–0007 2451662.1689 -15.8± 15.1 4.4
DA/dM 2451943.4208 154.0± 19.5

1529+0020 2451641.4617 73.0± 14.8 0.96
DA/dM 2451989.4595 -167.2± 11.8

1724+5620 2451812.6712 125.6 ± 10.2 160.6± 18.4 0.43
DA/dM 2451818.1149 108.3± 11.1 - ± -

2451997.9806-130.6 ± 10.3 -185.5± 20.1
1726+5605 2451812.6712 -44.3 ± 16.7 -38.9± 12.9 29

DA/dM 2451993.9805 46.6 ± 14.6 47.3± 12.5
:1737+5403: 2451816.1187 -123.5± 28.6 6.6

DA/dM 2451999.4602 44.0± 24.0
2241+0027 2453261.2749 9.1± 17.9 22.0± 12.4 7880

DA/dM 2452201.1311 -60.3± 12.7 8.1 ± 12.2
2339–0020 2453355.5822 -29.2 ± 10.4 -27.1± 12.3 120

DA/dM 2452525.3539 -93.6± 12.3 -90.1± 12.7
:2345-0014: 2452524.3379 -141.5± 22.9 9.5

DA/dM 2453357.5821 -19.8 ± 19.3
2350-0023 2451788.3516 -160.3± 16.6 0.74

blx/dM 2452523.3410 154.4± 31.3

Notes on individual systems. 0246+0041, 0314–0111, 2241+0027, 2339–0020: variable Hα equivalent width; 0251–0000: faint, weak Hα
emission with uncertain radial velocity measurements; 1737+5403, 2345–0014: very noisy spectrum; See additional notes in Table 7.3.
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estimates are calculated from the flux scaling factors of thetemplate/model spectra.

In the following sections, we describe in more detail the spectral templates and

models used in the decomposition and fitting, the method adopted to fit the white dwarf

spectrum, our empirical spectral type-radius relation forthe secondary stars, and the dis-

tance estimates derived from the fits.

7.3.1 Spectral templates and models

In the course of decomposing/fitting the WDMS binary observations, we make use of a

grid of observed M-dwarf templates, a grid of observed whitedwarf templates, and a grid

of white dwarf model spectra. High S/N ratio M-dwarf templates matching the spectral

coverage and resolution of the WDMS binary data were produced from a few hundred

late-type SDSS spectra from DR4 (see Fig. 3.3). These spectra were classified using the

M-dwarf templates of Beuermann et al. [1998]. We averaged the 10− 20 best exposed

spectra per spectral subtype. Finally, the spectra were scaled in flux to match the surface

brightness at 7500̊A and in the TiO absorption band near 7165Å, as defined by Beuermann

[2006]. Recently, Bochanski et al. [2007] published a library of late type stellar templates.

A comparison between the two sets of M-dwarf templates did not reveal any significant

difference. We also compiled a library of 490 high S/N DA white dwarf spectra from DR4

covering the entire observed range ofTeff and logg. As white dwarfs are blue objects, their

spectra suffer more from residual sky lines in theI -band. We have smoothed the white

dwarf templates at wavelengths> 7000Å with a five-point box car to minimise the amount

of noise added by the residual sky lines. Finally, we computed a grid of synthetic DA white

dwarf spectra using the model atmosphere code described by Koester et al. [2005], covering

logg = 5.0−9.5 in steps of 0.25 andTeff = 6000−100000 K in 37 steps nearly equidistant

in log(Teff).

7.3.2 Spectral decomposition and typing of the secondary star

Our approach is a two-step procedure. In a first step, we fittedthe WDMS binary spectra

with a two-component model and determined the spectral typeof the M-dwarf. Subse-

quently, we subtracted the best-fit M-dwarf, and fitted the residual white dwarf spectrum
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(Sect. 7.3.3). We used an evolution strategy [Rechenberg, 1994] to decompose the WDMS

binary spectra into their two individual stellar components. In brief, this method optimises a

fitness function, in this case a weightedχ2, and allows an easy implementation of additional

constraints. Initially, we used the white dwarf model spectra and the M-dwarf templates as

spectral grids. However, it turned out that the flux calibration of the SDSS spectra is least

reliable near the blue end of the spectra, and correspondingly, in a number of cases theχ2 of

the two-component fit was dominated by the poor match of the white dwarf model to the ob-

served data at short wavelengths. As we are in this first step not yet interested in the detailed

parameters of the white dwarf, but want to achieve the best possible fit of the M-dwarf, we

decided to replace the white dwarf models by observed white dwarf templates. The large

set of observed white dwarf templates, which are subject to the same observational issues

as the WDMS binary spectra, provided in practically all cases a better match in the blue

part of the WDMS binary spectrum. From the converged white dwarf plus dM template

fit to each WDMS binary spectrum (see Fig. 7.4), we recorded the spectral type of the sec-

ondary star, as well as the flux scaling factor between the M-star template and the observed

spectrum. The typical uncertainty in the spectral type of the secondary star is±0.5 spectral

class. The spectral types determined from the composite fitsto each individual spectrum are

listed in Table 7.3 for the PCEBs in the analysed sample, and in Rebassa-Mansergas et al.

[2007] for the remaining WDMS binaries (see also Chapter 9).Inspection of those tables

shows that for the vast majority of systems, the fits to the individual spectra give consistent

parameters. We restricted the white dwarf fits to WDMS binaries containing a DA primary,

consequently no white dwarf parameters are provided for those WDMS binaries containing

DB or DC white dwarfs.

7.3.3 White dwarf parameters

Once the best-fit M-dwarf template has been determined and scaled appropriately in flux, it

is subtracted from the WDMS binary spectrum. The residual white dwarf spectrum is then

fitted with the grid of DA models described in Sect. 7.3.1. Because of the uncertainties in

the flux calibration of the SDSS spectra and the flux residualsfrom the M-star subtraction,

we decided to fit the normalised Hβ to Hε lines and omitted Hα where the residual con-
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tamination from the secondary star was largest. While the sensitivity to the surface gravity

increases for the higher Balmer lines [e.g. Kepler et al., 2006], we decided not to include

them in the fit because of the deteriorating S/N and the unreliable flux calibration at the blue

end. We determined the best-fitTeff and logg from a bicubic spline interpolation to theχ2

values on theTeff − logg grid defined by our set of model spectra. The associated 1σ errors

were determined from projecting the contour at∆χ2 = 1 with respect to theχ2 of the best

fit onto theTeff and logg axes and averaging the resulting parameter range into a symmetric

error bar.

The equivalent widths of the Balmer lines go through a maximum nearTeff =

13000 K, with the exact value being a function of logg. Therefore,Teff and logg deter-

mined from Balmer line profile fits are subject to an ambiguity, often referred to as “hot”

and “cold” solutions, i.e. fits of similar quality can be achieved on either side of the tem-

perature at which the maximum equivalent width occurs. We measured the Hβ equivalent

width in all the model spectra within our grid, and fitted the dependence of the temperature

at which the maximum equivalent width of Hβ occurs by a second-order polynomial,

Teff(EW[Hβ]max) = 20361−3997logg+390(logg)2 (7.1)

where the units ofTeff are [K] and the units ofg are [cm/s2]. Parallel to the fits to the

normalised line profiles, we fit the grid of model spectra to the white dwarf spectrum over

the wavelength range 3850− 7150Å (see Fig. 7.5). The red end of the SDSS spectra,

where the distortion from the M-dwarf subtraction is strongest is excluded from the fit.

We then use theTeff and logg from the fits to the whole spectrum, continuum plus lines,

to select the “hot” or “cold” solution from the line profile fits. In the majority of cases,

the solution preferred by the fit to the whole spectrum has a substantially lowerχ2 than

the other solution, corroborating that it is likely to be thephysically correct choice. In a

few cases, the best-fitTeff and logg from the whole spectrum are close to the maximum

equivalent width given by Eq.7.1, so that the choice betweenthe two line profile solutions

is less well constrained. However, in most of those cases, the two solutions from the line

profile fits overlap within their error bars, so that the final choice ofTeff and logg is not too

badly affected.
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Once thatTeff and logg are determined from the best line profile fit, we use an

updated version of Bergeron et al. [1995b]’s tables to calculate the mass and the radius of

the white dwarf (see Fig. 2.1). Systematic errors in the white dwarf parameters are expected

due to uncertainties in the H-layer thickness, and due to thelow Teff logg problem for cool

white dwarfs. The first kind of uncertainty affects mainly low-mass white dwarfs and is

discussed in detail in Chapter 10. The lowTeff logg problem for cool white dwarfs is a

consequence of increasing the surface gravity towards lower effective temperatures below

<∼ 12000 K [Koester et al., 2008]. This leads to an increase in the white dwarf masses,

and consequently to lower radii and distances (see Sect. 7.3.5). Only 14 systems among

our sample of 95 WDMS binaries withTeff estimates contain cool (less than 12000 K)

white dwarfs, and systematic uncertainties might consequently be expected in∼15% of

our white dwarf masses, distances (see Sect. 7.4.7) and logg calculations. Table 7.3 reports

Teff, logg, and the white dwarf masses for the PCEBs in our sample, whilethe results for

the remaining WDMS binaries can be found in Rebassa-Mansergas et al. [2007, see also

Chapter 9]. We have carefully inspected each individual composite fit, and each subsequent

fit to the residual white dwarf spectrum, and are confident that we have selected the correct

solution in the majority of cases. Some doubt remains primarily for a few spectra of very

low S/N. The fact that we have analysed at least two SDSS spectra for each system allows

us to assess the robustness of our spectral decomposition/fitting method. Inspection of

Table 7.3 shows that the system parameter of a given system, as determined from several

different SDSS spectra, generally agree well within the quoted errors, confirming that our

error estimate is realistic.

7.3.4 An empirical spectral type-radius relation for M stars

In order to use the flux scaling factor between the observed WDMS binary spectra and the

best-fit M-dwarf templates for an estimate of the distance tothe system (Sect. 7.3.5), it is

necessary to assume a radius for the secondary star. Since wehave determined the spectral

types of the companion stars from the SDSS spectra (Sect. 7.3.2), we require a spectral type-

radius relation (Sp−R) for M-dwarfs. The community working on CVs has previously had

interest in such a relation [e.g. Mateo et al., 1985; Caillault & Patterson, 1990], but while
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Figure 7.4: Two-component fits to the SDSS WDMS binary spectra. Shown are examples for objects with either the M-dwarf or the white
dwarf dominating the SDSS spectrum. The top panels show the WDMS binary spectrum as black line, and the two templates, white dwarf
and M-dwarf, as dotted lines. The bottom panels show the residuals from the fit. The SDSS spectrum identifiers MJD, PLT and FIB are given
in the plots below the object names.
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Figure 7.5: Spectral model fits to the white dwarf componentsof the two WDMS binaries shown in Fig.5, obtained after subtracting the
best-fit M-dwarf template. Top left panels: best-fit (black lines) to the normalised Hβ to Hε (gray lines, top to bottom) line profiles. Top
right panels: 3, 5, and 10σ χ2 contour plots in theTeff − logg plane. The black contours refer to the best line profile fit, the red contours to
the fit of the whole spectrum. The dashed line indicates the occurrence of maximum Hβ equivalent width. The best “hot” and “cold” line
profile solutions are indicated by black dots, the best fit to the whole spectrum is indicated by a red dot. Bottom panels: the residual white
dwarf spectra resulting from the spectral decomposition and their flux errors (gray lines) along with the best-fit white dwarf model (black
line) to the 3850–7150̊A wavelength range (top) and the residuals of the fit (gray line, bottom). TheTeff and logg values listed in Table 7.3
are determined from the best line profile fit. The fit to the whole spectrum is only used to select between the “hot” and “cold”line fit.
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Baraffe & Chabrier [1996] derived theoretical mass/radius/effective temperature-spectral

type relationships for single M-dwarfs, relatively littleobservational work along these lines

has been carried out for field low-mass stars. In contrast to this, the number of low-mass

stars with accurate mass and radius measurements has significantly increased over the past

few years [see e.g. the review by Ribas, 2006], and it appearsthat for masses below the fully

convective boundary stars follow the theoretical models byBaraffe et al. [1998] relatively

well. However, for masses>∼ 0.3 M⊙, observed radii exceed the predicted ones. Stellar

activity [e.g. López-Morales, 2007] or metallicity effects [e.g. Berger et al., 2006] were

identified as possible causes (see Chapter 2).

Besides the lack of extensive observational work on theSp−R relation of single

M-dwarfs, our need for an M-dwarfSp−R relation in the context of WDMS binaries faces

a number of additional problems. A fraction of the WDMS binaries in our sample have

undergone a CE phase, and are now short-period binaries, in which the secondary star

is tidally locked and hence rapidly rotating. This rapid rotation might enhance the stellar

activity in a similar fashion to the short-period eclipsingM-dwarf binaries used in theM−R

relation work mentioned above. In addition, it is difficult to assess the age1 and metallicity

of the secondary stars in our WDMS binary sample.

With the uncertainties on stellar parameters of single M-dwarfs and the potential

additional complications in WDMS binaries in mind, we decided to derive an “average”

Sp−R relation for M-dwarfs irrespective of their ages, metallicities, and activity levels.

The primary purpose of this is to provide distance estimatesbased on the flux scaling factors

in Eq. 7.4, but also to assess potential systematic peculiarities of the secondary stars in the

WDMS binaries.

We have compiled spectral types and radii of field M-dwarfs from Berriman & Reid

[1987], Caillault & Patterson [1990], Leggett et al. [1996], Delfosse et al. [1999], Leto et al.

[2000], Lane et al. [2001], Ségransan et al. [2003], Maceroni & Montalbán [2004], Creevey

et al. [2005], Pont et al. [2005], Ribas [2006], Berger et al.[2006], Bayless & Orosz [2006]

1 In principle, an age estimate can be derived by adding the white dwarf cooling age to the MS life time
of the white dwarf progenitor. This involves the use of an initial mass-final mass relation for the white dwarf,
e.g. Dobbie et al. [2006], which will not be strictly valid for those WDMS binaries that underwent a CE phase.
Broadly judging from the distribution of white dwarf temperatures and masses in Fig. 7.9, most WDMS binaries
in our sample should be older than 1 Gyr, but the data at hand does not warrant a more detailed analysis.
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and Beatty et al. [2007]. These data were separated into two groups, namely stars with

directly measured radii (in eclipsing binaries or via interferometry) and stars with indirect

radii determinations (e.g. spectrophotometric). We complemented this sample with spectral

types, masses, effective temperatures and luminosities from Delfosse et al. [1998], Leggett

et al. [2001], Berger [2002], Golimowski et al. [2004], Cushing et al. [2005] and Montagnier

et al. [2006], calculating radii fromL = 4πR2σTeff
4 and/or Caillault & Patterson’s (1990)

mass-luminosity andM−R relations.

Figure 7.6 shows our compilation of indirectly determined radii as a function of

spectral type (top panel) as well as those from direct measurements (bottom panel). A large

scatter in radii is observed at all spectral types except forthe very late M-dwarfs, where only

few measurements are available. It is interesting that the amount of scatter is comparable

for both groups of M-dwarfs, those with directly measured radii and those with indirectly

determined radii. This underlines that systematic effectsintrinsic to the stars cause a large

spread in theSp−R relation even for the objects with accurate measurements. In what

follows, we use the indirectly measured radii as our primarysample, as it contains a larger

number of stars and extends to later spectral types. The set of directly measured radii are

used as a comparison to illustrate theSp−Rdistribution of stars where the systematic errors

in the determination of their radii is thought to be small. Wedetermine anSp−R relation

from fitting the indirectly determined radius data with a third order polynomial (RMS =

0.13),

R= 0.48926+ 0.00683 Sp− 0.01709 Sp2+ 0.00130 Sp3 (7.2)

The spectral type is not a physical quantity, and strictly speaking, this relation is only de-

fined on the existing spectral classes. This fit agrees well with the average of the radii in

each spectral class (Fig. 7.6, middle panel, where the errors are the standard deviation from

the mean value). The radii from the polynomial fit are reported in Table 7.2, along with

the average radii per spectral class. Both the radii from thepolynomial fit and the average

radii show a marginal upturn at the very latest spectral types, which should not be taken too

seriously given the small number of data involved.

We compare in Fig. 7.6 (bottom panel) the directly measured radii with ourSp−R

relation. It is apparent that also stars with well-determined radii show a substantial amount
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Figure 7.6: Top panel: indirectly measured radii of M-dwarfs vs spectral type. Our empiri-
calSp−R relation is given by a third order polynomial fit (solid line)to these data. Middle
panel: mean radii and corresponding standard deviations obtained by averaging the radii
in the top panel for each spectral type. OurSp−R relation is again superimposed. Bot-
tom panel: directly measured radii of M-dwarfs, again our empirical Sp−R relation, the
dashed line is the theoreticalSp−R relation from Baraffe et al. [1998]. M-dwarf radii from
the eclipsing WDMS binaries RR Cae, NN Ser, DE CVn, RX J2130.6+4710 and EC 13471–
1258 are shown as solid dots.
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Sp Rmean(R⊙) Rσ (R⊙) Rfit (R⊙) Mfit (M⊙) Teff (K)

M0.0 0.543 0.066 0.490 0.472 3843
M0.5 0.528 0.083 0.488 0.471 3761
M1.0 0.429 0.094 0.480 0.464 3678
M1.5 0.443 0.115 0.465 0.450 3596
M2.0 0.468 0.106 0.445 0.431 3514
M2.5 0.422 0.013 0.420 0.407 3432
M3.0 0.415 0.077 0.391 0.380 3349
M3.5 0.361 0.065 0.359 0.350 3267
M4.0 0.342 0.096 0.326 0.319 3185
M4.5 0.265 0.043 0.292 0.287 3103
M5.0 0.261 0.132 0.258 0.255 3020
M5.5 0.193 0.046 0.226 0.225 2938
M6.0 0.228 0.090 0.195 0.196 2856
M6.5 0.120 0.005 0.168 0.170 2773
M7.0 0.178 0.080 0.145 0.149 2691
M7.5 0.118 0.009 0.126 0.132 2609
M8.0 0.137 0.046 0.114 0.120 2527
M8.5 0.110 0.004 0.109 0.116 2444
M9.0 0.108 0.004 0.112 0.118 2362
M9.5 0.111 0.008 0.124 0.130 2281

Table 7.2: EmpiricalSp−R, Sp−M andSp−Teff relations (Rfit , Mfit , Teff) found in this
work. Rmeanand Rσ represent the mean radii and their standard deviation obtained from the
sample of M-dwarfs described in Sect. 7.3.4.

of scatter, and are broadly consistent with the empiricalSp−R relation determined from the

indirectly measured radii. As a test, we included the directly measured radii in the fit de-

scribed above, and did not find any significant change compared to the indirectly measured

radii alone.

For a final assessment on our empiricalSp−R relation, specifically in the context of

WDMS binaries, we have compiled from the literature the radii of M-dwarfs in the eclipsing

WDMS binaries RR Cae [Maxted et al., 2007], NN Ser [Haefner etal., 2004], DE CVn [van

den Besselaar et al., 2007], RX J2130.6+4710 [Maxted et al.,2004], and EC 13471–1258

[O’Donoghue et al., 2003], (Fig. 7.6, bottom panel)2. Just as the accurate radii determined

from interferometric observations of M-dwarfs or from light curve analyses of eclipsing

M-dwarf binaries, the radii of the secondary stars in WDMS binaries display a substantial

amount of scatter.

2An updated figure including the spectral types and radii of all current eclipsing WDMS binaries can be
found in Chapter 10.
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Comparison with the theoretical Sp-R relation from Baraffe et al. [1998]

We compare in the bottom panel of Fig. 7.6 our empiricalSp−R relation with the theoret-

ical prediction from the evolutionary sequences of Baraffeet al. [1998], where the spectral

type is based on theI −K colour of thePHOENIX stellar atmosphere models coupled to the

stellar structure calculations. The theoreticalSp−R relation displays substantially more

curvature than our empirical relation, predicting larger radii for spectral types<∼M2, and

significantly smaller radii in the range M3–M6. The two relations converge at late spectral

types (again, the upturn in the empirical relation for>M8.5 should be ignored as an artifact

from our polynomial fit). The “kink” in the theoretical relation seen around M2 is thought

to be a consequence of H2 molecular dissociation [Baraffe & Chabrier, 1996]. The large

scatter of the directly determined radii of field M-dwarfs aswell of M-dwarfs in eclipsing

WDMS binaries could be related to two types of problem, that may have a common un-

derlying cause. (1) In close binaries the stars are forced toextremely rapid rotation, which

is thought to increase stellar activity that is likely to affect the stellar structure, generally

thought to lead to an increase in radius [Spruit & Weiss, 1986; Mullan & MacDonald, 2001;

Chabrier et al., 2007], and (2) the spectral types in our compilations of radii are determined

from optical spectroscopy, and may differ to some extent from the spectral type definition

based onI −K colours as used in the Baraffe et al. [1998] models. Furthermore, stellar

activity is thought to affect not only the radii of the stars,but also their luminosity, surface

temperatures, and hence spectral types. The effect of stellar activity is discussed in more

detail in Sect. 7.4.7.

Sp−Teff and Sp−M relations

For completeness, we fitted the spectral type-mass data and the spectral type-effective tem-

perature data compiled from the literature listed above, and fitted theSp−M andSp−Teff

relations with a third-order polynomial and a first-order polynomial, respectively. The re-

sults from the fits are reported in Table 7.2, and will be used in this Chapter only for esti-

mating upper limits to the orbital periods of our PCEBs (Sect. 7.4.2) and when discussing

the possibility of stellar activity on the WDMS binary secondary stars in Sect. 7.4.7.
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7.3.5 Distances

The distances to the WDMS binaries can be estimated from the best-fit flux scaling factors

of the two spectral components. For the white dwarf,

fwd

Fwd
= π

(

Rwd

dwd

)2

(7.3)

where fwd is the observed flux of the white dwarf,Fwd the astrophysical flux at the stellar

surface as given by the model spectra,Rwd is the white dwarf radius anddwd is the distance

to the white dwarf. For the secondary star,

fsec

Fsec
=

(

Rsec

dsec

)2

(7.4)

where fsecis the observed M-dwarf flux,Fsecthe flux at the stellar surface, andRsecand dsec

are the radius and the distance to the secondary respectively.

The white dwarf radii are calculated from the best-fitTeff and logg as detailed in

Sect. 7.3.3. The secondary star radii are taken from Table 7.2 for the best-fit spectral type.

The uncertainties of the distances are based on the errors inRwd, which depend primarily on

the error in logg, and inRsec, where we assumed the standard deviation from Table 7.2 for

the given spectral type. Table 7.3 lists the valuesdwd anddsecobtained for our PCEBs. The

remaining 112 WDMS binary’s distances can be found in Rebassa-Mansergas et al. [2007,

see also Chapter 9].

7.4 Discussion

7.4.1 Hα vs NaI radial velocities

As mentioned in Sect. 7.2, a few systems in Table 7.1 show considerable differences be-

tween their Hα and NaI RVs. More specifically, while both lines clearly identify these

systems as being RV variable, and hence PCEBs or strong PCEB candidates, the actual

RVs of Hα and NaI differ for a given SDSS spectrum by more than their errors.

In close PCEBs with short orbital periods the Hα emission is typically observed to

arise from the hemisphere of the companion star facing the white dwarf. Irradiation from
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a hot white dwarf is the most plausible mechanism to explain the anisotropic Hα emission,

though also a number of PCEBs containing rather cool white dwarfs are known to exhibit

concentrated Hα emission on the inner hemisphere of the companion stars [e.g. Marsh &

Duck, 1996; Maxted et al., 2006]. The anisotropy of the Hα emission results in its RV

differing from other photospheric features that are (more)isotropically distributed over the

companion stars, such as the NaI absorption. In general, the Hα emission line RV curve will

then have a lower amplitude than that of the NaI absorption lines, as Hα originates closer

to the centre of mass of the binary system. In addition, the strength of Hα can vary greatly

due to different geometric projections in high inclinationsystems. More complications

are added in the context of SDSS spectroscopy, where the individual spectra have typical

exposure times of 45–60min (Chapter 6), which will result inthe smearing of the spectral

features in the short-period PCEBs due to the sampling of different orbital phases. This

problem is exacerbated in the case that the SDSS spectrum is combined from exposures

taken on different nights (see Sect. 7.2). Finally, the Hα emission from the companion may

substantially increase during a flare, which will further enhance the anisotropic nature of

the emission.

Systems in which the Hα and NaI RVs differ by more than 2σ are: SDSS J005245.11-

005337.2, SDSS J024642.55+004137.2, SDSS J030904.82-010100.8, SDSS J031404.98-

011136.6, and SDSS J172406.14+562003.0. Of these, SDSS J0246+0041, SDSS J0314-

0111, and SDSS J1724+5620 show large-amplitude RV variations and substantial changes

in the equivalent width of the Hα emission line, suggesting that they are rather short or-

bital period PCEBs with moderately high inclinations, which most likely explains the ob-

served differences between the observed Hα and NaI RVs. This is later confirmed in Chap-

ter 8. Irradiation is also certainly important in SDSS J1724+5620, which contains a hot

(≃ 36000 K) white dwarf (see Fig. 8.4 in the following Chapter).SDSS J0052-0053 dis-

plays only a moderate RV amplitude, and while the Hα and NaI RVs display a homoge-

neous pattern of variation (Fig. 7.2 and 7.3), Hα appears to have a larger amplitude which is

not readily explained. Similar discrepancies have been observed e.g. in the close magnetic

WDMS binary WX LMi, and were thought to be related to a time-variable change in the

location of the Hα emission [Vogel et al., 2007]. Finally, SDSS J0309-0101 is rather faint

76



(g= 20.4), but has a strong Hα emission that allows reliable RV measurements that identify

the system as a PCEB candidate. The RVs from the NaI doublet are more affected by noise,

which probably explains the observed RV discrepancy in one out of its seven SDSS spectra.

A more complete study of this system in Chapter 8 though suggests that this system is a

wide WDMS binary rather than a PCEB.

7.4.2 Upper limits to the orbital periods

The RVs of the secondary stars follow from Kepler’s 3rd law and depend on the stellar

masses, the orbital period, and are subject to geometric foreshortening by a factor sini, with

i the binary inclination with regards to the line of sight:

(Mwdsini)3

(Mwd+Msec)2 =
PorbK3

sec

2πG
(7.5)

with Ksecthe RV amplitude of the secondary star, andG the gravitational constant. This can

be rearranged to solve for the orbital period,

Porb =
2πG(Mwd sini)3

(Mwd +Msec)2K3
sec

(7.6)

From this equation, it is clear that assumingi = 90◦ gives an upper limit to the orbital

period.

The RV measurements of our PCEBs and PCEB candidates (Table 7.1) sample the

motion of their companion stars at random orbital phases. However, if weassumethat the

maximum and minimum values of the observed RVs sample the quadrature phases, e.g. the

instants of maximum RV, we obtainlower limitsto the true RV amplitudes of the companion

stars in our systems. From Eq. 7.6, a lower limit toKsec turns into an upper limit toPorb.

Hence, combining the RV information from Table 7.1 with the stellar parameters

from Table 7.3, we determined upper limits to the orbital periods of all PCEBs and PCEB

candidates, which range between 0.46–7880 d. The actual periods are likely to be substan-

tially shorter, especially for those systems where only twoSDSS spectra are available and

the phase sampling is correspondingly poor. The orbital periods measured in Chapter 8

for seven of these systems confirms this hypothesis. More stringent constraints could be
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obtained from a more complex exercise where the mid-exposure times are taken into ac-

count – however, given the fact that many of the SDSS spectra are combined from data

taken on different nights, we refrained from this approach.

7.4.3 The fraction of PCEBs among the SDSS WDMS binaries

We have measured the RVs of 101 WDMS binaries which have multiple SDSS spectra, and

find that 15 of them clearly show RV variations, three additional WDMS binaries are good

candidates for RV variations (see Table 7.1). Taking the upper limits to the orbital periods at

face value, and assuming that systems with a period<∼ 300 d have undergone a CE (Willems

& Kolb 2004) 17 of the systems in Table 7.1 qualify as PCEBs, implying a PCEB fraction

of ∼15 % in our WDMS binary sample, which is in rough agreement with the predictions

by the population model of Willems & Kolb [2004]. However, our value is likely to be a

lower limit on the true fraction of PCEBs among the SDSS WDMS binaries for the follow-

ing reasons. (1) In most cases only two spectra are available, with a non-negligible chance

of sampling similar orbital phases in both observations. (2) The relatively low spectral res-

olution of the SDSS spectroscopy (λ/δλ ≃ 1800) plus the uncertainty in the flux calibration

limit the detection of significant RV changes to∼ 15kms−1 for the best spectra. (3) In

binaries with extremely short orbital periods the long exposures will smear the NaI doublet

beyond recognition. (4) A substantial number of the SDSS spectra are combined, averaging

different orbital phases and reducing the sensitivity to RVchanges. Follow-up observations

of a representative sample of SDSS WDMS binaries with higherspectral resolution and a

better defined cadence will be necessary for an accurate determination of the fraction of

PCEBs (see Chapter 10).

7.4.4 Comparison with Raymond et al. [2003]

In a previous study, Raymond et al. [2003] determined white dwarf temperatures, distance

estimates based on the white dwarf fits, and spectral types ofthe companion star for 109

SDSS WDMS binaries. They restricted their white dwarf fits toa single gravity, logg= 8.0,

and a white dwarf radius of 8×108 cm (corresponding toMwd = 0.6 M⊙), which is a fair

match for the majority of systems (see Sect. 7.4.6 below). Our sample of WDMS binaries
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with two or more SDSS spectra has 28 objects in common with Raymond’s list, sufficient to

allow for a quantitative comparison between the two different methods used to fit the data.

As we fitted two or more spectra for each WDMS binary, we averaged for this purpose the

parameters obtained from the fits to individual spectra of a given object, and propagated

their errors accordingly. We find that∼ 2/3 of the temperatures determined by Raymond

et al. [2003] agree with ours at the∼ 20 per cent level, with the remaining being different

by up to a factor two (Fig. 7.7, left panels). This fairly large disagreement is most likely

caused by the simplified fitting Raymond et al. adopted, i.e. fitting the white dwarf models

in the wavelength range 3800–5000Å, neglecting the contribution of the companion star.

The spectral types of the companion stars from our work and Raymond et al. [2003] agree

mostly to within±1.5 spectral classes, which is satisfying given the compositenature of

the WDMS binary spectra and the problems associated with their spectral decomposition

(Fig. 7.7, right panels). The biggest discrepancy shows up in the distances, with the Ray-

mond et al. distances being systematically lower than ours (Fig. 7.7, middle panels). The

average of the factor by which Raymond et al. underpredict the distances is 6.5, which

is close to 2π, suggesting that the authors may have misinterpreted the flux definition of

the model atmosphere code they used (TLUSTY/SYNSPEC from Hubeny & Lanz 1995,

which outputs Eddington fluxes), and hence may have used a wrong constant in the flux

normalisation (Eq. 7.3).

7.4.5 Comparison with Silvestri et al. [2006]

Having developed an independent method of determining the stellar parameters for WDMS

binaries from their SDSS spectra, we compared our results tothose of Silvestri et al. [2006].

As in Sect. 7.4.4 above, we average the parameters obtained from the fits to the individual

SDSS spectra of a given object. Figure 7.8 shows the comparison between the white dwarf

effective temperatures, surface gravities, and spectral types of the secondary stars from the

two studies. Both studies agree in broad terms for all three fit parameters (Fig. 7.8, bottom

panels). Inspecting the discrepancies between the two independent sets of stellar param-

eters, it became evident that relatively large disagreements are most noticeably found for

Teff <∼ 20000 K, with differences inTeff of up to a factor two, an order of magnitude in sur-
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Figure 7.7: Comparison of the white dwarf effective temperatures, distances based on the
white dwarf fit, and the spectral types of the secondary starsdetermined from our fits
(Sect. 7.3.2, 7.3.3 and Table 7.3), and those of Raymond et al. [2003]. Top panels, from
left to right: the ratio inTeff, the ratio ind, and the difference in the secondary’s spectral
types from the two studies as a function of the white dwarf temperature.

face gravity, and a typical difference in spectral type of the secondary of±2 spectral classes.

For higher temperatures the differences become small, withnearly identical values forTeff,

logg agreeing within±0.2 magnitude, and spectral types differing by±1 spectral classes

at most (Fig. 7.8, top panels). We interpret this strong disagreement at low to intermedi-

ate white dwarf temperatures to the ambiguity between hot and cold solutions described in

Sect. 7.3.3.

A quantitative judgement of the fits in Silvestri et al. [2006] is difficult, as the au-

thors do not provide much detail on the method used to decompose the WDMS binary

spectra, except for a single example in their Fig. 1. It is worth noting that the M-dwarf com-

ponent in that figure displays constant flux atλ < 6000Å, which seems rather unrealistic for

the claimed spectral type of M5. Unfortunately, Silvestri et al. [2006] do not list distances

implied by their fits to the white dwarf and MS components in their WDMS binary sample,

which would provide a test of internal consistency (see Sect. 7.4.7).

We also investigated the systems Silvestri et al.’s (2006) method failed to fit, and

found that we were able to determine reasonable parameters for the majority of them. It
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Figure 7.8: Comparison of the white dwarf effective temperatures and surface gravities and
the spectral types of the secondary stars determined from our fits (Sect. 7.3.2, 7.3.3 and
Table 7.3), and those of Silvestri et al. [2006]. Top panels,from left to right: the white
dwarf effective temperature and surface gravity ratios, and the difference in the secondary’s
spectral types from the two studies as a function of the whitedwarf temperature.

appears that our method is more robust in cases of low S/N, andin cases where one of the

stellar components contributes relatively little to the total flux. Examples of the latter are

SDSS J204431.45–061440.2, where an M0 secondary star dominates the SDSS spectrum

at λ >∼ 4600Å, or SDSS J172406.14+562003.1, which is a close PCEB containing a hot

white dwarf and a low-mass companion. An independent analysis of the entire WDMS

binary sample from SDSS appears therefore a worthwhile exercise, and will be provided in

Chapter 9.

7.4.6 Distribution of the stellar parameters

Having determined stellar parameters for each individual system in Sect. 7.3, we look here

at their global distribution within our sample of WDMS binaries. Figure. 7.9 shows his-

tograms of the white dwarf effective temperatures, masses,logg, and the spectral types of

the MS companions.

As in Sect. 7.4.4 and 7.4.5 above, we use here the average of the fit parameters ob-

tained from the different SDSS spectra of each object. Furthermore, we exclude all systems
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with relative errors in their white dwarf parameters (Twd, logg,Mwd) exceeding 25 per cent

to prevent smearing of the histograms due to poor quality data and/or fits, which results in

95, 81, 94, and 38 WDMS binaries in the histograms for the companion spectral type, logg,

Twd, andMwd, respectively. In broad terms, our results are consistent with those of Ray-

mond et al. [2003] and Silvestri et al. [2006]: the most frequent white dwarf temperatures

are between 10 000–20 000 K, white dwarf masses cluster around Mwd ≃ 0.6 M⊙, and the

companion stars have most typically a spectral type M3–4, with spectral types later than

M7 or earlier than M1 being very rare.

At closer inspection, the distribution of white dwarf masses in our sample has a

more pronounced tail towards lower masses compared to the distribution in Silvestri et al.

[2006]. A tail of lower-mass white dwarfs, peaking around 0.4 M⊙ is observed also in

well-studied samples of single white dwarfs [e.g. Liebert et al., 2005], and is interpreted as

He-core white dwarfs descending from evolution in a binary star [e.g. Marsh et al., 1995,

see also Chapter 10]. In a sample of WDMS binaries, a significant fraction of systems will

have undergone a CE phase, and hence the fraction of He-core white dwarfs among WDMS

binaries is expected to be larger than in a sample of single white dwarfs.

Also worth noting is that our distribution of companion starspectral types is rela-

tively flat between M2–M4, more similar to the distribution of single M-dwarfs in SDSS

[West et al., 2004] than the companion stars in Silvestri et al. [2006]. More generally speak-

ing, the cut-off at early spectral types is due to the fact that WDMS binaries with K-type

companions can only be identified from their spectra/colours if the white dwarf is very

hot – and hence, very young, and correspondingly only few of such systems are in the total

SDSS WDMS binary sample. The cut-off seen for low-mass companions is not so trivial to

interpret. Obviously, very late-type stars are dim and willbe harder to be detected against a

moderately hot white dwarf, such a bias was discussed by Schreiber & Gänsicke [2003] for

a sample of∼ 30 well-studied WDMS binaries which predominantly originated from blue-

colour ( = hot white dwarf) surveys. However, old WDMS binaries with cool white dwarfs

should be much more common [Schreiber & Gänsicke, 2003], and SDSS, sampling a much

broader colour space than previous surveys, should be able to identify WDMS binaries con-

taining cool white dwarfs plus very late-type companions. The relatively low frequency of
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Figure 7.9: White dwarf mass, spectral types of the secondaries, effective temperature and
logg histograms obtained from the SDSS WDMS binary sample. Excluded are those sys-
tems with individual white dwarf masses,Teff, and logg associated to relative errors larger
than 25 per cent.

83



such systems in the SDSS spectroscopic data base suggests that either SDSS is not effi-

ciently targeting those systems for spectroscopic follow-up, or that they are rare in the first

place, or a combination of both. A detailed discussion is beyond the scope of this thesis, but

we note that Farihi et al. [2005] have constructed the relative distribution of spectral types in

the local M/L dwarf distribution, which peaks around M3–4, and steeply declines towards

later spectral types, suggesting that late-type companions to white dwarfs are intrinsically

rare. This is supported independently by Grether & Lineweaver [2006], who analysed the

mass function of companions to solar-like stars, and found that it steeply decreases towards

the late end of the MS (but rises again for planet-mass companions, resulting in the term

”brown-dwarf desert”). In addition, spectral type distributions of field low-mass and ul-

tracool stars have been found to be dominated by the M star population (peaking at Sp≃

M4-5), and to decline also towards later spectral types, with a broad minimum spanning

∼L5 to ∼T2 [Reid et al., 2007, 2008].

An assessment of the stellar parameters of all WDMS binariesin SDSS using our

spectral decomposition and white dwarf fitting method will improve the statistics of the

distributions presented here, and will be presented in Chapter 9.

7.4.7 Stellar activity on the secondary stars?

As outlined in Sect. 7.3.5, the scaling factors used in the modelling of the two spectral

components of each WDMS binary provide two independent estimates of the distance to the

system. In principle, both estimates should agree within their errors. Figure 7.10 compares

the white dwarf and secondary star distance estimates obtained in Sect. 7.3.5, where the

distances obtained from the individual SDSS spectra of a given object were averaged, and

the errors accordingly propagated. In this plot, we excludesystems with relative errors in

dwd larger than 25 per cent to avoid cluttering by poor S/N data. The relative error indsec

is dominated by the scatter in theSp−R relation, which represents an intrinsic uncertainty

rather than a statistical error in the fit, and we therefore did not apply any cut indsec. Taking

the distribution of distances at face value, it appears thatabout 2/3 of the systems have

dsec≃ dwd within their 1σ errors, as expected from purely statistical errors. However, there

is a clear trend for outliers wheredsec > dwd. We will discuss the possible causes and
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implications in the following sections.

Possible causes fordsec 6= dwd

We identify a number of possible causes for the discrepancy between the two independent

distance estimates observed in∼ 1/3 of the WDMS binaries analysed here.

(1) A tendency for systematic problems in the white dwarf fits? dsec> dwd could be

a result of too small white dwarf radii for a number of systems, i.e. too high white dwarf

masses. We therefore identify in the top panel of Fig. 7.10 those systems with massive

(> 0.75 M⊙) white dwarfs. It is apparent that the outliers from thedsec= dwd relation do

not contain a large number of very massive white dwarfs.

(2) Problems in determining the correct spectral type of the secondary?If the error

on the spectral type of the companion star determined from the spectral decomposition is

larger than±0.5, as assumed in Sect. 7.3.2, a substantial deviation fromdsec= dwd would

result. However, as long as this error is symmetric around the true spectral type, it would

cause scatter on both sides of thedsec= dwd relation. Only if the determined spectral types

were consistently too early for∼ 1/3 of the systems, the observed preference for outliers

atdsec> dwd could be explained (see Sect. 7.4.7 below for a hypotheticalsystematicreason

for spectral types that are consistently too early).

(3) Problems in the Sp−R relation? As discussed in Sect. 7.3.4, theSp−R rela-

tion of late-type stars is not particularly well defined. Thelarge scatter of observed radii

at a given spectral type is taken into account in the errors indsec. If those errors were un-

derestimated, they should cause an approximatively symmetric scatter of systems around

dsec= dwd, which is not observed (theSp−R relation being non-linear lead to asymmetric

error bars in the radius for a given symmetric error in the spectral type, however, over a rea-

sonably small range in the spectral type this effect is negligible). A systematic problem over

a small range of spectral types would result in a concentration of the affected spectral types

among the outliers. For this purpose, we divide our sample into three groups of secondary

star spectral classes, Sp> 5, 3≤ Sp≤ 5, and Sp< 3 (Fig. 7.10, bottom panel). The outliers

show a slight concentration towards early types (Sp< 3) compared to the distribution of

secondary star spectral types in the total sample (Fig. 7.9).
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To explore the idea that our empiricalSp−R relation is simply inadequate, we

calculated a new set of secondary star distances, using the theoreticalSp−R relation from

Baraffe et al. [1998] (see Fig. 7.6, bottom panel), which areshown in the top panel of

Fig. 7.11. The theoreticalSp−R relation implies smaller radii in the range M3–M6, but the

difference with our empirical relation is not sufficient enough to shift the outlying WDMS

binaries onto thedsec= dwd relation. For spectral types earlier than M2.5, our empirical

Sp−R relation actually givessmallerradii than the theoretical Baraffe et al. 1998 relation,

so that using the theoreticalSp−Ractually exacerbates thedsec> dwd problem.

(4) A relationship with close binarity?The fraction of PCEBs among the outliers is

similar to the fraction among the total sample of WDMS binaries (Fig. 7.10), hence it does

not appear that close binarity is a decisive issue.

(5) An age effect?Late-type stars take a long time to contract to their zero agemain

sequence (ZAMS) radii, and if some of the WDMS binaries in oursample were relatively

young objects, their M-dwarfs would tend to have larger radii than ZAMS radii. As briefly

discussed in Footnote 1, the majority of the WDMS binaries inour sample are likely to be

older than∼ 1 Gyr, and the outliers in Fig. 7.10,7.11 do not show any preference for hot or

massive white dwarfs, which would imply short cooling ages and MS life times.

(6) Problems related to the surface gravity of the white dwarfs?It is likely that

the masses for∼15% of the white dwarfs in our sample are overestimated due tothe low

Teff logg problem discussed in Sect. 7.3.3. This effect translates into the distances to these

white dwarfs being underestimated. We have inspected alldsec> dwd outliers and found

that only two objects contain cool (less than 12000 K) white dwarfs, and we conclude that

the lowTeff logg problem can not reconcile the distance problem.

(7) A systematic bias for overluminous M-dwarfs?Given that for WDMS binaries

to be selected for spectroscopy, both stellar components have to make a noticeable contribu-

tion in the SDSSugriz photometry, one may speculate about a bias leading to the selection

of overluminous main sequence companions. This may be a realeffect for the very lat-

est spectral types, where the low-luminosity M-dwarfs struggle to compete with the flux

emitted even by cold white dwarfs. However, for spectral types earlier than∼M6, the flux

contribution of the M-dwarf is fully dominating the emission in the i- and z-bands, ruling
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out a selection towards overluminous M-dwarfs.

Could stellar activity affect Spsec?

None of the points discussed in the previous section conclusively explains the preference for

outliers havingdsec> dwd. If we assume that the problem rests in the determined properties

of the secondary star, rather than those of the white dwarf, the immediate implication of

dsec> dwd is that the assumed radii of the secondary stars are too large. As mentioned

above and shown in Fig. 7.11, this statement does not strongly depend on whichSp−

R relation we use to determine the radii, either our empiricalrelation or the theoretical

Baraffe et al. (1998) relation. Rather than blaming the radii, we explore here whether

the secondary star spectral types determined from our decomposition of the SDSS spectra

might be consistently too early in the outlying systems. If this was the case, we would

pick a radius from ourSp−R relation that is larger than the true radius of the secondary

star, resulting in too large a distance. In other words, the question is:is there a mechanism

that could cause the spectral type of an M star, as derived from low-resolution optical

spectroscopy, to appear too early?

The reaction of stars to stellar activity on their surface, also referred to as spotted-

ness (see Chapter 2) is a complex phenomenon that is not fullyunderstood. Theoretical

studies [e.g. Spruit & Weiss, 1986; Mullan & MacDonald, 2001; Chabrier et al., 2007]

agree broadly on the following points: (1) the effect of stellar activity is relatively weak

at the low-mass end of the MS (M <∼ 0.3 M⊙), where stars are conventionally thought to

become fully convective (though, see Mullan & MacDonald 2001; Chabrier et al. 2007 for

discussions on how magnetic fields may change that mass boundary), (2) stellar activity will

result in an increase in radius, and (3) the effective temperature of an active star is lower

than that of an unspotted star.

Here, we briefly discuss the possible effects of stellar activity on the spectral type

of a star. For this purpose, it is important not to confuse theeffective temperature, which is

purely a definition coupled to the luminosity and the stellarradius viaL = 4πR2σT4
eff (and

hence is aglobalproperty of the star), and thelocal temperature of a given part of the stellar

surface, which will vary from spotted areas to inter-spot areas. In an unspotted star effective
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Figure 7.10: Comparison ofdsec and dwd obtained from our spectral decomposition and
white dwarf fits to the SDSS spectra. Approximately a third ofthe systems havedsec 6= dwd.
The top panel splits the sample according to the mass of the white dwarfs, while the bottom
panel divides the sample according to the spectral types of the secondaries. In both panels
systems that we identify as PCEBs from RV variations in theirSDSS spectra are shown in
red.
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Figure 7.11: Top panel: the distances implied by the spectral decomposition were calculated
by using theSp−R relation predicted by the models of Baraffe et al. [1998], instead of our
empirical Sp−R relation. Bottom panel: the spectral types of the secondarystars were
adjusted by 1–2 spectral classes to achievedwd = dsec. Only three systems can not be
reconciled in this way, and are discussed individually in the text. We suggest that stellar
activity in some WDMS binaries may change the spectral type of their secondary stars,
being equivalent to a change in surface temperature by a few 100 K.
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and local temperature are the same, and both colour and spectral type are well-defined. As

a simple example to illustrate the difference between effective temperature and colour in an

active star, we assume that a large fraction of the star is covered by zero-temperature, i.e.

black spots, and that the inter-spot temperature is the sameas that of the unspotted star. As

shown by Chabrier et al. [2007], assuming constant luminosity requires the radius of the star

to increase, and the effective temperature to drop. Thus, while intuition would suggest that

a lower effective temperature would result in a redder colour, this ficticious star hasexactly

the same colour and spectral type as its unspotted equivalent – as the black spots contribute

no flux at all, and the inter-spot regions with the same spectral shape as the unspotted star.

Obviously, the situation in a real star will be more complicated, as the spots will

not be black, but have a finite temperature, and the star will hence have a complicated

temperature distribution over its surface. Thus, the spectral energy distribution of such a

spotted star will be the superposition of contributions of different temperatures, weighted

by their respective covering fraction of the stellar surface. Strictly speaking, such a star

has no longer a well-defined spectral type or colour, as theseproperties will depend on the

wavelength range that is observed. Spruit & Weiss [1986] assessed the effect of long-term

spottedness on the temperature distribution on active stars, and found that for stars with

masses in the range 0.3− 0.6 M⊙ the long-term effect of spots is to increase the temper-

ature of the inter-spot regions by∼ 100− 200 K (compared to the effective temperature

of the equivalent unspotted star), whereas the inter-spot temperature of spotted lower-mass

stars remains unchanged. Spruit & Weiss [1986] also estimated the effects of stellar activity

on the colours of stars, but given their use of simple blackbody spectra, these estimates are

of limited value. As a general tendency, the hotter (unspotted) parts of the star will predom-

inantly contribute in the blue end of the the spectral energydistribution, the cooler (spotted)

ones in its red end. As we determine the spectral types of the secondary stars in the SDSS

WDMS binaries from optical ( = blue) spectra, and taking the results of Spruit & Weiss at

face value, it appears hence possible that they are too earlycompared to unspotted stars of

the same mass. A full theoretical treatment of this problem would involve calculating the

detailed surface structure of active stars as well as appropriate spectral models for each sur-

face element in order to compute the spatially integrated spectrum as it would be observed.
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This is clearly a challenging task.

Given that theoretical models on the effect of stellar activity have not yet converged,

and are far from making detailed predictions on the spectroscopic appearance of active stars,

we pursue here an empirical approach. We assume that the discrepancydsec> dwd results

from picking a spectral type too early, i.e. we assume that the secondary star appears hotter

in the optical spectrum that it should for its given mass. Then, we check by how much we

have to adjust the spectral type (and the corresponding radius) to achievedsec= dwd within

the errors (Fig. 7.11 bottom panel). We find that the majorityof systems need a change

of 1–2 spectral classes, which corresponds to changes in theeffective temperature of a

few hundred degrees only, in line with the calculations of Spruit & Weiss [1986]. Bearing

in mind that what weseein the optical is the surface temperature, and not the effective

temperature, comparing this to the surface temperature changes calculated by Spruit &

Weiss [1986], and taking into account that we ignored in thissimple approach the change

in radius caused by a large spottedness, it appears plausible that the large deviations from

dsec= dwd may be related to stellar activity on the secondary stars.

There are three WDMS binaries where a change of more than two spectral classes

would be necessary: SDSS J032510.84-011114.1, SDSS J093506.92+441107.0, and SDSS

J143947. 62-010606.9. SDSSJ 143947.62-010606.9 containsa very hot white dwarf, and

the secondary star may be heated if this system is a PCEB. Its two SDSS spectra reveal

no significant RV variation, but as discussed in Sect. 7.2 theSDSS spectra can not exclude

a PCEB nature because of random phase sampling, low inclination and limited spectral

resolution. SDSS J032510.84-011114.1 and SDSS J093506.92+441107.0 could be short-

period PCEBs, as they both have poorly define NaI absorption doublets, possibly smeared

by orbital motion over the SDSS exposure (see Sect. 7.2). In aclose binary, their moderate

white dwarf temperatures would be sufficient to cause noticeable heating of the secondary

star.

We conclude that our study suggests some anomalies in the properties of∼ 1/3 of

the M-dwarf companions within the WDMS binary sample analysed here. This is in line

with previous detailed studies reporting the anomalous behaviour of the MS companions in

PCEBs and CVs, e.g. O’Brien et al. [2001] or Naylor et al. [2005].
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7.4.8 Selection effects among the SDSS WDMS binaries.

Selection effects among the WDMS binaries found by SDSS withrespect to the spectral

type of their MS component can be deduced from the bottom panel of Fig. 7.103. No bina-

ries with secondary spectral types later than M5 are found atdistances larger than∼ 500 pc.

Because of their intrinsic faintness, such late-type secondary stars can only be seen against

relatively cool white dwarfs, and hence the large absolute magnitude of such WDMS bi-

naries limits their detection within the SDSS magnitude limit to a relatively short distance.

Hot white dwarfs in SDSS can be detected to larger distances,and may have undetected

late-type companions. There are also very few WDMS binarieswith secondary stars earlier

than M3 within 500 pc. In those systems, the secondary star isso bright that it saturates

the z, and possibly thei band, disqualifying the systems for spectroscopic follow up by

SDSS. While these selection effects may seem dishearting atfirst, it will be possible to

quantitatively correct them based on predicted colours of WDMS binaries and the informa-

tion available within the SDSS project regarding photometric properties and spectroscopic

selection algorithms.

7.5 Conclusions

We have identified 18 PCEBs and PCEB candidates among a sampleof 101 WDMS bi-

naries for which repeat SDSS spectroscopic observations are available in DR5. From the

SDSS spectra, we determine the spectral types of the MS companions, the effective tem-

peratures, surface gravities, and masses of the white dwarfs, as well as distance estimates

to the systems based both on the properties of the white dwarfs and of the MS stars. In

about 1/3 of the WDMS binaries studied here the SDSS spectra suggest that the secondary

stars have either radii that are substantially larger than those of single M-dwarfs, or spectral

types that are too early for their masses. Follow-up observations of the PCEBs and PCEB

candidates is encouraged in order to determine their orbital periods as well as more detailed

system parameters (see Chapter 8). Given the fact that we have analysed here only∼ 10

per cent of the WDMS binaries in DR5, it is clear SDSS holds thepotential to dramatically

3A more complete description of selection effects among the SDSS WDMS binaries is provided in Chap-
ter 9.
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improve our understanding of CE evolution (see Chapters 9 and 10).

Table 7.3: White dwarf masses, effective temperatures, surface gravities,

spectral types and distances of the SDSS PCEBs identified in Sect. 7.3,

as determined from spectral modelling. The stellar parameters for the

remaining 112 WDMS binaries can be found in Rebassa-Mansergas et al.

[2007, see also Chapter 9]. We quote bys ande those systems which

have been studied previously by Silvestri et al. [2006] and Eisenstein

et al. [2006], repectively.

SDSS J MJD plate fiberTeff(K) err logg err M(MJ) err dwd(pc) err Spdsec(pc) err flag notes

005245.11-005337.2 51812 394 96 15071 4224 8.69 0.73 1.04 0.38 505 297 4 502 149 s,e

51876 394 100 17505 7726 9.48 0.95 1.45 0.49 202 15 4 511 152

51913 394 100 16910 2562 9.30 0.42 1.35 0.22 261 173 4 496 147

52201 692 211 17106 3034 9.36 0.43 1.38 0.22 238 178 4 526 156

005457.61-002517.0 51812 394 118 16717 574 7.81 0.13 0.51 0.07 455 38 5 539 271 s,e

51876 394 109 17106 588 7.80 0.14 0.51 0.07 474 40 5 562 283

51913 394 110 17106 290 7.88 0.07 0.55 0.04 420 19 5 550 277

022503.02+005456.251817 406 533 - - - - - - - - 5 341 172 s,e 1

51869 406 531 - - - - - - - - 5 351 177

51876 406 532 - - - - - - - - 5 349 176

51900 406 532 - - - - - - - - 5 342 172

52238 406 533 - - - - - - - - 5 356 179

024642.55+004137.251871 409 425 15782 5260 9.18 0.76 1.29 0.39 213 212 4 365 108 s,e

52177 707 460 - - - - - - - - 3 483 77

52965 1664 420 16717 1434 8.45 0.28 0.90 0.16 515 108 3 492 78

52973 1664 407 14065 1416 8.24 0.22 0.76 0.14 510 77 3 499 80

025147.85-000003.2 52175 708 228 17106 4720 7.75 0.92 0.49 0.54 1660 812 4 881 262 e 2

52177 707 637 - - - - - - - - 4 794 236

030904.82-010100.8 51931 412 210 19416 3324 8.18 0.68 0.73 0.40 1107 471 3 888 141 s,e

52203 710 214 18756 5558 9.07 0.61 1.24 0.31 462 325 3 830 132

52235 412 215 14899 9359 8.94 1.45 1.17 0.75 374 208 4 586 174

52250 412 215 11173 9148 8.55 1.60 0.95 0.84 398 341 4 569 169

Continued on Next Page. . .
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Table 7.3 – Continued

SDSS J MJD plate fiberTeff(K) err logg err M(MJ) err dwd(pc) err Spdsec(pc) err flag notes

52254 412 201 20566 7862 8.82 0.72 1.11 0.37 627 407 3 836 133

52258 412 215 19640 2587 8.70 0.53 1.04 0.27 650 281 3 854 136

53386 2068 126 15246 4434 8.75 0.79 1.07 0.41 522 348 4 628 187

031404.98-011136.6 51931 412 45 - - - - - - - - 4 445 132 s,e 1

52202 711 285 - - - - - - - - 4 475 141

52235 412 8 - - - - - - - - 4 452 134

52250 412 2 - - - - - - - - 4 426 126

52254 412 8 - - - - - - - - 4 444 132

52258 412 54 - - - - - - - - 4 445 132

082022.02+431411.051959 547 76 21045 225 7.94 0.04 0.59 0.02 153 4 4 250 74 s,e

52207 547 59 21045 147 7.95 0.03 0.60 0.01 147 2 4 244 72

113800.35-001144.4 51630 282 113 18756 1364 7.99 0.28 0.62 0.17 588 106 4 601 178 s,e

51658 282 111 24726 1180 8.34 0.16 0.84 0.10 487 60 4 581 173

115156.94-000725.4 51662 284 435 10427 193 7.90 0.23 0.54 0.14 180 25 5 397 200 s,e

51943 284 440 10189 115 7.99 0.16 0.59 0.10 191 19 5 431 217

152933.25+002031.251641 314 354 14228 575 7.67 0.12 0.44 0.05 338 25 5 394 199 s,e

51989 363 350 14728 374 7.59 0.09 0.41 0.04 372 21 5 391 197

172406.14+562003.051813 357 579 35740 187 7.41 0.04 0.42 0.01 417 15 2 1075 222 s,e

51818 358 318 36154 352 7.33 0.06 0.40 0.02 453 24 2 1029 213

51997 367 564 37857 324 7.40 0.04 0.43 0.01 439 16 2 1031 213

172601.54+560527.051813 357 547 20331 1245 8.24 0.23 0.77 0.14 582 94 2 1090 225 s,e

51997 367 548 20098 930 7.94 0.18 0.59 0.11 714 83 2 1069 221

173727.27+540352.251816 360 165 13127 1999 7.91 0.42 0.56 0.26 559 140 6 680 307 s,e

51999 362 162 13904 1401 8.24 0.31 0.76 0.20 488 106 6 639 288

224139.02+002710.953261 1901 471 12681 495 8.05 0.15 0.64 0.09 369 35 4 381 113 e

52201 674 625 13745 1644 7.66 0.36 0.43 0.19 524 108 4 378 112

233928.35-002040.0 53357 1903 264 15071 1858 8.69 0.33 1.040.18 416 112 4 530 157 e

52525 682 159 12536 2530 7.92 0.79 0.56 0.48 655 291 4 528 157

234534.49-001453.7 52524 683 166 19193 1484 7.79 0.31 0.51 0.17 713 132 4 1058 314 s,e 5

53357 1903 103 18974 730 7.98 0.15 0.61 0.09 652 62 4 1155 343

Continued on Next Page. . .
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Table 7.3 – Continued

SDSS J MJD plate fiberTeff(K) err logg err M(MJ) err dwd(pc) err Spdsec(pc) err flag notes

235020.76-002339.9 51788 386 228 - - - - - - - - 5 504 254 6

52523 684 226 - - - - - - - - 5 438 22

(1) Teff less than 6000; (2) Noisy spectra; (3) Cold white dwarf; (4) Diffuse background galaxy in

the SDSS image; (5) Reflection effect; (6) Some blue excess, white dwarf?
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Chapter 8

Seven new PCEB Orbital Periods

from SDSS

8.1 Introduction

In this Chapter I present follow-up observations of 11 PCEB candidates identified from

multiple SDSS spectroscopy in Chapter 7, and provide accurate values of the orbital pe-

riods (Sec. 8.2), as well stellar parameters and orbital inclination estimates for seven of

these systems (Sect. 8.3). For one PCEB candidate no significant photometric modulation

was detected, and its orbital period will need to be measuredfrom RV studies. The three

remaining objects showed no significant RV variation, and wesuggest they may be wide

WDMS binaries. These three systems are discussed in more detail in Sect. 8.4. PCEB evo-

lution for the seven short binaries with accurate orbital period measurements is provided

in Sect. 8.5. So far all our PCEB orbital periods are of less than 1 day, and I discuss this

finding in Sect. 8.6. I finally give the conclusions of this Chapter in Sect. 8.7.

The instrumentation used for the observations and the reduction of the data are

described in Chapter 4.
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8.2 Orbital Periods

8.2.1 Radial Velocities

In Chapter 7 we measured the RVs fitting a second order polynomial plus a double-Gaussian

line profile of fixed separation to the NaI λλ 8183.27,8194.81 absorption doublet. Free

parameters were the amplitude and the width of each Gaussianand the RV of the combined

doublet. Here we adopt a slightly modified approach, using just a single width parameter

for both line components. This reduction in the number of free parameters increases the

robustness of the fits. RVs measured in this way for nine WDMS binaries are given in

Table 8.1. In addition, we measured the companion star RVs for SDSS J1724+5620 by

means of a Gaussian fit to the Hα emission line clearly visible in 22 of the SDSS sub-

exposures, which are also reported in Table 8.1.

Scargle [1982, see Chapter 5] periodograms calculated fromthe RVs of each system

to investigate the periodic nature of the velocity variations contain a number of aliases due

to the sampling pattern of the observations (Fig. 8.1). We carried out sine-fits of the form

Vr = Ksecsin

[

2π(t −T0)

Porb

]

+ γ (8.1)

to the velocity data sets of each system, whereγ is the systemic velocity,Ksec is the RV

semi-amplitude of the companion star,T0 is the time of inferior conjunction of the sec-

ondary star, andPorb is the orbital period. Several fits were done, adopting the frequencies

corresponding to the strongest peaks in the power spectra asinitial conditions. The pa-

rameters resulting from these fits are reported in Table 8.2.For SDSS J0052–0053, SDSS

J0246+0041, SDSS J0314–0111, SDSS 1151–0007, SDSS J1529+0020 and SDSS J2339–

0020 the sine-fits allow a unique choice of the orbital period. For SDSS J1724+5620, the

sampling of the SDSS spectra is very sparse, resulting in finely structured aliases superim-

posed on a sequence of large aliases spaced by 1 d−1. A sine fit to the RVs started off at

the 3 d−1 alias provides a spectroscopic orbital period of 7.99243(16) h, which is consistent

with the more accurate value determined from the photometry(Sect. 8.2.2). The RV data

for all seven systems folded over their orbital periods are shown in Fig. 8.2.

The periodograms calculated from the RV measurements of thePCEB candidates
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SDSS J0309–0101, SDSS J1138–0011, and SDSS J2241+0027 do not reveal any significant

peak. The low amplitude of the RV variations observed in these three objects suggests that

they may be wide WDMS binaries rather than PCEBs. This issue will be discussed further

in Sect. 8.4.3.

8.2.2 Light curves

The light curves of SDSS J0314–0111 and SDSS J1724+5620 display variability with an

amplitude of∼ 0.05 mag and∼ 0.1 mag, respectively. We calculated periodograms for

both systems using theORT/TSA command inMIDAS [Schwarzenberg-Czerny, 1996, see

Chapter 5].

A strong peak is found in the periodogram of SDSS J0314–0111 at 3.8 d−1, i.e.

6.3 h (Fig. 8.3, top left panel). Folding the photometric data over that period results in a

double-humped modulation which we identify as ellipsoidalmodulation (Fig.8.3, middle

left panel). The detection of ellipsoidal modulation indicates that the companion star must

be filling a significant amount of its Roche-lobe radius and have a moderately high inclina-

tion, both of which hypotheses are confirmed below in Sect. 8.3. The two minima differ

in depth, as expected for ellipsoidal modulation because ofthe stronger gravity darkening

on the hemisphere facing the white dwarf. The two maxima are also unequal, which is

observed relatively often in PCEBs, and thought to be related to the presence of star spots

[e.g. Kawka & Vennes, 2003; Tappert et al., 2007]. We conclude that the strongest period-

icity detected in the photometry of SDSS J0314–0111 is consistent with the spectroscopic

orbital period (Table 8.2). As the RVs span a longer temporalbaseline than the photometry,

they provide the more accurate period measurement, and we adopt Porb = 6.319±0.015 h

for SDSS J0314–0111.

For the analysis of SDSS J1724+5620 we separately merged thedata for theR and

I band (see Table 4.2), normalised both data sets to their respective mean values, and finally

combined all data into a single data set. TheORT periodogram calculated from the full light

curve displays a strong signal at 3 d−1, with weak aliases related to the sampling pattern

inherent to the data (Fig. 8.3, top right panel). Given the large quasi-sinusoidal shape of the

modulation, and the high effective temperature of the whitedwarf (Table 8.3), we identify
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Table 8.1: RVs measured from the NaI λλ 8183.27,8194.81 doublet, except for SDSS J1724+5620, where RVs measured from the Hα
emission line in the 15 min SDSS sub-spectra are given. Note that the provided HJD is the resulted from HJD-2400000.

HJD RV [kms−1] HJD RV [kms−1] HJD RV [kms−1] HJD RV [kms−1] HJD RV [kms−1]

SDSS J0052–0053 54379.8169 106.6± 7.4 SDSS J1138–0011 54238.7778 59.7± 11.3 51993.9263 -81.3± 10.7
54328.7467 42.5± 18.7 54379.8622 42.5± 14.5 54205.5902 -12.8± 5.7 54238.8109 -156.4± 11.2 51993.9387 -101.9± 10.4
54328.7933 -15.0± 13.6 54380.8165 -97.1± 9.9 54207.7340 -7.7± 12.6 54238.8270 -160.8± 32.7 51993.9511 -111.0± 11.4
54328.8077 -40.7± 13.7 54380.8372 -92.3± 8.2 54237.5647 -13.9± 11.6 54238.8372 -188.3± 14.9 51994.9683 -127.4± 10.6
54328.8825 31.5± 27.5 54380.8762 -85.7± 7.8 54237.5721 5.1± 10.3 54239.5635 157.9± 9.9 51994.9805 -130.2± 10.5
54328.8969 -4.0± 9.9 54380.8842 -72.9± 8.0 54238.4936 9.9± 9.6 54239.6756 -121.3± 8.0 51994.9928 -131.6± 12.5
54329.6885 31.5± 9.3 54381.6121 -63.7± 12.7 54238.5352 -5.1± 8.5 54240.5548 202.6± 21.2 51997.9480 -106.9± 10.6
54329.7028 -12.1± 11.8 54381.7427 77.3± 7.6 54238.6889 23.1± 10.6 54240.6338 -182.8± 7.8 51997.9602 -132.0± 10.8
54329.7172 -50.9± 16.4 54381.8122 126.4± 8.0 54271.3996 9.2± 6.7 54240.6844 28.9± 10.1 51997.9724 -136.1± 11.4
54329.8269 -56.1± 14.1 54381.8958 157.2± 8.4 SDSS J1151–0007 54240.7296 204.4± 8.7 SDSS J2241+0027
54329.8412 -60.8± 13.4 54382.8362 -31.9± 8.9 54237.5904 48.4± 14.9 54240.7357 194.9± 7.9 54376.5842 2.6± 14.0
54329.8556 -55.3± 14.8 54385.7884 -71.1± 11.5 54237.5976 129.3± 11.4 54240.7417 175.1± 9.5 54377.5637 6.6± 6.6
54330.7154 29.7± 10.8 SDSS J0309–0101 54238.5245 -147.6± 13.0 54240.8311 -114.7± 8.1 54378.5290 13.2± 9.9
54330.7298 -30.8± 12.3 54381.6726 60.4± 12.4 54238.5709 -81.0± 11.6 54240.8372 -87.6± 9.9 54379.5523 39.9± 13.3
54330.7441 -59.7± 16.0 54381.7714 31.5± 12.0 54238.7012 -160.1± 6.9 54240.8432 -54.6± 12.7 54382.5261 -20.1± 17.7
54330.8136 56.8± 17.7 54381.8386 41.0± 10.7 54239.5084 -129.0± 7.7 54240.8498 8.4± 31.7 SDSS J2339–0020
54330.8279 28.2± 9.3 54382.8626 51.7± 15.9 54239.6047 233.4± 8.0 54380.5088 -25.3± 13.4
54330.8423 -29.3± 12.2 54239.6602 -175.8± 9.8 SDSS J1724+5620 54380.5511 3.7± 8.2
54330.9158 32.6± 14.1 SDSS J0314–0111 54240.4793 148.4± 11.7 51812.6531 133.8± 13.2 54381.5526 -116.1± 9.2
54332.7313 22.7± 11.1 54376.7386 -54.6± 8.2 54240.5236 -227.1± 12.5 51812.6656 114.2± 12.2 54382.5097 11.7± 10.2
54332.7457 59.3± 23.5 54376.7862 -151.3± 8.5 54240.5291 -207.4± 11.5 51813.5993 60.8± 25.2 54382.5869 94.2± 9.2
54332.8433 23.1± 9.6 54376.8051 -116.1± 11.4 54240.5346 -198.2± 8.5 51813.6161 77.2± 17.1 54382.6866 86.1± 10.0

54376.8581 64.5± 10.8 54240.5400 -163.8± 9.5 51813.6284 132.0± 11.4 54382.7587 24.2± 9.1
SDSS J0246+0041 54376.8996 174.7± 30.0 54240.6033 219.8± 11.4 51813.6425 118.3± 12.3 54383.5274 -134.4± 11.2

54378.6386 -127.5± 11.4 54377.6572 119.8± 8.0 54240.6088 220.5± 9.3 51813.6631 121.1± 11.1 54385.5605 -181.3± 17.0
54378.6496 -122.7± 13.0 54377.6830 186.1± 9.3 54240.6142 161.2± 10.1 51813.6768 103.2± 10.6 54385.6462 -177.3± 9.0
54378.7955 18.3± 8.8 54377.7380 164.5± 8.0 54240.6197 111.7± 9.3 51813.6889 94.1± 10.7 54385.6663 -164.9± 23.9
54379.6704 176.9± 11.3 54377.7782 -2.6± 7.5 51818.5877 71.7± 22.8 54385.6864 -133.4± 12.8
54379.6789 159.0± 15.6 54377.8165 -116.1± 9.5 SDSS J1529+0020 51818.6178 109.6± 13.0 54385.7065 -104.0± 21.6
54379.6875 177.3± 9.7 54377.8672 -98.9± 8.1 54238.6219 -3.3± 23.9 51818.6297 122.4± 13.9 54385.7495 -49.8± 27.1
54379.7813 132.6± 7.9 54377.8866 -44.3± 12.1 54238.6795 -145.1± 11.7 51818.6418 127.4± 13.2 54385.7696 -16.9± 9.8
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Figure 8.1: Scargle periodograms calculated from the RV variations measured from the NaI

absorption doublet in SDSS J0052–0053, SDSS J0246+0041, SDSS J0314–0111, SDSS
J1151–0007, SDSS J1529+0020, and SDSS J2339–0020, and fromthe Hα emission line in
SDSS J1724+5620. The aliases with the highest power are indicated by tick marks.
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Figure 8.2: The RV measurements folded over the orbital periods of the systems, as deter-
mined from the best sine fits (Table 8.2).
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the observed photometric variability as being due to heating effect (or reflection effect as it

is often referred to in the literature). A sine fit to the combined data (dashed line) provided

the following photometric ephemeris

HJD= 2453865.29(1)+ φ×0.3330193(13), (8.2)

whereφ = 0 refers to the occurrence of minimum light. The photometricperiod of 8 h is

consistent with the alias pattern in the periodogram calculated from the Hα RV variations

(Fig. 8.1). The phase-folded light curve using the photometric period is shown on the

middle right hand panel of Fig. 8.3. Based on the above ephemeris, the accumulated phase

error for the first SDSS sub-spectrum (Table 8.1) is 0.024 cycles, which is sufficiently good

to phase the RVs obtained from the SDSS spectra with Eq. 8.2. The phase-folded light

curve and RV curve are shown in Fig. 8.4. The phase offset between the two curves is

0.226±0.005, which is close to≈ 0.25. A 0.25 phase offset is what is expected from the

assumption that the photometric modulation is related to a heating effect, i.e. maximum

light and red-to-blue crossing of the RV corresponds to the superior conjunction of the

secondary star, whereas minimum light and blue-to-red crossing of the RV corresponds to

its inferior conjunction.

Finally, we show in the bottom panel of Fig. 8.3 a 3.5 hours light curve of SDSS

J0820+4314. We monitored the system through a total of 8.2 hours on three different nights

(see Table 4.2), and found no significant photometric modulation. This implies that the

companion star is significantly under-filling its Roche lobeand/or that the binary inclination

is very low. The orbital period of the system will hence need to be measured from a RV

study.

8.3 Binary parameters

In Chapter 7 we developed a spectral decomposing/fitting technique for the analysis of

WDMS binaries with SDSS spectroscopy. In brief, this analysis determines the white dwarf

effective temperature, surface gravity, mass and radius, the spectral type and radius of the

MS companion, as well as two independent distance estimatesbased on the properties of the
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Table 8.2: Orbital periods, semi-amplitudesKsec, systemic velocitiesγsec, and reducedχ2

from sine fits to the NaI doublet RV data for the strongest two to three aliases in the pe-
riodograms shown in Fig. 8.1. The best-fit values are set in bold. The SDSS Hα RVs
of SDSS J1724+5620 are folded on the photometric orbital period obtained in Sect. 8.2.2
(which is more accurate than the spectroscopically determined value of the orbital pe-
riod). Note also that the semi-amplitude measurement of this system is underestimated,
as it comes from RV measurements of Hα emission from the irradiated face of the compan-
ion (see Sect. 8.4.2).

System Porb Ksec γsec χ2

[h] [kms−1] [kms−1]

SDSS J0052–0053 3.0850±0.0090 47.2±6.6 -2.9±5.8 3.74
2.7350±0.0023 57.0±3.1 -7.2±2.6 0.50
2.4513±0.0035 54.8±5.8 -9.1±4.6 1.96

SDSS J0246+0041 61.1±2.7 124±17 16±12 20.3
17.432±0.036 140.7±3.5 24.9±2.7 1.25
10.130±0.031 163±16 34±10 21.6

SDSS J0314–0111 8.66±0.17 154±19 44±16 27.1
6.319±0.015 174.9±4.8 31.0±3.4 1.15

SDSS J1151–0007 3.979±0.013 202±20 -2±16 34.4
3.3987±0.0027 233.8±8.1 9.0±5.9 3.55
2.9849±0.0092 213±22 -22±23 64.7

SDSS J1529+0020 4.759±0.028 171±18 11±14 26.9
3.9624±0.0033 193.1±5.2 6.0±4.1 1.91
1.5558±0.0024 182±21 6±15 36.7

SDSS J1724+5620 7.992463(31) 129.3±1.9 -3.5±1.8 0.41
SDSS J2339–0020 43.18±0.78 121±18 -50±15 13.5

15.744±0.016 149.8±4.0 -40.9±2.6 0.69
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Figure 8.3: Top and middle panels:ORT periodograms and light curves folded on strongest
photometric periodicities,Porb = 6.32±0.02 h for SDSS J0314–0111 andPorb = 7.99246±
0.00003 h for SDSS J1724+5620. Bottom panel: the light curve ofSDSS J0820+4314 is
essentially flat, and a periodogram calculated from this data does not contain any significant
periodicity.
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two stellar components. Given that the SDSS spectra reduction pipeline has been improved

with DR6 [Adelman-McCarthy et al., 2008], we have re-analysed here the seven PCEBs

for which we were able to determine orbital periods. Comparison with the results from

DR5 reported in Chapter 7 shows that the fit parameters differslightly, but agree in the vast

majority of cases within the errors. We report the average stellar parameters determined

from fits to the multiple SDSS spectra in Table 8.3. RewritingKepler’s third law (assuming

common notation),

(Mwdsini)3

(Mwd+Msec)2 =
PorbK3

sec

2πG
(8.3)

as

sini =
Ksec

Mwd

(

Porb

2πG

)1/3

(Mwd+Msec)
2/3, (8.4)

and adopting the orbital period determined from the analysis of the RVs and the photometry,

as well as the masses from the analysis of the SDSS spectra, weare now able to estimate the

orbital inclinations for the seven systems in Table 8.3. Twosystems require some additional

notes: SDSS J0314–0111 contains a DC white dwarf, and hence no white dwarf parameters

could be determined from the spectral analysis, and we assume Mwd = 0.65M⊙ for the

estimate of the inclination. In SDSS J1724+5620 the hot white dwarf is irradiating the

companion star, and the implications are discussed in more detail in Sect. 8.4.2.

Inspecting Eq.(8.4), it is clear that the dominant uncertainties in the inclination es-

timates are onlyMwd andMsec, as the orbital periods andKsecvelocities are accurately de-

termined. The primary uncertainty in the inclination estimates isMsec, as it is based on the

spectral type of the companion star, adopting theSp−M −R relation given in Chapter 7.

Mwd is determined from fitting the Balmer line profiles, and relatively well constrained.

Given that sini ∝ M2/3
sec, but sini ∝ Mwd, the relative weight of the uncertainty inMsec is

alleviated. We estimate the uncertainties on the binary inclinations in Table 8.3 by assum-

ing in Eq.8.4 the range inMsec implied by a spectral type uncertainty of±0.5 spectral

classes plus the associated errors in theSp−M relation, as well as the range inMwd re-

sulting from the Balmer line profile fits. Given the high estimate for the binary inclination,

SDSS J1529+0020 is a good candidate for photometric follow-up observations probing for

eclipses in its light curve.
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Figure 8.4: Top panel: The IAC 80 and AIP 70 cm photometry of SDSS J1724+5620 folded
over the photometric period of 7.9924632± 0.0000312 h. Middle panel: the equiva-
lent width variation of the Hα emission line measured from the SDSS spectra of SDSS
J1724+5620 (Table 8.1) folded over the photometric period.Maximum equivalent width
occur roughly in phase with the maximum in the light curve (see Sect. 8.4.2 for details).
Bottom panel: the RV variation of the Hα emission line folded over the photometric orbital
period. The relative phasing with respect to the photometryis consistent with the photo-
metric modulation being caused by irradiation of the secondary star by the hot white dwarf.
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Table 8.3: Average binary parameters obtained for the sevenPCEBs which have orbital period andKsec measurements.Mwd, Msec, Rsec,
spectral type,Teff and logg are obtained following Chapter 7, except for SDSS J0314–0111, where we assume a white dwarf mass of 0.65±
0.1 M⊙ (see text for details).Porb andKsec are measured in Sect. 8.2 of this Chapter. Estimates of orbital separationsa, q, Kwd, secondary
Roche lobe radiusRLsec and inclinations are obtained from the equations given in Sect. 8.3. SDSS J1724+5620 is a particular case, as the
inner hemisphere of the companion is heated. Constraints onits orbital parameters are obtained assuming a spectral type between M3-5, and
considering different Ksec,corr values for each mass and radius (see Sect. 8.4.2). An additional constraint for its inclination comes from the
fact that SDSS J1724+5620 is not eclipsing.

SDSS J0052–0053 SDSS J0246+0041 SDSS J0314–0111 SDSS J1151–0007 SDSS J1529+0020 SDSS J1724+5620 SDSS J2339–0020
Mwd[M⊙] 1.2 ± 0.4 0.9± 0.2 0.65± 0.1 0.6± 0.1 0.40± 0.04 0.42± 0.01 0.8± 0.4
Msec[M⊙] 0.32± 0.09 0.38± 0.07 0.32± 0.09 0.19± 0.08 0.25± 0.12 ∼0.25 - 0.38 0.32± 0.09
q 0.3 ± 0.1 0.4± 0.1 0.5± 0.2 0.3± 0.2 0.6± 0.3 ∼0.6 - 0.9 0.4± 0.2
a[R⊙] 1.1 ± 0.1 3.7± 0.2 1.7± 0.1 1.0± 0.1 1.1± 0.1 ∼1.8 - 1.9 3.3± 0.4
Porb [h] 2.735± 0.002 17.43± 0.04 6.32± 0.02 3.399± 0.003 3.962± 0.003 7.992463(3) 15.74± 0.02
Ksec[kms−1] 57 ± 3 141± 4 175± 5 234± 8 193± 5 ∼129 - 214 150± 4
Kwd[kms−1] 15 ± 6 59± 15 86± 28 79± 38 123± 61 ∼78 - 194 57± 29
Spsec 4 ± 0.5 3± 0.5 4± 0.5 6± 0.5 5± 0.5 3 - 5 4± 0.5
Rsec[R⊙] 0.33± 0.10 0.39± 0.08 0.33± 0.10 0.19± 0.10 0.26± 0.13 ∼0.26 - 0.39 0.33± 0.10
Rsec/RLsec 1.0 ± 0.6 0.3± 0.1 0.6± 0.2 0 6± 0.5 0.7± 0.5 ∼0.4 - 0.6 0.3± 0.1
i[◦] 8 ± 1 51± 7 53± 8 56± 11 70± 22 >∼ 50◦ , <∼ 75◦ 53 ± 18
Teff[k] 16100± 4400 16600± 1600 —± — 10400± 200 14100± 500 35800± 300 13300± 2800
logg 9.0 ± 0.7 8.5± 0.3 — ± — 8.0 ± 0.2 7.6± 0.1 7.40± 0.05 8.4± 0.7
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In addition, knowing thatMsec/Mwd = Kwd/Ksec = q, we can also estimate the

expected orbital velocity of the white dwarfKwd (Table 8.3). The predictedKwd ampli-

tudes could easily be measured, e.g. usingHST/COSobservations, and such measurements

would be very valuable to improve the overall constraints onthe system parameters of these

PCEBs. Finally, we can estimate the orbital separations andRoche-lobe radii of the sec-

ondary stars from Kepler’s third law and Eggleton’s (1983) expression

RLsec=
a0.49q2/3

0.6q2/3 + ln(1+q1/3)
(8.5)

8.4 Notes on individual systems

8.4.1 SDSS J0052–0053, a detached CV in the period gap?

SDSS J0052–0053 has the shortest orbital period, the smallest RV amplitude, and the low-

est inclination in our sample (Fig. 8.2, Table 8.3). Anotherintriguing feature of SDSS

J0052–0053 is that the Roche-lobe secondary radius and the secondary star radius overlap

within the errors (see Table 8.3). The SDSS (see Fig. 4.1 in Chapter 4) and Magellan spec-

tra certainly rule out ongoing mass transfer, i.e. that SDSSJ0052–0053 is a disguised CV.

Two possible scenarios could apply to the system. SDSS J0052–0053 could be either be a

pre-CV that is close to develop in a semi-detached configuration, or it could be a detached

CV in the 2–3 h period gap. Standard evolution models based onthe disrupted MB scenario

[e.g. Rappaport et al., 1983; Kolb, 1993; Howell et al., 2001] predict that CVs stop mass

transfer and the secondary star shrinks below its Roche-lobe radius once they evolve down

to Porb ≃ 3 h (see Chapter 1). Subsequently, these detached CVs evolvethrough the period

gap, until the companion star fills its Roche-lobe again atPorb ≃ 2 h. Population models

based on the disrupted MB hypothesis predict that the ratio of detached CVs to pre-CVs

(with appropriate companion star masses to (re-)initiate mass transfer atPorb ≃ 2 h) should

be>∼ 4 [Davis et al., 2008], hence a substantial number of such systems is expected to exist.

So far, only one other system with similar properties is known, HS 2237+8154 [Gänsicke

et al., 2004].

The white dwarfTeff in a typical CV about to enter the period gap is approximately

40000 K [Townsley & Gaensicke, 2008], and a rapid cool down isexpected once the CV
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becomes detached. SDSS J0052–0053 is located close to the upper edge of the period gap

(2.75 hours), and contains a∼16000 K white dwarf, which supports the idea of this object

being a detached CV, in which the white dwarfTeff has started (and might have finished) to

cool down. Inspecting the secondary mass and the mass ratio of this system we found that

both are also in agreement with the above hypothesis [Howellet al., 2001, see their Figures 5

and 6]. White dwarfs in CVs are expected to be rapid-rotating, and the measurement of the

white dwarf rotational velocity in SDSS J0052–0053 (e.g. through HST spectra) hence

would help in confirming whether this system is indeed a detached CV.

8.4.2 SDSS J1724+5620, a PCEB with a strong heating effect

SDSS J1724+5620 contains the hottest white dwarf among our sample of PCEBs, which

affects the determination of its system parameters in several ways. Firstly, irradiation heat-

ing the inner hemisphere of the companion will cause it to appear of earlier spectral type

than an unheated star of same mass. This effect is observed inthe analysis of the three

SDSS spectra available in DR6. The spectral decomposition types the companion star as

M3-4, and combining the flux scaling factor of the M star template and theSp−R relation

(see Chapter 7 for details) indicates an average distance ofdsec = 633± 144 pc. This is

roughly twice the distance implied from the model fit to the residual white dwarf spectrum,

dwd = 354±15 pc, indicating that the spectral type of the companion star determined from

the SDSS spectrum is too early for its actual mass and radius,as expected for being heated

by the white dwarf. Fixing the spectral type of the companionto M5, the spectral decompo-

sition results indsec= 330±150 pc, consistent with the distance based on the white dwarf

fit.

An additional complication is that the RV of the companion star was measured

from the Hα emission line, as the NaI absorption doublet was too weak in the individual

900 s SDSS spectra. The equivalent width of the Hα emission shows a noticeable variation

as a function of binary phase, with maximum equivalent with near the maximum in the

light curve, indicating that the Hα emission is concentrated on the inner hemisphere of

the companion star (Fig. 8.4). A phase offset of 0.046± 0.008 is observed between the

photometry and the Hα equivalent width, which we attribute to systematic problems in
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measuring the equivalent width of the Hα embedded in the photospheric absorption line

from the white dwarf, given the poor quality of the individual SDSS sub-spectra. As a

consequence of Hα predominantly originating on the inner hemisphere of the companion

star, the observedKsec is an underestimate of the true RV amplitude [e.g. Wade & Horne,

1988; Orosz et al., 1999; Vennes et al., 1999; Aungwerojwit et al., 2007]. The RV amplitude

of the secondary star’s centre of mass can be written as [Wade& Horne, 1988]:

Ksec,corr =
Ksec

1− (1+q)(∆R/a)
, (8.6)

where∆R is the displacement of the centre of light from the centre of mass.∆R= 0 implies

that the centre of light and the centre of mass coincide, whilst∆R= Rsecgives the maximum

possible displacement. If one assumes that the irradiated emission on the secondary is

distributed uniformly over the inner hemisphere, and that the contribution of the irradiation

is zero on its un-irradiated face, then∆R= (4/3π)Rsec [Wade & Horne, 1988; Orosz et al.,

1999; Vennes et al., 1999]. Assuming that the spectral type is in the range M3–5, different

combinations of secondary mass and radius, and RV amplitude, Ksec,corr, can then constrain

the orbital parameters of SDSS J1724+5620 (Table 8.3).

8.4.3 SDSS J0309-0101, SDSS J1138-0011 and SDSS J2241+0027: wide WDMS

binaries?

SDSS J0309-0101, SDSS J1138-0011 and SDSS J2241+0027 were flagged as PCEB can-

didates in Chapter 7 on the basis of a 3σ RV variation in between their different SDSS

spectra, as measured from either the Hα emission line or the NaI absorption doublet from

the companion star. However, the additional intermediate-resolution spectra taken for these

three objects (Table 4.2) do not show a significant RV variation (Table 8.1, Fig. 8.5). It is

therefore important to review the criterion that we used in Chapter 7 to identify PCEBs from

repeated SDSS spectroscopy in the light of two subtle changes.

On the one hand, we have slightly modified the procedure to fit the NaI absorption

doublet, as outlined in Sect. 8.2.1. By comparing the NaI DR5 RVs in Chapter 7 with those

obtained with the new procedure for the same spectra, we find an average difference of

5 kms−1 with a maximum difference of 10.5 kms−1. In all cases the measurements agree
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within the errors.

On the other hand, we were using DR5 spectra in Chapter 7, but the analysis carried

out here was done using DR6 spectra, which were processed with a different reduction

pipeline [Adelman-McCarthy et al., 2008]. A comparison between the DR5 and DR6 RV

values obtained in Chapter 7 and in this Chapter respectively (both measured following our

new procedure) provides in this case an average difference of 6.5 kms−1, with a maximum

of 22 kms−1. Again, the RV measurements agree, with the exception of a single spectrum,

within the errors.

The conclusion from comparing our two methods, and the two SDSS data releases,

is that the RV measurements obtained are in general consistent within their errors. How-

ever, the offsets can be sufficient to move a given system either way across our criterion

to identify PCEB candidates, being defined a 3σ RV between their SDSS spectra. This is

specifically the case for systems with either low-amplitudeRV variations, or faint systems

with noisy spectra. An additional note concerns the use of the Hα line as probe for RV

variations. In Chapter 7 we identified SDSS J0309-0101 and SDSS J2241+0027 as PCEB

candidates on the basis of a change in the Hα RVs between the available SDSS spectra.

However, the velocities obtained from the NaI doublet did not differ significantly. Inspect-

ing the spectra again confirms the results obtained in Chapter 7. This suggests that the

absorption lines from the secondary star are a more robust probe of its RV.

A somewhat speculative explanation for the shifts found from Hα RV measurements

is that the MS star is relatively rapidly rotating, and that the Hα emission is patchy over its

surface. A nice example of this effect is the rapidly rotating (Prot = 0.459 d) active M-dwarf

EY Dra, which displays Hα RV variations with a peak-to-peak amplitude of∼ 100kms−1

[Eibe, 1998]. In order to explain the Hα RV shifts of a few 10kms−1 observed in e.g.

SDSS J2241+0027, the companion star should be rotating witha period of∼ 1 d. According

to Cardini & Cassatella [2007], low-mass stars such as the companions in our PCEBs that

are a few Gyr old are expected to have rotational periods of the order of tens of days, which

is far too long to cause a significant Hα RV variation at the spectral resolution of the SDSS

spectra. However, sufficient angular momentum can be transferred to the secondary through

the action of stellar wind from the primary once it evolved through the AGB, and produce
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Figure 8.5: NaI SDSS RVs (triangles) along with the NaI RVs measured in this Chapter
(solid dots) of SDSS J0309-0101, SDSS J1138-0011 and SDSS J2241+0027. The data at
hand suggest that these three systems are wide WDMS binariesinstead of PCEBs.

(wind-induced) rapid rotating secondaries [Jeffries & Stevens, 1996]. In addition Cardini

& Cassatella’s study was based on single stars, and the rotation rates of the companion stars

in (wide) WDMS binaries is not well established.

8.5 PCEB evolution

Following Schreiber & Gänsicke [2003] we determine the cooling age and the future evo-

lution of the new PCEBs. The numbers we obtained from the theoretical analysis are sum-

marised in Table 8.4. We used the cooling tracks of Wood [1995] and find that most of the

PCEBs left the CE about 1−5× 108 years ago, the only exception being SDSS J1724+5620

which appears to be much younger. The estimated secondary masses are generally very

close to the fully convective boundary (for which we assumeMcc = 0.3M⊙), and the uncer-

tainties involved in the secondary mass determination are quite large (see Table 8.3). The

predicted evolution of all systems should therefore be considered highly uncertain as it is

not clear whether MB applies or not. We therefore give in Table 8.4 the values obtained for

two possible scenarios, disrupted MB [CMB, e.g. Verbunt & Zwaan, 1981], and AML given

only by GR. The effect of not knowing whether MB or only GR willdrive the evolution

of the systems is illustrated in Fig. 8.6, which shows the expected post-CE evolution for

SDSS J1152–0007 and SDSS J0246+0041 for both cases. The timestill needed to enter the

semi-detached CV configuration in the CMB scenario is shorter than the Hubble time for

all the systems (see Table 8.4), qualifying them as strong representatives for the progenitors
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Table 8.4: Parameters of the PCEBs derived from calculatingtheir post-CE evolution ac-
cording to Schreiber & Gänsicke [2003].tcool andtsd are the cooling age and the predicted
time until the system enters the semi-detached CV phase respectively. Psd denotes the zero-
age CV orbital period whilePCE is the orbital period the system had when it left the CE
phase. As discussed in the text and displayed in Fig 8.6, the predicted evolution depends
sensitively on the mass and the radius of the secondary star,in particular as the errors of all
estimated secondary masses overlap with the value assumed for the fully convective mass
limit. We therefore give values for the both scenarios.

CMB GR
Name Porb tcool Psd PCE tsd Psd PCE tsd

SDSS J [days] [years] [days] [days] [years] [days] [days] [years]
0052–0053 0.114 4.2×108 0.125 0.46 0.0 0.114 0.145 0.0
0246+0041 0.726 3.1×108 0.146 0.78 1.1×109 0.113 0.73 8.1×1010

0314–0111 0.263 — 0.12 — 3.7×107 0.11 — 6.2×109

1151–0007 0.142 5.0×108 0.12 0.55 2.7×106 0.07 0.15 1.8×109

1529+0020 0.165 1.3×108 0.11 0.41 4.7×106 0.10 0.17 2.5×109

1724+5620 0.333 3.2×106 0.12 0.34 6.1×107 0.11 0.33 1.7×1010

2339–0020 0.656 5.1×108 0.12 0.74 1.0×109 0.11 0.66 6.5×1010

of the current CV population.

Inspecting Table 8.4, the case of SDSS J0052–0053 is particularly interesting. The

estimated secondary radius is consistent with its Roche-lobe radius and the system is sup-

posed to be very close to the onset of mass transfer, which is reflected bytsd = 0 within

the accuracy of our calculations. Clearly, SDSS J0052–0053may be a detached CV in the

period gap, or a pre-CV that has almost completed its PCEB lifetime. According to CV pop-

ulation studies [Kolb, 1993], the number of detached CVs in the gap is approximately five

times higher than the number of CVs in the gap and the probability for SDSS J0052–0053

being a detached CV in the gap rather than a PCEB is∼ 80%. This result is a simple con-

sequence of the fact that all CVs with donor stars earlier than ∼M3 will become detached

CVs in the gap while only a rather small fraction of PCEBs, i.e. those with secondary stars

of spectral type∼M3.5–M4.5, produces CVs starting mass transfer in the period gap. This

is obviously only a rough estimate. A detailed population study by Davis et al. [2008, see

also Chapter 1] confirms that the ratio of detached CVs to pre-CVs within the CV period

gap is∼ 4− 13, depending on different assumptions of the CE ejection efficiency, initial

mass ratio distributions, and MB laws.
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8.6 Discussion

As outlined in Chapter 1, despite some recent progress our understanding of the CE phase

is still very limited. The classicalα-formalism that is based on a simple energy equation

seems to be unable to explain the observed existence of DDs with stellar components of

comparable masses and rather long orbital periods. This disagreement motivated Nelemans

et al. [2000] to develop an alternative prescription based on the conservation of angular

momentum, the so-calledγ-formalism. Binary population synthesis codes based on theα-

formalism as well as those assuming theγ-formalism predict the existence of a significant

number of PCEBs with orbital periods longer than a day. Usingtheα-formalism, Willems &

Kolb [2004] calculated the expected period distribution ofthe present-day WDMS binaries

in the Galaxy at the start of the WDMS binary phase. Their Fig.10 clearly shows that the

predicted PCEB distribution peaks aroundPorb ∼ 1 day, but also has a long tail of systems

with up to∼ 100 d. Theγ-formalism, on the other hand, predicts an increase of the number

of PCEBs with increasing orbital period up toPorb
>
∼100 days, i.e. theγ-formalism predicts

the existence of even more long orbital period (Porb > 1 day) PCEBs (see Chapter 1).

We have measured a total number of nine orbital periods alongthis chapter and the

paper by Schreiber et al. [2008]. All of them have short orbital periods of less than a day.

RV variations are much easier to identify in short orbital period systems, so our sample is

expected to be biased towards shorter orbital periods. The crucial question is whether our

observational finding, the paucity of PCEBs withPorb > 1 d, is whether the result of that

bias, or whether it reflects an intrinsic feature of the PCEB population. To answer this ques-

tion we performed the following analysis. First, we carriedout Monte-Carlo simulations

similar to those presented in Schreiber et al. [2008] but assuming a resolution of 15km/s,

corresponding to the typical error in the RV measurements from SDSS spectra. Clearly, as

shown in Fig. 8.7, the bias towards short orbital period systems is larger due to the lower

resolution of the SDSS spectra and, as a consequence, RV variations in multiple SDSS

spectra of systems withPorb > 10 days are more difficult to detect. However, the probability

to detect 3σ RV variations for systems in the orbital period range ofPorb ∼ 1−10 days still

is∼ 20−40%. Second, we assumed a uniform orbital period distribution and integrated the

3σ-detection probability (lowest dotted line) for systems with Porb ≤ 1 day and those with
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10 days> Porb > 1 day. In other words, we assume that there is no decrease for 10 days

> Porb > 1 day and calculate the total detection probability for 10 days > Porb > 1 day and

Porb ≤ 1 day. We find that if there was indeed no decrease, the fraction of PCEBs with

Porb > 1 day in our sample should be∼ 84% and the number of PCEBs withPorb > 1 day

among our nine systems should be∼ 7.6± 2.8. The result of our observations, i.e. no

system withPorb > 1 day among nine PCEBs disagrees with the hypothesis (i.e. there is no

decrease) by 2.7σ. This indicates that the measured lack of PCEBs withPorb > 1 day might

indeed be a feature of the intrinsic population of PCEBs. An independent (photometric)

study carried out by De Marco et al. [2008] showed that the orbital period distribution of 12

central stars of planetary nebulae is also concentrated to orbital periods shorter than 1 day,

with no observable periods longer than 3 days.

How do our results for PCEBs from SDSS compare with the sampleof all known

PCEBs? Figure 8.8 shows in gray the orbital period distribution of all 41 known PCEBs

consisting of a M or K-star plus a white dwarf from the latest version of the Ritter & Kolb

[2003] catalogue (V7.9), including also the seven new periods from this paper, and the

new recent discovery by Steinfadt et al. [2008, see also Pyrzas et al. [2008]]. As we are

interested in analysing the bias of the sample towards shorter orbital periods in the con-

text of detection probability, we superimpose in black a subsample of ten SDSS PCEBs,

identified from RV snapshots of SDSS WDMS binaries, representing a homogenous se-

lection mechanism (seven from the current Chapter, two fromSchreiber et al. 2008, one

[SDSS J112909.50+663704.4] from Raymond et al. 2003). So far, the period distributions

of the two subsets seem very similar, with a steep decrease ofthe number of systems at

Porb ∼ 1 day. The total sample of PCEBs contains only six systems with orbital periods

larger than one day (∼15% of the entire sample). This suggests that the number of PCEBs

decreases forPorb > 1 day, implying that theγ-formalism in its present form might not be

an adequate description of the CE phase, and that the CE efficiency in the energy equation

used in theα-formalism is perhaps smaller than assumed previously (lower efficiencies lead

to stronger shrinkage of binary separations). However, aPorb > 1 day PCEB can be a con-

sequence not only of efficient AML during the CE phase, but also a consequence of a fairly

large initial MS binary separation. Hence we can not excludethat the lack ofPorb > 1 day
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Figure 8.6: The predicted evolution of two PCEBs. The orbital period gap observed in
the orbital period distribution of CVs is shaded. As the secondary masses of SDSS J1151–
0007 and SDSS J0246+0041 are close to the fully convective boundary, we calculated the
evolution assuming classical MB and assuming only GR. Obviously, the calculated orbital
periods at the end of the CE phase (PCE), the evolutionary time scale, and the expected
zero-age CV orbital period (Psd) differ significantly.
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Figure 8.7: Monte-Carlo simulations of the detection probability of significant RV
variations assuming measurement accuracy of 6 kms−1, corresponding to our previous
VLT/FORS observations [Schreiber et al., 2008] and 15km/s,as appropriate for the SDSS
spectra (Chapter 7). The three lines correspond to 1, 2, or 3σ significance of the RV vari-
ation. Clearly, even the PCEB identification based on multiple SDSS spectra should be
sensitive to PCEBs with orbital periods of∼ 1−10 days.

systems is simply reflecting that there are few progenitors.In addition, one should bear

in mind that the previously known PCEBs have been discoveredby various methods, and

therefore do not form a representative sample [see Schreiber & Gänsicke, 2003, for de-

tails]. The sample of PCEBs selected in a homogeneous way from the SDSS is still small,

and the current sample of WDMS binaries from SDSS involves some selection effects, too

[Schreiber et al., 2007], impeding a definite conclusion at this point (see Chapter 10 though).

However, work is underway to enlarge the parameter space of the SDSS WDMS binaries

in terms of ages and secondary star masses [Schreiber et al.,2007], to increase the number

of PCEBs with orbital period measurements, and to model the remaining selection effects,

paving the way for a more quantitative assessment of CE and post-CE evolution.

8.7 Conclusions

We have presented a study of 11 PCEB previously identified candidates, and measured the

orbital periods of six and one of them from their NaI doublet RV variations and its differ-
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Figure 8.8: The period distribution of 41 PCEBs from the Ritter & Kolb [2003] (V7.9)
catalogue containing a white dwarf plus M or K companion star(gray). The 7 systems
studied in this work and the recent PCEB discovery SDSS J143547.87+373338.5 [Steinfadt
et al., 2008] are also included. In black is shown a subsampleof SDSS PCEBs obtained
from RV variation studies. Both subsamples illustrate a clear lack of systems at orbital
periods greater than 1 day. The 7 new systems from this work and the the two systems in
Schreiber et al. [2008] are indicated as tick marks in the topof the figure.

ential photometry, respectively. Combining theKsec velocity amplitudes with the results

from spectroscopic decomposition/fitting of their SDSS spectra, we constrained the binary

parameters of the seven systems for which we could determineorbital periods. No RV vari-

ations were detected for three PCEB candidates, suggestingthat they may be wide WDMS

binaries. We revisited the PCEB candidate selection of Chapter 7, and concluded that can-

didates with low amplitude velocity variations, noisy SDSSspectra, and RV shifts that only

show up in the Hα emission line definitely need additional follow-up spectroscopy for the

confirmation/rejection of their PCEB nature. Finally, we have had a first look at the period

distribution of PCEBs from SDSS identified from RV snapshotsof SDSS WDMS binaries,

and noted that none of the ten systems published so far have anorbital period> 1 d. Using

a Monte-Carlo simulation, we demonstrated that our method of finding PCEBs should be

efficient also for systems with periods> 1 d, and that, subject to small number statistics, it

appears that the PCEB period distribution peaks atPorb < 1 d. This is in agreement with the

period distribution of the previously known PCEBs, which represents a heterogenous mix

of systems identified by various different methods. In contrast, current binary population
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models predict a large number of PCEBs with orbital periods> 1 day in clear disagreement

with the currently observed sample. Additional effort is needed to improve the size of the

sample of known PCEBs, as well as to fully model its selectioneffects, but with∼ 1600

SDSS WDMS binaries to draw from (see Chapter 9), the outlook for more quantitative tests

of CE evolution seems promising.
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Chapter 9

A catalogue of WDMS binaries from

SDSS

9.1 Introduction

The theoretical understanding of both CE evolution and MB iscurrently very poorly con-

strained by observations (Chapter 1), and progress on this front is most likely to arise from

the analysis of a large sample of PCEBs that are well-understood in terms of their stellar

components. WDMS binaries appear most promising in that respect, as their stellar compo-

nents are relatively simple, and the SDSS (Chapter 6) offersthe possibility to dramatically

increase the number of WDMS binaries available for detailedfollow-up studies (Chapter 8).

Here I make use of the SDSS spectroscopic DR 6 data base to create a catalogue of

1591 WDMS binaries and candidates that were serendipitously observed. The structure of

the Chapter is as follows. In Sect. 9.2 I present our method ofidentifying WDMS binaries.

In Sect. 9.3 I estimate the completeness of the sample, and inSec. 9.4 I provide our final

catalogue. Using the spectral decomposition/model atmosphere developed in Chapter 7, I

derive white dwarf effective temperatures, surface gravities, masses, and companion star

spectral types and distances in Sect. 9.5. I also measure theNaI λλ 8183.27,8194.81 ab-

sorption doublet and/or the Hα emission RVs for 1062 objects. Finally in Sect. 9.6 I discuss

our results, and conclude the Chapter in Sect. 9.7.
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9.2 Identifying WDMS binaries in SDSS

9.2.1 Computational method

We have developed a procedure based onχ2 template fitting in order to automatically iden-

tify WDMS binary candidates from the SDSS DR6 spectroscopicdata base [Adelman-

McCarthy et al., 2008]. Our initial template set consisted of several dozen SDSS spectra of

confirmed WDMS binaries from Eisenstein et al. [2006] and Silvestri et al. [2007]. These

spectra were chosen to sample a wide variety of white dwarfs and companion stars, and

to be of high S/N. A set of representative templates is shown in Fig. 9.1. In addition, we

compiled a set of 17 single DA white dwarf template spectra from Eisenstein et al.’s (2006)

list, covering the entire observed range ofTeff and logg, as well as the M0-M9 Bochanski

et al. [2007] M-dwarf templates.

Each of these WDMS binary, white dwarf, and M-dwarf templates were then fitted

to the full 1.27 million spectra in DR6. In this process, the template spectrum was nor-

malised to the SDSS spectrum under scrutiny, and a reducedχ2 was calculated using the

errors of the two spectra added in quadrature. In practice, our fitting procedure produced for

each of the WDMS binary, white dwarf, and M-dwarf templates alist of spectrum identifier

(MJD-PLT-FIB), S/N of the spectrum, andχ2 for all SDSS DR6 spectra. For each of the

templates, we plottedχ2 as a function of S/N (see Fig 9.2), and defined a minimum value

of S/N, S/Nmin, and a linear relationχ2
max = a×S/N. We considered any spectrum with

χ2
spec< χ2

max and S/Nspec> S/Nmin (9.1)

as a WDMS binary, white dwarf, or M-dwarf (depending on the current template). S/Nmin

had to be set to avoid being swamped by spectra that are too noisy for any definite iden-

tification, and the S/N-dependent form ofχ2
max accounts for the increase ofχ2 for higher

values of S/N. Both constraints were defined individually for each of the templates, as the

different spectral shapes resulted in a large spread ofχ2 distributions. The (χ2, S/N) planes

obtained from fitting the spectra of a single spectral plate (640 spectra) is shown for two

different WDMS binary templates in Fig. 9.2.

After a first run through the DR6 spectra, we complemented thetemplate set with

the spectra of a number of newly identified WDMS binaries, andre-run the fitting for those
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Figure 9.1: Six examples of previously known WDMS binaries used in this Chapter as
WDMS binary templates. SDSS names and MJD-PLT-FIB identifiers are indicated for
each of them.
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Figure 9.2: χ2 − S/N plane obtained fitting two of our WDMS binary templates
(SDSS J103121.97+202315.1, left and SDSS J204431.44-061440.2, right) to the 640 ob-
jects contained in the SDSS spectral plate PLT = 2295. Objects falling in the area defined
by χ2

spec< a×S/N and S/Nspec> S/Nmin were considered WDMS binary candidates. Left
panel: S/Nmin = 10 andχ2

max = 0.7×S/N, no WDMS binary candidate is identified. Right
panel: S/Nmin = 20 andχ2

max = 0.6×S/N, one WDMS binary candidate is found.

new templates again. That process was repeated until no new WDMS binary candidates

were found – at which point we had used a total of 163 differentWDMS binary template

spectra.

Even though the above method efficiently identifies WDMS binary candidates among

the spectra in DR6, the choice ofχ2
max and S/Nmin alone does not avoid completely the fil-

tering of other astronomical objects, such as quasars, MS stars, and galaxies. In addition,

for templates that are dominated by the white dwarf (M-dwarf), the list of candidates will

unavoidably contain a substantial number of single white dwarfs (M-dwarfs). Hence we

first visually inspected all WDMS binary candidates, as wellas the white dwarf and M-type

star subsamples (a total of∼ 70000 spectra), and removed those objects that were not of our

interest, i.e. neither WDMS binary, white dwarf, or M-dwarfcandidates. The final result of

the template fitting were a list of 1484 WDMS binary candidates, 8368 single white dwarf

candidates, and 15379 single M-dwarf candidates.

9.2.2 Red and blue excess in SDSS spectra: help from GALEX andUKIDSS

While the template fitting proved to be a robust method to find WDMS binaries in which

both stellar components contribute clearly visible amounts of flux, the procedure is prone
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to mis-classify white-dwarf dominated WDMS binaries as single white dwarfs, and M-

dwarf dominated WDMS binaries as single M-dwarfs. We therefore decided to probe more

specifically for the presence of excess flux at the red (blue) end of the SDSS spectra in

objects classified initially as single white dwarfs (M-dwarfs).

For the search of red flux excess in single white dwarf candidates, we fitted synthetic

white dwarf spectra computed with the code described by Koester et al. [2005] to the SDSS

spectra, and then calculated the reducedχ2 over the wavelength ranges 4000−7000Å (χ2
b)

and 7000− 9000Å (χ2
r ). Objects withχ2

r /χ2
b > 1.5 were “promoted” from single white

dwarf candidates to WDMS binary candidates.

The search for blue flux excess proceeded in an analogous fashion for the single M-

dwarf candidates, only that we used the set of high S/N M-dwarf templates from Chapter 7

instead of model spectra, and calculated the reducedχ2 over the wavelength ranges 4000−

5000Å and 7000− 9000Å. Objects withχ2
b/χ2

r > 1.5 were “promoted” from single M-

dwarf candidates to WDMS binary candidates.

On the left and right top panels of Fig. 9.3 we show the SDSS spectra (black line)

and SDSS magnitudes (red dots) of SDSSJ 132925.21+ 123025.5and SDSSJ 131928.80+

580634.2, along with the best-fit white dwarf model and M-dwarf template (red lines, mid-

dle panels). The two objects were initially classified by ourtemplate fitting procedure as

single white dwarf and single M star candidates, respectively, but “promoted” to WDMS

binary candidates by the flux excess measurement as described above. The flux excess is

more obvious when plottingFν (middle left panel) instead ofFλ (top left panel). However,

in several cases, the detection of blue or red flux excess is rather marginal.

As a final step in our search for WDMS binaries, we have cross-correlated our

entire list of above identified WDMS binary candidates with the GALEX [Galaxy Evolu-

tion Explorer, Martin et al., 2005; Morrissey et al., 2005] data release 4, providing near-

and far-ultraviolet magnitudes, and with the data release 4of UKIDSS [UKIRT Infrared

Sky Survey, Dye et al., 2006; Hewett et al., 2006; Lawrence etal., 2007], providing in-

frared y,J,H,K magnitudes. We then inspected the observed ultraviolet-optical spectral

energy distribution of all secondary star dominated WDMS binary candidates with avail-

able GALEX magnitudes, and the optical-infrared spectral energy distribution of all white
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Figure 9.3: Top left: SDSS spectrum of SDSSJ 132925.21+123025.5, a WDMS candi-
date initially catalogued as single DA white dwarf. The red dots represent the SDSS
magnitudes. Middle left panel: the best white dwarf model fitis superimposed in red,
unambiguously identifying the red excess of the binary. Bottom left panel: SDSS and
UKIDSS magnitudes superimposed to the SDSS spectrum. Again, the UKIDSS magni-
tudes clearly show the presence of a low mass companion. Top right panel: the same for
SDSSJ 131928.80+580634.2, an initially catalogued early M-type star. Middle and bottom
panels: the best M-type fit and the near- and far-ultravioletGALEX magnitudes clearly
confirm the presence of a white dwarf primary, respectively.The red and blue straight
lines represent the white dwarf solutions (red for the hot, blue for the cold) obtained from
decomposing/fitting the spectrum (see Sect 9.5).
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dwarf dominated WDMS binary candidates with available UKIDSS magnitudes. Objects

where a clear ultraviolet or infrared excess was detected were then included in our WDMS

binary sample.

For SDSSJ 132925.21+123025.5, the UKIDSS magnitudes unambiguously confirm

the existence of a low-mass companion (bottom left panel of Fig. 9.3). Similarly, the

GALEX near- and far-ultraviolet magnitudes clearly confirmthe presence of a white dwarf

companion in SDSSJ 131928.80+580634.2 (bottom right panelof Fig. 9.3).

9.2.3 SDSS images

As a final check on the nature of the WDMS binary candidates, weinspected their SDSS

DR6 images for morphological problems, and found primarilytwo types of issues.

Occasionally, single white dwarfs (M-dwarfs) may be located close to very bright

M-dwarfs (white dwarfs or A-stars), which will cause scattered light to enter the spectro-

scopic fibre, and result in an (apparent) two-component spectrum. A spectacular example

is SDSSJ 073531.86+315015.2 (left panels of Fig. 9.4), where the SDSS spectrum clearly

exhibits an M-dwarf at red wavelengths, and a blue componentwith strong Balmer lines in

the blue – the SDSS image reveals that this is a single M-dwarfat a distance of 12 arcmin

of Castor A/B – twoV = 2−3 A-stars. The SDSS magnitudes (red dots) are superimposed

to the SDSS spectrum (black) and are consistent with those ofa single red star. In addition,

single M-dwarfs are also likely to be found superimposed with single early-type stars in the

same image. An example is SDSSJ 162517.58+140134.6 (see middle top panel of Fig. 9.4).

At first glance one could be tempted to consider a resolved WDMS binary pair. Neverthe-

less, the SDSS spectrum (middle bottom panel of the same figure) shows the typical Balmer

lines of an A star in the blue, while at redder wavelengths thetypical spectral features of a

low-mass star can be detected. This implies that these two systems are superimposed stars

in the same image rather than being a resolved WDMS binary pair (see below).

SDSS images can also help identifying WDMS binaries among our sample that

are spatially-resolved in the SDSS images, but close enoughthat flux from both stars will

enter into the spectroscopic fibre. In such cases, the SDSS magnitudes are often discrepant

with the flux-calibrated SDSS spectrum, and/or have large errors as consequence from the
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Figure 9.4: Top left panel: SDSS image of SDSSJ 073531.86+315015.2 (5 arcmin scale), a single red star initially considered as a WDMS
binary candidate. Bottom left panel: SDSS magnitudes (red dots) and spectrum (black line) of the same system. The light from the saturated
bright star (Castor A/B) is also dispersed in the spectrum. The magnitudes are consistent with a single red star. Top middle panel: SDSS image
of SDSSJ 162517.58+140134.6 (5 arcsec scale). The image suggests a resolved WDMS binary pair. Middle bottom panel: the detection of
the Balmer lines typical of an A star in the blue, together with the typical spectral features of a low-mass MS star in the red (black solid
line), indicate that these are two single stars superimposed in the same image rather than a resolved WDMS binary pair. SDSS magnitudes
are indicated with red dots, and are consistent with those ofa low-mass star. Top right panel: SDSS image of SDSSJ 025306.37+001329.2
(5 arcsec scale), a resolved WDMS binary in our sample. Bottom right panel: SDSS magnitudes (red dots) and spectrum (black line) of
the same system. Whilst the SDSS spectrum clearly shows bothcomponents, the SDSS magnitude errors are untypically large (see text for
details).
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deblending applied by the photometric pipeline. Figure. 9.4 (top right panel) shows the

SDSS image of SDSSJ 025306.37+001329.2, which clearly reveals a spatially-resolved pair

of red and blue stars. The SDSS spectrum of SDSSJ 025306.37+001329.2 contains the

typical signatures of a WDMS binary, i.e. broad Balmer linesfrom the white dwarf and

TiO absorption bands from the M-dwarf, however, the errors on the SDSS magnitudes are

untypically large, and do not match well the flux calibrated SDSS spectrum.

9.2.4 Cross-checks with previous WDMS binary catalogues

A total number of 1484 WDMS binary candidates were identifiedin Sect. 9.2.1. From the

analysis carried out in Sec. 9.2.2 and Sec. 9.2.3 we have increased the number of systems

to 1552 WDMS candidates among the spectroscopic SDSS DR6 data base1. In order to

evaluate the effectiveness of our procedure we compared ourresults to those presented in

four previously published lists of WDMS binaries from SDSS,namely van den Besselaar

et al. [2005], Eisenstein et al. [2006], Silvestri et al. [2007] (which includes Raymond et al.

[2003] as a subset), and Augusteijn et al. [2008].

A comparison to the 13 WDMS binaries containing DB white dwarfs and the 2

WDMS binaries containing DC white dwarfs presented in van den Besselaar et al. [2005]

revealed that our routine has successfully identified all these systems.

The WDMS binary sample presented in Eisenstein et al. [2006]overlaps almost

completely with the WDMS binary catalogue provided in Silvestri et al. [2007] (see below),

except for only ten objects. A comparison between the WDMS binary sample presented

in this Chapter and these ten systems showed that we have successfully identified these

objects.

We inspected the catalogue of Silvestri et al. [2007], and found that 995 systems

are in common between the two works. We carefully inspected the remaining 230 systems

from Silvestri et al. [2007]2 and concluded that 208 of them, i.e.∼17% of the total sys-

tems, were inconsistent with the acclaimed WDMS binary nature, either because of their

194 and 89 WDMS binary candidates were identified to show blue and red excess respectively in their
spectra. 115 WDMS binary candidates were removed after inspecting their SDSS images.

2Silvestri et al. [2007] claim that their catalogue contains1253 objects. Note though that only 1228 spectra
(i.e. 1225 objects) are listed in their electronic edition of the paper.
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spectra, or because of their morphology in the SDSS images. Two examples are SDSSJ

032428.78-004613.8 (QSO) and SDSSJ J114334.70+455134.2 (galaxy). 22 objects were

WDMS binaries in which one of the two components dominates the spectrum, and that

were missed by our search algorithm. Those 22 WDMS binaries were consequently added

to our sample.

Recently Augusteijn et al. [2008] provided a sample of 651 WDMS binary can-

didates obtained from combined colour and proper motion selection criteria in SDSS, of

which they inspected 95 spectra from DR5. We cross-correlated their full list of 651 ob-

jects against the DR6 spectroscopic data base, and found spectra for 130 of them (176 SDSS

spectra). We compared this sample with our systems and foundthat all but 20 objects in

Augusteijn et al. [2008] were in our list. Four of them were WDMS binaries containing

cold white dwarfs, and were consequently missed by our procedure. These four systems

were added to our sample. The remaining 16 systems were nine QSOs, three CVs, one F

star, one M-dwarf, one DA white dwarf, and one DC white dwarf [Augusteijn et al., 2008].

In summary, the comparison with previous works shows that our WDMS binary

selection method is robust and efficient in recovering WDMS binaries identified both from

their spectra [Silvestri et al., 2007], as well as from theirphotometric/astrometric properties

[Augusteijn et al., 2008].

9.3 Completeness of the sample

In this section, we will briefly investigate both the intrinsic completeness of our catalogue

(i.e. what fraction of the WDMS binaries that are contained in the DR6 spectroscopic data

base were found by our algorithm), as well as the extrinsic completeness (i.e. what fraction

of WDMS binaries were spectroscopically observed by SDSS).

Figure. 9.5 shows the distribution of our WDMS binaries (excluding the systems

classified only as WDMS binary candidates) as black dots in the (u−g,g− r), (g− r, r − i),

and(r − i, i − z) colour-colour planes. Stellar sources are shown as gray dots, and QSOs

in light gray. Highlighted in light blue are the white dwarf,A-star and WDMS binary

exclusion regions that were defined by Richards et al. [2002]for the QSO fibre allocation
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algorithm with the aim to maximise the return of the QSO survey within SDSS. For the

analysis below, we adopted the WDMS binary exclusion regionof Richards et al. [2002] in

the (g− r, r − i) and (r − i, i−z) planes. In addition, we defined two small rectangular boxes

in the(g− r, r − i) plane, one in the A-star exclusion region (Box 1,−0.5 < g− r < −0.2,

0 < r − i < 0.2), and one located in between the A-star exclusion region and the WDMS

binary exclusion region (Box 2,−0.3 < g− r < 0.1, 0.3 < r − i < 0.5). We then visually

classified all SDSS point-source spectra of objects withg≤ 20 with colours in the WDMS

binary exclusion region, Box 1, and Box 2. We also used the casjobs interface to the SDSS

data base to determine the number of photometric SDSS point sources withg≤ 20 located

within each of these boxes, as well as the fraction of those point sources that have SDSS

spectra.

The Richards et al. [2002] WDMS binary exclusion box. We found 7099 SDSS point

sources objects inside this area, of which 572 with available SDSS spectra. Of those 572,

we identified 386 as WDMS binaries. The large number of WDMS binaries is not surprising

since this area was defined by Richards et al. [2002] as a colour cut for this kind of system.

The population of the remaining objects was dominated by single M stars. We also detected

four CVs and eight QSOs. Cross-checking the 386 WDMS binaries found here against the

list of systems identified in Sect. 9.2 showed that only nine WDMS binaries were missed

by our template matching algorithm. Among these nine objects, one contains a DA white

dwarf, one a DC white dwarf, the rest contain cool (probably DC) white dwarfs, and in all

cases the spectra are dominated by the emission of their companion stars. Being close to the

MS locus in colour space, these systems are a challenge for every WDMS binary selection,

including our method.

Analysis in box 1. 708 SDSS point sources were found inside this area, 247 of them

with available spectra. Among these 247 objects, 67 were WDMS binaries, the rest of

them mainly QSOs, with a few single white dwarfs, early-typeMS stars, and two CVs.

All 67 WDMS binaries found in this box were already identifiedby our search algorithm

(Sect. 9.2).

Analysis in box 2. This area contained 6689 SDSS point sources. SDSS spectroscopy is

available for 2280 of them, of which 135 are WDMS binaries. Asexpected from the stud-
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Figure 9.5: From left to right the (u−g,g− r), (g− r,r − i) and (r − i,i − z) colour diagrams for the WDMS binaries in our sample (black;
excluded are the WDMS binary candidates), stellar sources (dark ray), and QSOs (light gray). Blue boxes represent the loci of single white
dwarfs, single A main sequence stars and WDMS binaries according to Richards et al. [2002]. The regions within the two redboxes in the
(g− r,r − i) plane, and the WDMS binary exclusion region of Richards et al. [2002] in the (g− r,r − i) and (r − i,i − z) planes are used to
estimate the completeness of our WDMS binary sample (see Sect. 9.3).
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ied colour space area, the vast majority of the remaining objects were again QSOs, with the

exception of a few single MS stars, and one CV. Only four of theWDMS binaries identi-

fied here were not included in our catalogue: SDSS J110539.77+250628.6, which is in fact

the semi-detached magnetic cataclysmic variable ST LMi observed during a deep low state;

SDSS J124959.76+035726.6, a typical WDMS binary previously listed as a cataclysmic

variable candidate by Szkody et al. [2004]; SDSS J150954.40+243449.3, which has a bro-

ken SDSS spectrum; and SDSS J204218.52-065638.4, a spatially-resolved MS dominated

WDMS binary.

The WDMS binaries found in the above exercise were added to our sample.

From the above study two main conclusions arise. Firstly, asexpected, the spectro-

scopic completeness in SDSS is dramatically larger in QSO dominated colour space areas,

27%, 34% in Box 1 and Box 2, respectively, compared to only 8% in the WDMS binary

exclusion box of Richards et al. [2002]. The low completeness in the WDMS binary exclu-

sion box, coupled with the high fraction of WDMS binaries among all objects in this region

in colour space (67.5%), implies that the number of SDSS WDMS binaries could bedra-

matically increased to∼ 4800 binaries by additional identification spectroscopy within this

region in colour-colour space. Secondly, only 13 new WDMS binaries have been identified,

four in Box 2 and nine in the WDMS binary exclusion box, which implies a completeness

of our search algorithm of 100% in Box 1, 97% in Box 2, and 97.5%in the WDMS binary

exclusion region, and we conclude that we have identified>∼ 98% of the WDMS binaries

contained in the SDSS DR6 spectroscopic data base.

9.4 The final catalogue

From the analysis provided in Sec. 9.2 and Sec. 9.3 a total number of 1591 WDMS binaries

have been identified. We refer to this list as our catalogue ofWDMS binaries and can-

didates. The 1591 WDMS binaries are listed in Table 9.1, together with their coordinates

and GALEX DR4, SDSS DR6 and UKIDSS DR4 magnitudes3. GALEX and UKIDSS

magnitudes are available for a total number of 1320 and 465 WDMS binaries respectively.

3On occasions multiple SDSS and GALEX magnitudes are available for the same system. In these cases
we have averaged the magnitudes and obtained a single value for each magnitude.
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Table 9.1: The complete catalogue. Coordinates, near- and far-ultraviolet,ugriz andyJHK GALEX, SDSS and UKIDSS magnitudes for the
1591 WDMS binaries and candidates are also included. Due to the large number of systems and due to space limitation of thisthesis, the
entire table (including also the photometric errors) is notpresented here, and will be provided in the forthcoming submission of the paper.
We use “-” to indicate that no magnitude is available.

SDSS J ra[◦] dec[◦] nuv f uv u g r i z y J H K
000152.09+000644.7 0.467040 0.112420 18.45 17.90 19.03 18.61 17.94 17.50 17.25 16.51 16.05 15.40 15.28
000442.00–002011.6 1.175000 -0.336560 - - 23.72 20.38 19.13 18.65 18.28 - - - -
000611.94+003446.5 1.549750 0.579580 21.78 - 21.38 20.92 20.12 19.00 18.38 17.53 17.05 16.58 16.20
001029.87+003126.2 2.624460 0.523940 20.17 19.96 21.92 20.85 19.97 19.00 18.42 17.65 17.14 16.52 16.36
001247.18+001048.7 3.196580 0.180190 20.50 20.71 20.73 20.21 19.66 18.63 17.96 17.09 16.60 16.13 -
001339.20+001924.3 3.413330 0.323420 16.41 19.73 15.94 15.56 15.55 15.63 15.89 - - - -
001359.39–110838.6 3.497493 -11.144057 17.77 17.42 18.3018.43 18.31 20.75 22.82 - - - -
001549.02+010937.3 3.954250 1.160360 20.97 20.68 21.23 20.86 20.60 19.85 19.27 18.46 17.86 17.45 17.12
001726.63–002451.1 4.360960 -0.414190 19.71 20.30 19.67 19.28 19.02 18.18 17.54 16.60 16.07 15.56 -
001733.59+004030.4 4.389960 0.675110 20.83 22.43 22.09 20.79 19.58 18.17 17.38 16.37 15.84 15.27 14.97
001749.24–000955.3 4.455170 -0.165360 15.87 15.40 16.56 16.86 17.03 16.78 16.47 15.75 15.33 14.76 14.56
001853.79+005021.5 4.724120 0.839310 20.46 20.27 21.00 20.38 19.64 18.80 18.35 17.52 17.09 16.51 16.27
001855.19+002134.5 4.729960 0.359580 22.42 22.12 21.60 20.60 19.87 18.97 18.38 17.54 17.09 - -
002143.78–001507.9 5.432420 -0.252190 22.20 - 22.58 19.6318.39 17.02 16.30 15.40 14.87 14.31 14.05
... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Table 9.2: The catalogue divided into the different WDMS-type classes defined in Sec. 9.4.

type number type number
DA/M 1172 DA/M: 43
DB/M 45 DB/M: 1
DC/M 34 DA:/K 5
DA/K 48 DA/K: 8
DB/K 3 Mag/M 1
WD/M 133 (WD/M) 32
WD/K 26 (WD/K) 2
WD/M: 1 (DA/M) 4
DA:/M 27 (DC/M) 1
DB:/M 1 (DA/K) 1
DC:/M 3

In Table 9.2 we divide the classification of our systems according to their binary

components. For the white dwarfs we use the flags DA, DB, DC, WDwhen the white dwarf

type is unknown, and Mag when the white dwarf is magnetic. Forthe secondary stars we use

the flags M or K to refer to M-dwarf and K-dwarf companions respectively. In cases where

the S/N of the spectra are relatively low it might become difficult to distinguish between

the different types of white dwarfs and/or low-mass star companions outlined above. In

these cases we quote the flag followed by a colon. Finally, we represent in brackets our

WDMS binary candidates. On the one hand we consider WDMS candidates those systems

which are faint and are associated to very low S/N in their SDSS spectra. On the other

hand, in some cases the detection of blue or red excess in Sect. 9.2.2 is rather marginal, and

no GALEX (UKIDSS) magnitudes are available to confirm the existence of a white dwarf

(low-mass star). As we are not entirely sure of the existenceof the two binary components

in these cases, however theχ2 analysis (Sec. 9.2.2) is in favour of this hypothesis and the

SDSS images (Sec. 9.2.3) do not show any particular morphological problems, we consider

these systems as WDMS binary candidates.

9.5 Stellar parameters, Distances and Radial Velocities

In Chapter 7 we developed a spectral decomposing/fitting technique for the analysis of

WDMS binaries with SDSS spectroscopy. This procedure is also used in this Chapter to
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determine the stellar parameters of the systems in our catalogue. However two new modifi-

cations are included.

On the one hand we have additionally used as DB templates a compiled library of

222 high S/N DB white dwarfs from SDSS DR 4 covering the entireobserved range of

Teff, and have consequently estimated effective temperatures for the DB white dwarfs in our

catalogue. In this case, the fitting procedure follows just one step, in which the WDMS

binary spectrum is decomposed and fitted in a same fashion as in Chapter 7, but using the

above DB templates instead of DA templates. The estimated effective temperature and the

associated error of the white dwarf component correspond then to those of the best fit DB

template. The temperatures of the DB templates are taken from Eisenstein et al. [2006]’s

table.

On the other hand we have used the near- and far-ultraviolet GALEX magnitudes,

when available, to constrain the effective temperatures ofour DA white dwarfs. A clear

example of this is SDSSJ 082609.72+194126.3. In Fig. 9.6 we show the spectral decompo-

sition of this system into its white dwarf and MS components,in Fig. 9.7 the white dwarf

model fit to its white dwarf residual spectrum. This is a clearexample where the fit to the

whole spectrum falls exactly on the line of maximum equivalent width (Eq. 7.1), and con-

sequently the solution given by the line profile fit is not wellconstrained. In the top panel

of Fig. 9.8 we superimpose the cold (blue) and hot (red) whitedwarf solutions from the

fitting routine, as well as the best white dwarf models and M star template fits (black) to the

spectrum of SDSSJ 082609.72+194126.3 (gray). In the bottompanel of the same figure the

GALEX magnitudes (red dots), clearly constrain the white dwarf solution (the cold in this

case) and solve the ambiguity found in our fitting procedure for this system.

Distances to the WDMS binaries were also estimated here fromthe best-fit flux

scaling factors of the two spectral components, the white dwarf and the MS, respectively

providing two independent estimates of the distances for each system (see Chapter 7 for

details). The stellar parameters and distances of the 1591 WDMS binaries in our catalogue

are presented in Table 9.3.

We have also measured the RVs of 1062 systems with clearly pronounced Hα emis-

sion and/or NaI λλ 8183.27,8194.81 absorption doublet in their SDSS spectra.For this, we
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Table 9.3: White dwarf masses, effective temperatures, surface gravities, spectral types and distances of the 1591 WDMS binaries in our
catalogue, as determined from spectral modelling. Due to space limitations the stellar parameters for the remaining WDMS binaries, as well
as notes for individual systems will be provided in the forthcoming submission of the paper. We use the flagse, s anda, and “re” for those
systems which have been studied previously by Eisenstein etal. [2006], Silvestri et al. [2007] and Augusteijn et al. [2008], and which are
resolved WDMS binary pairs, respectively. Again, we indicate that no stellar parameters are measured with “-”.
SDSS J type MJD PLT FIB Teff[k] err log g err Mwd[MJ] err dwd[pc] err Sp dsec[pc] err flag
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
001359.39–110838.6 DA/M 52138 652 203 17707 1294 7.83 0.29 0.53 0.16 349 61 - 354 48 re
001359.39–110838.6 DA/M 52138 652 203 11302 596 8.67 0.27 1.02 0.15 114 24 - 354 48 re
001549.02+010937.3 DA/M 52518 687 455 - - - - - - - - 3 1590 313 s/e
001549.02+010937.3 DA/M 52518 687 455 - - - - - - - - 3 1590 313 s/e
001726.63–002451.1 DA/M 52559 1118 280 12828 2911 7.95 0.530.58 0.33 371 116 4 477 141 s/e
001726.63–002451.1 DA/M 52559 1118 280 15246 1139 7.76 0.260.48 0.14 486 76 4 477 141 s/e
001726.63–002451.2 DA/M 52518 687 153 13588 2300 8.11 0.43 0.68 0.27 374 104 4 503 148 s/e
001726.63–002451.2 DA/M 52518 687 153 15246 1585 8.02 0.30 0.63 0.19 427 83 4 503 148 s/e
001733.59+004030.4 DA/M 51795 389 614 10793 2980 7.26 1.12 0.29 0.56 673 356 4 469 138 s/re
001733.59+004030.4 DA/M 51795 389 614 13432 3261 6.96 1.24 0.23 0.51 1013 580 4 469 138 s
001749.24–000955.3 DA/M 52518 687 109 60000 3121 7.42 0.17 0.50 0.05 748 105 2 624 149 a/s/e
001749.24–000955.3 DA/M 52518 687 109 6969 223 9.50 0.29 1.46 0.11 9 7 2 624 149 a/s/e
001749.24–000955.3 DA/M 51795 389 112 65789 4192 8.12 0.18 0.78 0.10 419 59 2 570 136 a/s/e
001749.24–000955.3 DA/M 51795 389 112 6000 56 9.50 0.06 1.46 - 6 1 2 570 136 a/s/e
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Figure 9.6: Two-component fits to SDSSJ 082609.72+194126.3, a WDMS binary in our
sample. The top panel shows the WDMS binary spectrum as blackline, and the two tem-
plates, white dwarf and M-dwarf, as dotted lines. The bottompanel shows the residuals
from the fit. The SDSS spectrum identifiers MJD, PLT and FIB aregiven in the plots below
the object names.

have followed the method described in Chapter 8 for the NaI doublet, and in Chapter 7 for

Hα. The results are provided in Table 9.4.

9.6 Discussion

9.6.1 Identification of four new PCEB candidates

The detection of RV variations identifies the object as a close WDMS binary, or PCEB

candidate (Chapter 7). In Figures 9.9 and 9.10 we show the NaI doublet and Hα emission

RV variations measured in Sect. 9.5 for nine and 16 systems, respectively displaying more

than 3σ RV variations. A comparison with Figures 7.2 and 7.3 in Chapter 7 drives the

attention to two different issues.

On the one hand, four NaI doublet close binary candidates identified in Chapter 7

do not show more than 3σ RV variation in this Chapter: SDSS J113800.35-001144.5, SDSS

J115156.94-000725.5, SDSS J173727.27+540352.2, and SDSSJ234534.50- 001453.7. We

used here the method described in Chapter 8 to measure the NaI doublet RVs, and conse-
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Figure 9.7: Spectral model fit to the white dwarf component ofSDSSJ 082609.72+194126.3
obtained after subtracting the best-fit M-dwarf template. Top left panel: best-fit (black
lines) to the normalised Hβ to Hε (gray lines, top to bottom) line profiles. Top right panels:
3, 5, and 10σ χ2 contour plots in theTeff − logg plane. The black contours refer to the
best line profile fit, the red contours to the fit of the whole spectrum. The dashed line
indicates the occurrence of maximum Hβ equivalent width. The best “hot” and “cold” line
profile solutions are indicated by black dots, the best fit to the whole spectrum is indicated
by a red dot. Bottom panel: the residual white dwarf spectra resulting from the spectral
decomposition and their flux errors (gray lines) along with the best-fit white dwarf model
(black line) and the residuals of the fit (gray line, bottom).
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Table 9.4: RVs measured from the NaI λλ 8183.27,8194.81 doublet and the Hα emission
for the systems in our catalogue. Due to space limitations ofthis thesis the complete table
will be included in the forthcoming submission of the paper.In the last column we quote
with “y” and “n” those RV values obtained from spectra that have been, and have not been
combined from different sub-spectra (see Chapter 6), respectively. We use “-” to indicate
that no RV is available.

SDSS J HJD RV (Na) err RV (Hα) err sub.?
245 [kms−1] [kms−1]

000152.09+000644.7 1791.8092 0.7 18.0 24.2 13.4 n
001247.18+001048.7 2519.8962 - - 12.3 15.6 n
001247.18+001048.7 2518.9219 -14.3 28.4 30.6 10.3 n
001359.39–110838.6 2138.3933 28.9 16.9 - - y
001726.64–002451.2 2559.7852 -33.7 11.9 -30.1 5.5 n
001726.64–002451.2 2518.9219 -19.8 14.7 -26.5 6.2 n
001733.59+004030.4 1794.7737 -3.7 12.2 - - n
001749.25–000955.4 2518.9218 -18.3 14.2 -3.2 5.9 n
001749.25–000955.4 1794.7737 -36.6 11.8 -22.8 1.6 n
001855.20+002134.5 1816.8000 41.4 25.5 - - n
001855.20+002134.5 1893.0883 15.0 19.8 - - y
002143.78–001507.9 2581.7411 1.5 10.8 - - n
002143.78–001507.9 2581.7411 1.5 10.8 - - n
002157.91-110331.6 3318.6951 148.4 12.2 -9.1 8.8 y
... ... ... ... ... ... ...

Table 9.5: Upper limits to the orbital periods of the four PCEB candidates found in
Sect. 9.6.1. White dwarf masses are taken from Table 9.3 except for SDSS J2346+4340,
where we assume of mass of 0.5 MJ (see Fig. 9.11). Secondary star masses are estimated
from Table 7.2. Ksec values are obtained from Table 9.4, where we use the NaI RVs for
SDSS J2346+4340.

SDSS J 074329.62 081942.67 231814.73 234638.76
+283528.0 +542608.1 +003430.3 +434041.7

Porb[d] 121 19 5 2
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Figure 9.8: Top: in blue the cold white dwarf solution obtained in Fig. 9.7 plus the best-fit
M-dwarf template obtained in Fig. 9.6; in red the same but forthe hot solution; in gray the
SDSS spectrum of SDSSJ 082609.72+194126.3; in black dottedline the best-fit M-dwarf
template, and the white dwarf models that satisfy the cold and hot solutions in Fig. 9.7.
Bottom: the same but including the near- and far-ultraviolet GALEX magnitudes of this
object (red dots).

quently some RV offsets are expected when comparing the RV values to those measured in

Chapter 7. As outlined in Chapter 8, the offsets can be sufficient to move a given system ei-

ther way across our criterion to identify PCEB candidates. It is worth mentioning that SDSS

J113800.35-001144.5 has been studied in detail in Chapter 8, and indeed no significant RV

variation has been detected for this system. In addition SDSS J173727.27+540352.2 and

SDSSJ 234534.50-001453.7 were flagged as PCEB candidates inChapter 7 due to the very

low S/N in their spectra.

On the other hand, we have identified four new systems which show more than

3σ RV variation: SDSS J0743+2835, SDSS J0819+5426, SDSS J2318+0034, and SDSS

J2346+4340 (see complete coordinates in Table 9.5). SDSS J0743+2835 and SDSS J2318

+0034 display significant RV movement only in Hα. As discussed in Chapter 8 the NaI

absorption lines from the secondary star are a more robust probe for RV variations, and

we consequently consider that additional follow-up spectroscopy is necessary to confirm

the post-CE nature of these two systems. 3σ NaI doublet RV variation is detected in both

SDSS J0819+5426 and SDSS J2346+4340, which also displays RVmovement in Hα, and
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Figure 9.9: NaI doublet RVs for nine close binary candidates identified in Sect. 9.6.1.

Figure 9.10: Same as Fig. 9.9 but for 16 systems that show morethan 3σ Hα RV variation.
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we consider these two systems to be strong PCEB candidates.

Upper limits to the orbital periods for the four new PCEB candidates have been

estimated in the same way as described in Chapter 7. These values are given in Table 9.5.

9.6.2 Distribution of the stellar parameters

We present in this section distributions of surface gravity, mass and effective temperature

of the white dwarfs, and spectral types of the companions forthe WDMS binaries in our

catalogue. We considered average values for those objects with multiple SDSS spectra, and

only systems with relative errors in the white dwarf parameters smaller than 25%. This

resulted in a number of 1339, 1196, 1126, and 558 WDMS binaries for the spectral type,

logg, Teff, andMwd histograms, respectively (see Fig. 9.11). The most striking features

of the distributions are similar to those provided in Chapter 7, which contain a consider-

ably lower number of systems: the most frequent white dwarf temperatures range between

10000–20000 K, white dwarf masses cluster aroundMwd ≃ 0.5 M⊙, the spectral type of the

companion stars are typically M3–4, and logg≃ 7.8 for the vast majority of white dwarfs.

In Fig. 9.12 we show theTeff, Mwd, logg, and spectral type cumulative distributions

obtained both from the WDMS binaries studied in this Chapter(blue lines), and the systems

analysed in Chapter 7 (red lines). Kolmogorov-Smirnov (KS)tests were applied to compare

both sets of stellar parameters, giving a 40%, 50%, 2% and 4% probability that both WDMS

samples are drawn from the same parent population. From the above values, theTeff and

Mwd distributions seem to be consistent between both subsamples. The 2% obtained from

the logg KS test is due to the scarcity of systems below logg = 7.5 (i.e. less low-mass sys-

tems) in the WDMS binary logg distribution obtained from the systems studied in Chapter 7

(see Fig. 7.9). This could be an effect of our improved methods in determining the white

dwarf solutions in this Chapter, as we have the advantage of GALEX UV fluxes for many

systems. Inspecting the spectral type cumulative distributions in Fig. 9.12, the low proba-

bility obtained from the KS test is intriguing, as both distributions look like very similar.

This is probably related to the fact that the spectral types are discrete values, and the KS test

might not be a good prescription in this case. To complete theexercise we also compared

the cumulative distributions obtained from the stellar parameters presented in this Chap-
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ter to those obtained from a volume-limited sample of singlewhite dwarfs [Holberg et al.,

2008, green lines in Fig. 9.12]. As before, we run KS tests to compare both subsamples,

and found probability zero in all cases (Teff, Mwd, and logg). Such result is not surprising

given the fact that a large number of white dwarfs in the WDMS binary subsample have

undergone a CE, and their properties have been modified (see next paragraph). In addition

selection effects play an important role too (see Sect. 9.6.4).

The large number of white dwarfs atMwd ≃ 0.4 M⊙ detected in the white dwarf

mass distribution of Fig. 9.11 is thought to be the consequence that a significant amount of

WDMS binaries have undergone a CE phase. This population of WDMS binaries will pre-

dominantly contain He-core, less massive white dwarfs. Themass distribution of WDMS

binaries in which the initial MS binary separation was largeenough to avoid the CE phase,

will be similar to those mass distributions obtained from single white dwarfs, clustering at

Mwd ≃ 0.6 M⊙ [Koester et al., 1979]. An independent analysis of the whitedwarf mass

distribution in PCEBs and wide WDMS binaries appears therefore a worthwhile exercise,

and will be presented in Chapter 10.

The cut-off at early spectral types is a consequence of selection effects of WDMS

binaries in SDSS, and is discussed in more detail in Sect. 9.6.4. The cut-off seen for low-

mass companions might also be related to selection effects,as late-type stars are dim and

will be harder to detect against a moderately hot white dwarf. Nevertheless, as already

mention in Chapter 7, SDSS samples a much broader colour space than previous surveys

and, in principle, should be able to identify more WDMS binaries containing cool white

dwarfs plus very late-type companions. The relatively low frequency of such systems in the

SDSS spectroscopic data base suggests that either SDSS is not efficiently targeting those

systems for spectroscopic follow-up, or that they are rare in the first place, or a combination

of both.

9.6.3 Distances and secondary star magnetic activity

In Sect. 9.5 we measured two independent distance estimatesfor the WDMS binaries in

our catalogue. We compare these results in Fig. 9.13. We considered average white dwarf

distances for objects with multiple sub-spectra, and only those systems with relative errors
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Figure 9.11: White dwarf mass, spectral type of the secondaries, effective temperature
and logg histograms obtained from the SDSS WDMS binaries in our catalogue. Excluded
are those systems with individual white dwarf masses,Teff, and logg associated to relative
errors larger than 25 per cent.
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Figure 9.12: Effective temperature (top left), white dwarfmass (top right), surface gravity
(bottom left) and spectral type (bottom right) cumulative distributions obtained from the
stellar parameters of the WDMS binaries presented here (blue lines), analysed in Chapter 9
(red lines), and from a volume-limited sample of single white dwarfs (green lines).
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in the white dwarf distance less than 25%4. This resulted in a sample of 703 WDMS

binaries.

In the top panel of Fig. 9.13 we represent in black systems in which the distances

overlap at 1.5σ level, in red objects where the distance disagreement is more than 1.5σ. In

the majority of cases (∼80%) the distances agree withdsec= dwd. The same tendency for

outliers found in Chapter 7 in whichdsec> dwd remains for∼ 20% of the sample. The per-

centage of 1.5σ outliers above and belowdsec= dwd should be∼ 7%, respectively expected

for normally distributed errors. In contrast to this, the percentage of systems withdsec> dwd

is∼ 15%, and only∼ 5% for the systems withdsec< dwd. We adjusted the spectral type of

the secondaries to achieve the same distances, and found that again a change of 1–2 spec-

tral subclasses was enough for the majority of the cases. We consequently suggest that the

possibility that magnetic activity raises the temperatureof the inter-spot regions in active

stars that are heavily covered by cool spots, leading to a bluer optical colour compared to

inactive stars, remains the best explanation for this behaviour.

16 systems (2.3% of the sample) in the bottom panel of Fig. 9.13 need a change of

more than two spectral subclasses to reachdsec= dwd. We have investigated these cases,

and found that six of these objects contain hot white dwarfs,where some irradiation on the

secondary is expected (SDSSJ 003221.86 +073934.4, SDSSJ 032510.84 -011114.1, SDSSJ

080229.99 +072858.1, SDSSJ 095719.25+ 234240.8, SDSSJ 101323.90+ 043946.1, SDSSJ

141536.40 +011718.2). These WDMS binaries are consequently candidates to probe for RV

movement5. Seven systems (SDSSJ 025306.37 +001329.2, SDSSJ 103501.26 +104222.7,

SDSSJ 131156.69 +544455.8, SDSS J153329.88 +033301.6, SDSSJ 160132.21 +063901.7,

SDSSJ 204729.04 -064536.7, SDSSJ 210624.12 +004030.2) areresolved in their SDSS

images, and consequently the amount of flux received from oneof the stars is likely un-

derestimated. This translates to an underestimated flux scaling factor and distance. In one

object, SDSSJ 232624.72 -011327.2, the S/N of its SDSS spectrum is low (S/N = 4.2),

and we blame this for the discrepancy found in the distances.Finally, SDSSJ 111424.65

4Note that the relative error indsec is dominated by the scatter in theSp−R relation provided in Chapter 7,
which represents an intrinsic uncertainty rather than a statistical error in the fit, and we therefore did not apply
any cut indsec.

5Only SDSS 032510.84-011114.1 has two SDSS RV measurements in Table 9.4. No RV movement is
detected. Note though the probability of sampling the same orbital phase is certainly present.
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Figure 9.13: Top panel: Comparison ofdsec anddwd obtained from our spectral decom-
position and white dwarf fits to the SDSS spectra. Approximately 20% of the systems are
dsec> dwd outliers by more than 1.5σ (red dots). Bottom panel: the spectral types of the
secondary stars were adjusted by 1–2 spectral classes to achievedwd = dsec.
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+334123.7 contains a cold white dwarf (Teff = 8300 K), and a M9 companion. Due to the

upturn for Sp>M8.5 in the empiricalSp−R relation provided in Chapter 7 (see Fig. 7.6)

the distance measured to the secondary star is overestimated (dsec= 94± 3, dwd = 73± 7),

causing the discrepancydsec> dwd.

9.6.4 Selection effects among WDMS binaries in SDSS

The large amount of data presented in this Chapter is of quality enough to study the selection

effects of WDMS binaries in SDSS in a more complete way than discussed in Chapter 7. For

this purpose we have collected the stellar parameters and distances provided in Table 9.3,

and obtained in the top, middle and bottom panels of Fig. 9.14the (logTeff,dwd), (Sp,dwd)

and (logTeff,Sp) density maps, respectively for the systems in our catalogue. Only objects

in which the relative errors in their (average) white dwarf parameters are less than 25% were

selected for this purpose6, resulting in a sample of 597, 692, and 1052 systems respectively

in the top, middle and bottom panels of Fig. 9.14.

The top panel in Fig. 9.14 shows the (logTeff,dwd) density map. It becomes clear

that whilst binaries in which the white dwarf primaries are cooler than 10000 K are detected

at shorter distances, systems with hotter white dwarf components can be observed at a wider

range of (longer) distances, the hottest among them the farthest. Cooler white dwarfs are

then too faint to be detected at relatively long distances, and moderately hot white dwarfs

saturate the lower magnitude limit of SDSS at shorter distances. The majority of objects

are hence concentrated at∼400-500 pc, with white dwarf effective temperatures between

∼15000-25000 K. This is in agreement with the effective temperature distribution provided

in Fig. 9.11.

Having analysed how distance effects affect the detection of our white dwarf pri-

maries in SDSS, we study in the middle panel of Fig. 9.14 the same effect for our secondary

stars. Early-type M-dwarfs are hotter, and consequently saturate the SDSS lower magnitude

limit at relatively short distances. On the contrary, later-type secondaries are cold enough

6We could, in principle, have also used the distances measured to the secondaries. Note though that magnetic
activity is expected to affect the spectral type (and consequently the radii and the distances) of a large fraction
of secondary stars (Sect. 9.6.3). We consequently considered here the distances measured to the white dwarfs,
and quote them simply as distances in what follows.
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Figure 9.14: Selection effects in SDSS WDMS binaries can be understood by analysing the
density maps obtained from their stellar parameters. From top to bottom the (logTeff,dwd),
(dwd,Sp), and (logTeff,Sp) density maps. See Sect. 9.6.4 for details.
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to be detected at shorter distances, but too dim to be observed at long distances. Thus hotter

(earlier) companions are generally detected at d>∼ 300pc, and cooler (later) secondaries are

concentrated at∼ 100−200pc.

In the bottom panel of Fig. 9.14 we show the (Teff,Sp) density map. A clear trend

of decreasing theTeff of the white dwarfs for later-type companions can clearly beseen.

In other words, high white dwarf temperatures are too hot fora late-type companion to be

detected (in the optical). In the same way early spectral type secondaries are too hot for

a cool white dwarf primary to be detected. With the above analysis the cut-off at early

spectral types in Fig. 9.11 can be easily explained in a natural way. Selection effects then

dominate the bottom left region of the (Teff,Sp) density map. The scarcity of systems with

later-type (>M6) secondaries can also be seen here, and has been already discussed in

Sect.9.6.2. This feature might be also related to the above selections effects. Nevertheless,

as discussed in Chapter 7, spectral type distributions of field low-mass and ultracool stars

[e.g. Reid et al., 2007, 2008] peak at Sp≃ M4-5, and decline towards later spectral types.

Hence we suggest that the lack of WDMS binaries with late-type companions is probably

both an intrinsic property of the WDMS binary population anda consequence of selection

effects. Distance effects play also an important role. Thusfor example, those WDMS

binaries which contain both a hot primary and secondary components can not be observed

at short distances, since they saturate the SDSS magnitude limit. On the contrary, WDMS

binaries containing faint stars can only be observed at short distances.

From the analysis of Fig. 9.14 we conclude that a “typical” SDSS WDMS binary

contains a M3–4 companion, a∼10000-20000 K primary, and is observed at a distance

∼400-500 pc. Note though that the distributions presented inFig. 9.14 are a combination

of the real distribution of WDMS binary properties and the selection effects in the sample.

Consequently a typical SDSS WDMS binary is unlikely to be representative of the “real”

(corrected for selection effects) WDMS binary population.

The top and middle panels of Fig. 9.14 help in understanding brightness limited

selection effects of WDMS binaries in SDSS. In order to avoidthis it becomes necessary to

use different magnitude limited surveys from SDSS, with lower and larger magnitude cuts

respectively. The bottom panel of Fig. 9.14 helps to understand selection effects related to
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the spectral appearance of WDMS binaries. Detection of systems with hotter white dwarfs

and later-type companions is then most likely to arise from the use of infrared magnitude

surveys such us UKIDSS or 2MASS. In the same way, to identify cool white dwarfs with

early-type dominated M-dwarfs it is necessary to make use ofblue surveys such as GALEX.

9.7 Conclusions

We have presented a catalogue of 1591 WDMS binaries from the spectroscopic SDSS DR6.

We have used a decomposing/fitting technique to measure the effective temperatures, sur-

face gravities, masses and distances to the white dwarfs, aswell as the spectral types and

distances to the companions in our catalogue. Distributions and density maps obtained from

these stellar parameters have been used to study both the general properties and the selec-

tion effects of WDMS binaries in SDSS. A comparison between the distances measured to

the white dwarfs and the MS companions showsdsec> dwd for ∼20% of the systems, a

tendency found in previous Chapters. We suggest that the possibility that magnetic activity

raises the temperature of the inter-spot regions in active stars that are heavily covered by

cool spots, leading to a bluer optical colour compared to inactive stars, remains the best

explanation for this behaviour. We also provide RVs for 1062WDMS binaries measured

from the NaI λλ 8183.27,8194.81 absorption doublet and/or the Hα emission line. Among

the systems with multiple SDSS spectroscopy, we find four newWDMS binaries exhibiting

significant RV variations, identifying them as PCEB candidates.
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Chapter 10

Discussion and Conclusions

I conclude my thesis with this Chapter, in which I discuss theresults obtained by our on-

going project at the present date, e.g. November 2008. For this, I make use of the analysis

provided in Chapters 7, 8 and 91, and also use data that have not been published yet, but

will be in the near future. The inclusion of these data provides a more complete and robust

analysis. I will also outline my future research plan.

10.1 The orbital period distribution of SDSS PCEBs

Currently, we have observed 244 WDMS binaries, of which 89 have been identified as

PCEBs, and 42 had their orbital periods measured, includingalso the seven orbital peri-

ods measured in Chapter 8. I show in Fig. 10.1 the orbital period distribution of these 42

systems. This histogram represents an homogeneous selected sample of PCEBs, but is

still subject to selection effects. Orbital periods of several SEGUE PCEBs have also been

already measured (Nebot Gómez-Morán, private communication), and it is expected that

the inclusion of these data will help in solving the observational bias in SDSS. Inspecting

Fig. 10.1 it becomes clear that the number of long period PCEBs has increased in compari-

son with the orbital period distribution shown in Chapter 8.This confirms our Monte-Carlo

simulations that showed that our survey has the potential offinding PCEBs with orbital

1In the following sections I do not include systems identifiedas PCEB candidates in Chapters 7 and 9 that
have not yet been confirmed as definite close binaries by our own follow-up observations
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Figure 10.1: Orbital period distribution of current SDSS PCEBs. The accumulation of
systems at periods shorter than a day suggests that the CE efficiency is less than frequently
assumed.

periods in the range∼1-10 days. Nevertheless the number of long period PCEBs is still

rather low compared to the number of short period systems, supporting the hypothesis of

the PCEB orbital period distribution peaking atPorb < 1 day. The orbital energy of the

binary hence might be less efficiently used (lower CE efficiency) to expel the envelope than

frequently assumed. In addition, the decrease of the numberof PCEBs atPorb > 1 day seems

to imply that theγ-formalism in its present form might not be an adequate description of

the CE phase, as a more pronounced tail towards longer orbital periods is expected in this

formalism.
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10.2 The PCEB fraction

The analysis provided in Chapter 7 resulted in a∼ 15% fraction of PCEBs among a sample

of 101 SDSS WDMS binaries with multiple SDSS spectroscopy. Ihave shown that this

number is likely to be a lower limit. Since 89 of the 244 systems for which we have follow-

up observations show more than 3σ RV variations in the NaI λλ 8183.27,8194.81 absorption

doublet, this implies a PCEB fraction of∼ 1/3. This result is considerably higher than the

value estimated by population synthesis studies [Willems &Kolb, 2004], and more than

doubles the PCEB fraction measured in Chapter 7.

In the bottom panel of Fig. 10.2, I show the distribution of our observed systems

(WDMS binaries in white, PCEBs in gray) according to the spectral type of their secondary

components, and show the PCEB fraction for each spectral type in the middle panel of the

same figure. Making use of theSp−M relation for M-dwarfs provided in Chapter 7, I give

also values of secondary masses in the top of the bottom panelof Fig. 10.2. The PCEB

fraction appears to increase for later-type secondaries. This is confirmed by a linear fit to

the solid dots in the middle panel of Fig. 10.2 (red dashed line):

NPCEB

NAll
= (0.07±0.03)×Sp+(0.17±0.14) (10.1)

Theχ2 of the fit is 19.7. In addition I also fitted a constant function(green dashed line), in

which case theχ2 is 61. It is expected that if these two models, linear and constant value

fits, produce minimumχ2 valuesχ2
2 andχ2

1, respectively then the quantity

F =
(χ2

1−χ2
2)/(m2−m1)

χ2
2/(n−m2)

,

wherem1 andm2 are the number of free parameters (m1 = 1, andm2 = 2 in our case), andn

is the number of points, follows anF(m2−m1;n−m2) distribution. In our caseF = 12.6,

and the 95th and 99th percentiles ofF(1,6) give 6.6 and 13.7 respectively. This result

implies that, even though theχ2 of the linear fit is considerably lower, a constant value fit

can not be completely ruled out.

In order to account for distance effects I represent in the top panel of Fig. 10.2 the

average distances of the observed systems for each spectraltype. In agreement with the

density diagrams provided in Chapter 9, the average distance is∼ 500 pc. This excludes
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that we have a magnitude-distance bias against wide low luminosity WDMS binaries, and

consequently the PCEB fractions for the different spectralsubtypes are likely real.

An increase of the PCEB fraction in the range M3-M4 has been predicted in the

context of the disrupted MB model [Politano & Weiler, 2006, see Chapter 1]. The reason is

that the evolutionary time scales on which PCEBs evolve intoCVs becomes dramatically

longer if MB ceases for fully convective secondaries. Although suffering from low number

of statistics, by analysing the distribution of PCEB secondary star masses in the bottom

panel of Fig. 10.2, one may interpret this result as an indication for a discontinuity in the

dependence of the relative number of PCEBs on the spectral type of the secondary, as

predicted by Politano & Weiler [2006].

10.3 The white dwarf mass distribution in WDMS binaries

Our follow-up observations have led to the identification of89 PCEBs, and 155 wide

WDMS binary candidates2. Statistically speaking, these numbers are large enough topro-

vide robust distributions of the stellar parameters in bothsubsamples, PCEBs and wide

WDMS binaries, and also robust distributions of the parameters for the combined popula-

tion, PCEBsplus wide WDMS binaries. In this section I study the distributionof white

dwarf masses in the overall sample of our observed WDMS binaries, and also in both our

PCEB and wide WDMS binary subsamples. With this I attempt to confirm that the low

mass peak at∼ 0.4MJ identified in the mass distribution of single white dwarfs isassoci-

ated with a binary origin [Willems & Kolb, 2004; Liebert et al., 2005].

In Fig. 10.3, I show in black the white dwarf mass distribution of all WDMS bi-

naries, in dark gray the white dwarf distribution of our wideWDMS binaries, and in light

gray the white dwarf mass distribution of our PCEBs3. The overall distribution of white

dwarf masses peaks at 0.5MJ (see Chapter 9), and shows also a “high” mass peak at 0.9

MJ. This latter feature has been also identified in mass distributions of single white dwarfs

[Liebert et al., 2005], and is supposed to be a consequence ofmergers of low mass double

2Note that all PCEBs with periods longer than>∼10 days will be considered as wide WDMS binaries, as the
detection probability for PCEBs with Porb >∼ 10 days is low (see Chapter 8).

3The white dwarf masses, as well as the remaining stellar parameters in the following sections, are taken
from Chapter 9.
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Figure 10.2: Bottom: Distribution of PCEBs (gray) and WDMS binaries (white) according
to the spectral type of their companions. Secondary star masses are indicated in the top of
the panel. Middle: PCEB fraction among our observed WDMS binaries. There is a clear
tendency to an increased PCEB fraction for later-type PCEB secondaries. This is confirmed
by a linear fit to the data (red dashed line). The green dashed line represents a constant value
fit to the data. Top: average distances of the observed systems.
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Figure 10.3: White dwarf mass distribution for all our observed WDMS binaries (black),
PCEBs (right panel, light gray), and wide WDMS binaries (left panel, dark gray). The peak
at 0.4MJ in the distribution of PCEB white dwarf masses confirms the hypothesis that
these systems have undergone a CE phase.

degenerate stars. The 0.5 and 0.9MJ peaks are also detected in the distribution of wide

WDMS binaries (see left panel of Fig. 10.3). The fact that we see a peak at 0.9MJ in the

mass distribution of wide WDMS binaries suggests that a certain fraction of these objects

might be descendents of triple systems.

A peak at 0.4MJ is not detected in the white dwarf mass distribution of wide

WDMS binaries. Nevertheless, it is clearly evident in the white dwarf mass distribution of

PCEBs (see right panel of Fig. 10.3). Since these systems have undergone a CE phase, I

can confirm from the mass distribution of PCEBs provided in the right panel of Fig. 10.3,

that the low mass peak at 0.4MJ in the global distribution of single white dwarfs is indeed

related to binary evolution, as previously suggested.

As a final exercise we obtained the wide WDMS binary (red line)and PCEB (blue

line) white dwarf mass cumulative distributions (see Fig. 10.4), and use a KS test to compare
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Figure 10.4: PCEB (blue line) and wide WDMS binary (red line)white dwarf mass cu-
mulative distributions. The probability obtained from a KStest for the hypothesis of both
subsamples being consistent is 10%.

both subsamples. We found a 10% probability for the distributions being drawn from the

same parent population, which supports the idea of both wideWDMS binaries and PCEBs

white dwarf mass subsamples being independent.

10.4 The white dwarfM−R relation

The fitting procedure developed in Chapter 7 for determiningthe stellar parameters of the

white dwarfs in our WDMS binaries assumes anM−R relation for white dwarfs obtained

from an updated version of the Bergeron et al. [1995b]’s tables. These relations are de-

veloped for C/O-core white dwarfs, but extend also below 0.5MJ, where white dwarfs are

expected to predominantly contain He cores. A crucial question is obviously if these rela-

tions provide reliable values of mass and radius below this limit for our white dwarfs. To

answer this I show in Fig. 10.5 theM −R relations from Panei et al. [2000] for aTeff =

15000 K white dwarf containing a He- (top left), a C- (top right), and an O-core (bottom

left), with or without a H/He envelope/envelopes. Panei et al. [2000] assume a H mass en-

158



velope ofMH/MWD = 3×10−4 in their He-core models, and a H and He mass envelope of

MH/MWD = 10−5 andMHe/MWD = 10−2 respectively for their C- and O-core models. In

black dots are shown theM −R relation used in this thesis for the same effective temper-

ature. The C/O relations are in reasonably good agreement with ours even below 0.5MJ.

The He-core relations are also in reasonably good agreementwith ours when no H envelope

is considered, but predict larger radii than ours forMWD <∼ 0.35MJ when a H envelope is

included in the models. Given that we do not knowMH/MHe in our white dwarfs, using

Bergeron et al. [1995b]’sM −R relations is as good as any other guess. In addition, the

number of white dwarfs with masses below∼ 0.35MJ is very low (see Fig. 7.9, Fig. 9.11,

and Fig. 10.3), and I conclude that the effect of increasing the white dwarf radius in the low

mass range does not dramatically affect the white dwarf massand radius distribution of our

WDMS binaries.

The fact that larger white dwarfs radii might be expected below ∼ 0.35MJ could,

in principle, explain the distance disagreement found in previous Chapters (in whichdsec>

dwd for ∼ 20% of the WDMS binaries), since a larger radius implies a larger white dwarf

distance. In the bottom right panel of Fig. 10.5, I show the white mass distribution of all

outliers (dsec> dwd) in Fig. 9.13. As one can clearly see, very few white dwarfs have masses

<∼ 0.35MJ, and consequently this feature can not reconcile the distance problem.

10.5 A test for magnetic activity

Recently West et al. [2008] studied the age-activity relations for cool (M-dwarf) stars, and

concluded that young stars are, in general, more active thanolder stars. In other words, the

fraction of active stars increases with decreasing the Galactic height at all spectral types.

In Chapters 7 and 9, a relatively large percentage (∼20%) of WDMS binaries show larger

distances measured from the secondaries than those obtained from their white dwarfs. I

have shown that these objects are likely to contain magnetically active companions.

As a test for this hypothesis I provide in the bottom panel of Fig. 10.6 the distri-

bution in Galactic height of all WDMS binaries in our catalogue (black, see Chapter 9),

together with the distribution of all WDMS binaries containing candidate active compan-
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Figure 10.5: Top and bottom left panels: comparison of theM −R relation used in this
thesis (black solid dots) and those provided in Panei et al. [2000] (blue and red straight
lines) for aTeff = 15000 K white dwarf. Bottom right: white dwarf mass distribution for the
WDMS binaries studied in Chapter 9 in whichdsec> dwd (relative error in the mass is 20%
or less). The low number of systems below∼ 0.35MJ indicates that an increase inRWD

can not explain the distance disagreement found in previousChapters (see text for details).
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ions (i.e. systems in which the distance to the secondary is 1.5σ larger than the distance

to the white dwarf, gray)4. In the top panel of the same figure I give the fraction of active

systems to the total number of systems.

A clear tendency of increasing fraction of active systems atlower Galactic heights

(younger secondaries) can be seen. A linear fit to the data (red dashed line) confirms this

tendency and supports our suggestion of magnetic activity causing the discrepancy between

the distances found in previous Chapters.

10.6 Active secondaries as a product of close binarity?

M stars in close binaries rotate faster than single M stars orM stars in wider binaries, in

general [Cardini & Cassatella, 2007]. Since fast rotators are expected to be more active

[Delfosse et al., 1998], then close binarity and activity inour PCEBs may be related. In

order to check this I show in Fig. 10.7 the distances measuredboth to the secondaries and

to the white dwarfs for our observed WDMS binaries. As in the previous Chapters, I con-

sidered only those systems with relative error of less than 25% in the white dwarf distance.

This resulted in a sample of 166 WDMS binaries. PCEBs are represented in cyan dots.

In dark gray I show systems in which the distances overlap at 1.5σ level, in red WDMS

binaries where the distance disagreement is more than 1.5σ. The same tendency for outliers

found in previous Chapters can be seen in∼ 17% of the sample. If secondaries in which

dsec> dwd are active, then the same amount of close and wide WDMS can be found among

the systems containing active secondaries. Consequently magnetic activity and close bina-

rity, i.e. fast rotation, in our M-dwarf sample seem to be notrelated.

Recently West & Basri [2008] showed that rotation and magnetic activity in single

late-type M-dwarfs might not always be linked, in agreementwith the above results. Nev-

ertheless, it has to be stressed that once the primary evolved through the AGB, sufficient

angular momentum might have been transferred to the secondary, producing wind-induced

rapid rotating stars [Jeffries & Stevens, 1996]. We would expect then a fraction of (wide)

WDMS binaries containing rapid-rotating secondaries. As aconsequence these secondaries

4The Galactic heights have been obtained using the distancesmeasured for the white dwarfs. In addition
only systems in which the relative error in their white dwarfdistances is less than 25% were considered.
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Figure 10.6: Bottom left: distribution of WDMS binaries with candidate active companions
(gray), and total number of systems (black) as a function of the Galactic height (h) for
our catalogue of WDMS binaries (Chapter 9). The fraction of systems that contain active
secondary candidates increases at lower Galactic heights (younger systems), supporting the
idea of these binaries containing magnetically active companions.
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Figure 10.7: Comparison ofdsecanddwd for our observed WDMS binaries. In dark gray are
shown systems whose distances agree at a 1.5σ level, and in red those whose distances are
1.5σ outliers. The same tendency of outliers found in previous Chapters can be seen here.
Cyan dots represent PCEBs. Roughly the same amount of close and wide WDMS binaries
can be found among the WDMS binaries that contain active secondaries, indicating that
magnetic activity might not be correlated with close binarity (fast rotation) in our PCEB
M-dwarf sample.

would show high levels of magnetic activity, leaving our hypothesis of magnetic activity and

close binarity not always being linked as inconclusive.

10.7 Colour-colour diagrams and colour-cuts of WDMS bina-

ries

A feature unexplored in Chapter 9 is the use of GALEX-SDSS-UKIDSS magnitudes to

study the distribution of WDMS binaries in colour-colour diagrams, and the search of

colour-cuts for this kind of system. I briefly show in this section that WDMS binaries can be

very efficiently separated from single MS stars when using a combined ultraviolet, optical,

and infrared colour selection. For this purpose I provide inFig. 10.8 the (nuv−i,nuv−H),

(i − J,J−H), (u− g,g− r), and (fuv-nuv,r − z) colour-colour diagrams for the WDMS
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binaries in our catalogue (Table 9.1, excluding all WDMS binary candidates) and all SDSS

stellar sources. A general feature evident in all diagrams is that a certain number of systems

appear to be outliers from the apparent locus of WDMS binaries. I have investigated these

cases and found that in the majority of cases these objects are resolved pairs in SDSS. In

these cases a large photometric error is expected from the deblending applied by the SDSS

photometric pipeline (see Chapter 9).

WDMS binaries can be efficiently separated from the main locus of MS stars by

applying the following colour-cuts to the four colour-colour diagrams provided in Fig. 10.8,

respectively:

(nuv− i) < −0.85+0.83× (nuv−h) (10.2)

0.3 < ( j −H) < 0.7 (10.3)

(i −J) > 1.2 (10.4)

(i −J) > 0.4+1.85× ( j −H) (10.5)

(u−g) < 0.93−0.27(g− r)−4.70(g− r)2 +12.38(g− r)3+ (10.6)

3.08(g− r)4−22.19(g− r)5 +16.67(g− r)6−3.89(g− r)7

−0.5 < (g− r) < 1.5 (10.7)

(r −z) > −0.3 (10.8)

(fuv−nuv) < 0.85+3.9× (r −z) (10.9)

A more complete colour-cut selection analysis for WDMS binaries using different

combinations of GALEX-SDSS-UKIDSS magnitudes seems to be aworthwhile exercise

(see next section).

10.8 Future work

10.8.1 PCEB studies

The major task of our project is to identify and follow-up those WDMS binaries that have

undergone a CE phase. Future follow-up observations will increase both the number of
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Figure 10.8: (nuv−i,nuv−H) (top left), (i − J,J−H) (top right), (u− g,g− r) (bottom left), and (fuv-nuv,r − z) (bottom right) colour-
colour diagrams for WDMS binaries and stellar sources. WDMSbinaries are represented according to their binary components as follows
(see Table 9.2): DA/M binaries in yellow, DB/M in blue, DC/M in green, DA-DB-DC/K in red, and WD/M in black. Stellar sources are
represented with gray dots. Straight blue lines represent colour-cuts of WDMS binaries for each colour-colour diagram.
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Figure 10.9: Sp type vsR for M stars in eclipsing WDMS binaries [blue dots, Pyrzas et al.,
2008, and references therein]. The black solid line is the empirical Sp−R relation for M
stars obtained in Chapter 7, the solid red line is the theoretical Sp−R relation from Baraffe
et al. [1998].

identified SDSS PCEBs and wide WDMS binaries, and the number of measured PCEB

orbital periods. Hence we will be able to improve the statistics of the distributions presented

in the above sections, and constrain further the theory of evolution of compact binaries:

to confirm or disprove that MB is indeed disrupted we need to identify at least 100 new

PCEBs; to identify the long period end of the PCEB populationwe need at least∼ 50

PCEBs with long orbital periods (5-50 days); in order to estimate the strength of AML we

need orbital periods of∼ 300 PCEBs at different times of PCEB evolution (Teff ∼ 8000-

40000 K, which translates to white dwarf cooling ages of∼ 5×106 to ∼ 2×109). To sum

up, solving the three most important problems in close binary evolution needs a sample of

∼ 300−500 systems.

10.8.2 A catalogue of WDMS binaries from SDSS DR 7

SDSS DR 7 has just been released, and it is expected that a significant number of new

WDMS binaries have been observed. An analysis such as the onedescribed in Chapter 9

is desirable to identify these new systems. This will consequently update our catalogue of

WDMS binaries, and also provide new and updated distributions of WDMS binary stel-
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lar parameters. In addition, the number of WDMS binaries available for future follow-up

studies will also increase.

10.8.3 Physical properties of white dwarfs and M-dwarfs

The number of eclipsing WDMS binaries has increased in the last few years, and more

eclipsing systems remain to be discovered. Nevertheless both theSp−R relation provided

in Chapter 7, and the theoretical Baraffe et al. [1998]Sp−R relation still can not match the

observational results (see Fig. 10.9). The same occurs in both theM−R relation of white

dwarfs and single M stars (see Chapter 2). The identificationof new eclipsing WDMS

binaries will provide new empirical values that will help inconstraining theSp−R relation

for M stars, and also theM−R relations of both white dwarfs and M-dwarfs.

10.8.4 WDMS colour-cuts

A good colour-cut selection of WDMS binaries is necessary toidentify those WDMS bi-

naries that have not been spectroscopically followed-up inSDSS. In this thesis it has been

demonstrated that the combination of GALEX-SDSS-UKIDSS magnitudes is a powerful

tool to isolate WDMS binaries from other stellar sources. The use of red and blue surveys

such as GALEX and UKIDSS will also increase the number of WDMSbinaries containing

cold white dwarfs and later-type companions, and consequently will help in solving the

biassed selection of WDMS binaries in SDSS.

10.8.5 Future Surveys

In the following years different sky surveys from SDSS will provide data releases that might

help in improving the study of WDMS binaries. Thus, surveys such as Pan-STARRS, and

LSST will map very large sky areas in search of objects that move and/or vary, among them

eclipsing WDMS binaries and CVs. Accurate distances will bedetermined for approxi-

mately 2.5 million stars by the GAIA mission. Identifying SDSS WDMS binaries among

these objects will fix the distance of these systems, and consequently their white dwarf

radius, which would help in constraining also the white dwarf M −R relation (since we

determined their masses in an independent way).
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